BACK TO INDEX

Publications of year 2024
Books and proceedings
  1. F. Bullo. Contraction Theory for Dynamical Systems. Kindle Direct Publishing, 1.2 edition, 2024. ISBN: 979-8836646806. [bibtex-entry]


  2. F. Bullo. Lectures on Network Systems. Kindle Direct Publishing, 1.7 edition, April 2024. ISBN: 978-1986425643. [bibtex-entry]


Articles in journal, book chapters
  1. V. Centorrino, F. Bullo, and G. Russo. Modelling and Contractivity of Neural-Synaptic Networks with Hebbian Learning. Automatica, 164:111636, 2024. Keyword(s): Contraction Theory, Neural Networks. [bibtex-entry]


  2. V. Centorrino, A. Davydov, A. Gokhale, G. Russo, and F. Bullo. On Weakly Contracting Dynamics for Convex Optimization. IEEE Control Systems Letters, 8:1745-1750, 2024. Keyword(s): Contraction Theory, Neural Networks. [bibtex-entry]


  3. V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Positive Competitive Networks for Sparse Reconstruction. Neural Computation, 36(6):1163–1197, 2024. Keyword(s): Contraction Theory, Neural Networks. [bibtex-entry]


  4. L. Cothren, F. Bullo, and E. Dall'Anese. Online Feedback Optimization and Singular Perturbation via Contraction Theory. SIAM Journal on Control and Optimization, August 2024. Note: Submitted. Keyword(s): Contraction Theory. [bibtex-entry]


  5. O. Dalin, R. Ofir, E. Bar Shalom, A. Ovseevich, F. Bullo, and M. Margaliot. Verifying $k$-Contraction without Computing $k$-Compounds. IEEE Transactions on Automatic Control, 69(3):1492-1506, 2024. Keyword(s): Contraction Theory. [bibtex-entry]


  6. A. Davydov and F. Bullo. Exponential Stability of Parametric Optimization-Based Controllers via Lur'e contractivity. IEEE Control Systems Letters, 8:1277-1282, 2024. Keyword(s): Contraction Theory. [bibtex-entry]


  7. A. Davydov and F. Bullo. Perspectives on Contractivity in Control, Optimization and Learning. IEEE Control Systems Letters, 8:2087-2098, 2024. Keyword(s): Contraction Theory, Neural Networks. [bibtex-entry]


  8. A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean Contraction Analysis of Continuous-Time Neural Networks. IEEE Transactions on Automatic Control, 2024. Note: To appear. Keyword(s): Contraction Theory, Neural Networks. [bibtex-entry]


  9. G. De Pasquale, K. D. Smith, F. Bullo, and M. E. Valcher. Dual Seminorms, Ergodic Coefficients, and Semicontraction Theory. IEEE Transactions on Automatic Control, 69(5):3040-3053, 2024. Keyword(s): Contraction Theory. [bibtex-entry]


  10. G. Diaz-Garcia, F. Bullo, and J. R. Marden. Strategic Coalitions in Networked Contest Games. IEEE Transactions on Automatic Control, August 2024. Note: Submitted. [bibtex-entry]


  11. Y. John, G. Diaz-Garcìa, X. Duan, J. R. Marden, and F. Bullo. A Stochastic Surveillance Stackelberg Game: Co-Optimizing Defense Placement and Patrol Strategy. IEEE Transactions on Automatic Control, February 2024. Note: Submitted. [bibtex-entry]


  12. Z. Marvi, F. Bullo, and A. G. Alleyne. Control Barrier Proximal Dynamics: A Contraction Theoretic Approach for Safety Verification. IEEE Control Systems Letters, 8:880-885, 2024. [bibtex-entry]


  13. R. Ofir, F. Bullo, and M. Margaliot. A sufficient condition for 2-contraction of a feedback interconnection. IEEE Transactions on Automatic Control, 2024. Note: Submitted. Keyword(s): Contraction Theory. [bibtex-entry]


  14. A. V. Proskurnikov and F. Bullo. Regular pairings for non-quadratic Lyapunov functions and contraction analysis. SIAM Journal on Control and Optimization, September 2024. Note: Submitted. Keyword(s): Contraction Theory. [bibtex-entry]


  15. R. Yan, X. Duan, R. Zou, X. He, Z. Shi, and F. Bullo. Multiplayer Homicidal Chauffeur Reach-Avoid Games: A Pursuit Enclosure Function Approach. Automatica, 2024. Note: To appear. [bibtex-entry]


  16. W. Ye, F. Bullo, N. E. Friedkin, and A. K. Singh. Computational Models for Human-AI Team Decision Making. 2024. [bibtex-entry]


Conference articles
  1. V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Biologically Plausible Neural Networks for Sparse Reconstruction: A Normative Framework. In Workshop “Mathematics for Artificial Intelligence and Machine Learningâ€, Milan, Italy, january 2024. Note: Oral Presentation. Keyword(s): Contraction Theory, Neural Networks. [bibtex-entry]


  2. V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Towards a Top/Down Normative Framework for a Biologically Plausible Explanation of Neural Circuits: Application to Sparse Reconstruction Problems. In 5th International Convention on the Mathematics of Neuroscience and AI, Rome, Italy, May 2024. Keyword(s): Contraction Theory, Neural Networks. [bibtex-entry]


  3. S. Jaffe, A. Davydov, D. Lapsekili, A. K. Singh, and F. Bullo. Learning Neural Contracting Dynamics: Extended Linearization and Global Guarantees. In Advances in Neural Information Processing Systems, 2024. Note: Submitted. [bibtex-entry]


  4. Y. John, C. Hughes, G. Diaz-Garcia, J. Marden, and F. Bullo. RoSSO: A High-Performance Python Package for Robotic Surveillance Strategy Optimization Using JAX. In IEEE Int. Conf. on Robotics and Automation, Yokohama, Japan, May 2024. Note: To appear. Keyword(s): Robotic Surveillance. [bibtex-entry]


  5. R. Marjieh, A. Gokhale, F. Bullo, and T. Griffiths. Task Allocation in Teams as a Multi-Armed Bandit. In ACM Collective Intelligence, June 2024. Note: Accepted for both poster and oral presentation. [bibtex-entry]



BACK TO INDEX




Disclaimer:

This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All person copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.

Les documents contenus dans ces répertoires sont rendus disponibles par les auteurs qui y ont contribué en vue d'assurer la diffusion à temps de travaux savants et techniques sur une base non-commerciale. Les droits de copie et autres droits sont gardés par les auteurs et par les détenteurs du copyright, en dépit du fait qu'ils présentent ici leurs travaux sous forme électronique. Les personnes copiant ces informations doivent adhérer aux termes et contraintes couverts par le copyright de chaque auteur. Ces travaux ne peuvent pas être rendus disponibles ailleurs sans la permission explicite du détenteur du copyright.




Last modified: Mon Sep 2 17:03:53 2024
Author: bullo.


This document was translated from BibTEX by bibtex2html