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Network systems in sciences

Sociology: opinion dynamics, propagation of
information, performance of teams

Ecology: ecosystems and foodwebs
Economics: input-output models
Medicine/Biology: compartmental systems
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@ Intro to Network Systems

Models, behaviors, tools, and applications

@ Power Flow
“Synchronization in oscillator networks” by Dorfler et al, PNAS '13
“Voltage collapse in grids" by Simpson-Porco et al, submitted '15

@ Social Influence
“Opinion dynamics and social power” by Jia et al, SIREV '15



Linear network systems

x(k+1) = Ax(k) + b or x(t) = Ax(t)+ b
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@ systems of interest
@ asymptotic behavior
© tools

network structure <= function = asymptotic behaviorJ




Perron-Frobenius theory

non-negative irreducible primitive
(A>0) (no permutation brings A into (there exists k
block upper triangular form) such that A* > 0)

if A non-negative

O eigenvalue A > |u| for all other eigenvalues 4
@ right and left eigenvectors Viight > 0 and viere > 0
if A irreducible

© A >0and )\ is simple

Q Viight > 0 and viere > 0 are unique

if A primitive

@ X > |u| for all other eigenvalues

i kivk _ T . . . T .
O limy_00 A“/A* = Viight Vieq» With normalization Viight Vieft = 1




Algebraic graph theory

Powers of A ~ walks in G:

(AK); >0 <:> there exists directed path of length k
from j tojin G

Primitivity of A ~ walks in G:

A is primitive <:> G strongly connected and aperiodic
(A >0 and Ak >0) (exists path between any two nodes) and
(exists no k dividing each cycle length)

v

digraph strongly connected components condensation
v




Averaging systems
% ﬁ ﬁ x;" := average(x;, {x;,j is neighbor of i})

Swarming via averaging

A influence matrix:
row-stochastic: non-negative and row-sums equal to 1

For general G with multiple condensed sinks
(assuming each condensed sink is aperiodic)

[:> consensus at sinks
convex combinations elsewhere

consensus: limy_, X(k) = (Viete - x(0)) 1,
where viet = convex combination = influence centrality
v




Compartmental flow systems

—precipitation—s| soil evaporation, drainage, runoff — C‘],’ = E i (FJ%I — FI*)J) — F,'*)O + u;
J

uptak0%~transpiration—>
Fimj = fjqi, F=[fj]
drinking herbivory
I s

[ o, g=(FT —diag(Fl, + f)) g + u

Water flow model for a desert ecosystem

W

=:C

C compartmental matrix:
quasi-positive (off-diag > 0), fy > 0 = weakly diag dominant
analysis tools: PF for quasi-positive, inverse positivity, algebraic graphs

system (= each condensed sink) <:> C is Hurwitz
is outflow-connected

[:> lim: oo q(t) = —Clu>0

(-C7'u); >0 <= ith compartment is inflow-connected




Nonlinear network systems

Rich variety of emerging behaviors
@ equilibria / limit cycles / extinction in populations dynamics
@ epidemic outbreaks in spreading processes

© synchrony / anti-synchrony in coupled oscillators




Population systems in ecology

Lotka-Volterra: x; = quantity/density

i
— =b; + E L aijX;
Xij J

<&

Mutualism betweenlownfish and anemones X = dlag(x) (AX —|— b)

v

A interaction matrix:
(+,+) mutualism, (+, —) predation, (—, —) competition
rich behavior: persistence, extinction, equilibria, periodic orbits, ...

@ logistic growth: b; > 0 and a;; <0
@ bounded resources: A Hurwitz (e.g., irreducible and neg diag dom)
© mutualism: a; >0

|:l> exists unique steady state —A~1H > 0
lim¢—y00 x(t) = —A~1b from all x(0) > 0




Network propagation in epidemiology

Network SIS: (x; = infected fraction)
%= 5 ay(1—x)x =%

@ (rescaling)

x = (I, — diag(x)) Ax — x

B (infection rate)

Susceptible

v (recovery rate)

Network SI model )

A contact matrix: irreducible with dominant pair (X, Viignt)

below the threshold: \ <1

0 is unique stable equilibrium
[::> vr?;htx(t) — 0 monotonically & exponentially

above the threshold: \ > 1
0 is unstable equilibrium

unique other equilibrium x* > 0
lim¢_ o0 x(t) = x* from all x(0) # 0




Analysis methods

© nonlinear stability theory
@ passivity
© cooperative/competitive system and monotone generalizations

Mutualistic Lotka-Volterra: x = diag(x)(Ax + b)
A quasi-positive and Hurwitz = inverse positivity
cooperative systems theory: (if Jacobian is quasi-positive,
then almost all bounded trajectories converge to an equlibrium)

Network SIS: x = (I, — diag(x)) Ax — x
A irreducible, above the threshold A > 1
monotonic iterations and LaSalle invariance




Incomplete references on linear network systems

Averaging: multi-sink, concise proofs, etc
@ F. Harary. A criterion for unanimity in French’s theory of social power. Studies in Social Power, ed D. Cartwright,
168-182, 1959, University of Michigan.

@ J. N. Tsitsiklis and D. P. Bertsekas and M. Athans. Distributed asynchronous deterministic and stochastic gradient
optimization algorithms. IEEE Trans Automatic Control, 31(9):803:812, 1986.

@ P. M. DeMarzo, D. Vayanos, and J. Zwiebel. Persuasion bias, social influence, and unidimensional opinions. The
Quarterly Journal of Economics, 118(3):909-968, 2003.

@ J. M. Hendrickx. Graphs and Networks for the Analysis of Autonomous Agent Systems. PhD thesis, Université
Catholique de Louvain, Belgium, 2008.

@ A. Tahbaz-Salehi and A. Jadbabaie. A necessary and sufficient condition for consensus over random networks. IEEE
Trans Automatic Control, 53(3):791-795, 2008.

Compartmental and positive systems
@ G. G. Walter and M. Contreras. Compartmental Modeling with Networks. Birkhauser, 1999.
@ J. A. Jacquez and C. P. Simon. Qualitative theory of compartmental systems. SIAM Review, 35(1):43-79, 1993.

@ D. G. Luenberger. Introduction to Dynamic Systems: Theory, Models, and Applications. John Wiley & Sons, 1979.



Incomplete references on nonlinear network systems

Lotka-Volterra models
@ B. S. Goh. Stability in models of mutualism. American Naturalist, 261-275, 1979
@ Y. Takeuchi. Global Dynamical Properties of Lotka-Volterra Systems. World Scientific, 1996.

@ J. Hofbauer and K. Sigmund. Evolutionary Games and Population Dynamics. Cambridge, 1998.

Network S1/SIS/SIR models

@ A. Lajmanovich and J. A. Yorke. A deterministic model for gonorrhea in a nonhomogeneous population, Mathematical
Biosciences, 28:3(221-236), 1976

@ A. Fall, A. Iggidr, G. Sallet, and J.-J. Tewa. Epidemiological models and Lyapunov functions, Mathematical Modelling of
Natural Phenomena, 2(1):62-68, 2007

@ A. Khanafer and T. Basar and B. Gharesifard. Stability of epidemic models over directed graphs: a positive systems
approach. Automatica, provisionally accepted, 2015
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@ Social Influence
“Opinion dynamics and social power” by Jia et al, SIREV '15



Power flow equations
voltage magnitude <:/\> active and
and phase reactive power

%[«55 j o
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@ secure operating conditions
@ feedback control

© economic optimization

while accurate numerical solvers in current use,
much ongoing research on optimization,
network structure <= function = power transmission




Power networks as quasi-synchronous AC circuits

© generators B and loads @
@ physics: Kirchoff and Ohm laws

© today's simplifying assumptions:
@ quasi-sync: voltage and phase V;, 6;
active and reactive power P;, Q;
@ lossless lines
© approximated decoupled equations

Decoupled power flow equations

active: P = > .ajsin(6; —0))
reactive: Qi = —)_; b;ViV;




Power Flow Equilibria

P;:Zja,-jsin(e,-—HJ-) Qi:_zjbijvivj J

As function of network structure/parameters
@ do equations admit solutions / operating points?
@ how much active / reactive power can network transmit?
© how to quantify stability margins?

From flow networks to spring networks

Coupled swing equations
'—\Pgenerators

Pioads
b

M;é; + D;é,’ = P; — Z ajj sin(9,~ = 9j)
J

Kuramoto coupled oscillators

9,’ = P,' — Z ajj sin(9,~ — 9])
J




Lessons from linear spring networks

Force « displacement:

Fi=2_ aj(—x) = —(Lx);

Laplacian / stiffness matrix and connectivity strength:
L = diag(Al,) — A
A» = second smallest eigenvalue of L

e o] | fomn o e £

_q-1
x = LT Fioad X = N = Lgrounded Fioad




Active power / frequency equilibrium conditions

Given balanced P, do angles exist?

P,' = Zj a,-j sin(9,- — 91)

'Npgcncrators

connectivity strength vs. power transmission:
#1: "torques” ~ active powers
“displacements” ~ power angles

#2: with increasing power transmission,
(0 — 8;) approach 7/2 = sync loss

Equilibrium angles (neighbors within /2 arc) exist if

||pairwise differences of Pl < Az(L) for all graphs

|| pairwise differences of L1P||o < 1 for trees, 3/4-cycles, complete




Reactive power / voltage equilibrium condition

Given reactive Qoads, do voltages Vigags exist?

Qi = - \/IZJ bl_/(\/_j - Vrest,j)

where Vet = open-circuit voltages

connectivity strength vs. power transmission:
#1: “force” ~ reactive load Qoads
“displacement” ~ relative voltage variation

voltage collapse boundary

#2: with increasing inductive Qoads,
Vioads falls until voltage collapse

Equilibrium voltage (high-voltage solution) exist if

<1

-1
H Lgrounded,scaled Qloads oo




Summary (Power Flow)

New physical insight
@ sharp sufficient conditions for equilibria
@ upper bounds on transmission capacity

© stability margins as notions of distance from bifurcations

Applications

@ secure operating conditions:
realistic IEEE testbeds (Darfler et al, PNAS '13)

@ feedback control:
microgrid design (Simpson-Porco et al, TIE '15)

© economic optimization:
convex voltage support (Todescato et al, CDC ’'15)



Incomplete references on power flow equatio

@ Y. Kuramoto. Self-entrainment of a population of coupled non-linear oscillators. In Araki, H. (ed.) Int. Symposium on
Mathematical Problems in Theoretical Physics, vol. 39 of Lecture Notes in Physics, (Springer, 1975).

@ C. Tavora and O. Smith. Equilibrium analysis of power systems. IEEE Transactions on Power Apparatus and Systems, 91,
1972.

A. Araposthatis, S. Sastry, P. Varaiya Analysis of power-flow equation. Int. Journal of Electrical Power & Energy
Systems, 3, 1981.

F. Wu and S. Kumagai Steady-state security regions of power systems. |IEEE Trans Circuits and Systems, 29, 1982.

) =) [

M. llic Network theoretic conditions for existence and uniqueness of steady state solutions to electric power circuits. IEEE
Int. Symposium on Circuits and Systems, (San Diego, CA, USA, 1992).

@ S. Grijalva and P. W. Sauer. A necessary condition for power flow Jacobian singularity based on branch complex flows.
IEEE Trans Circuits and Systems I: Fundamental Theory and Applications, 52, 2005.

Our recent work

@ F. Dorfler and F. Bullo. Synchronization and Transient Stability in Power Networks and Non-Uniform Kuramoto
Oscillators. SIAM Journal on Control and Optimization, 50(3):1616-1642, 2012.

@ J. W. Simpson-Porco, F. Dorfler, and F. Bullo. Voltage Collapse in Complex Power Grids. February 2015. Submitted.

@ J. W. Simpson-Porco, Q. Shafiee, F. Dorfler, J. M. Vasquez, J. M. Guerrero, and F. Bullo. Secondary Frequency and
Voltage Control of Islanded Microgrids via Distributed Averaging. IEEE Transactions on Industrial Electronics,
62(11):7025-7038, 2015.

@ F. Dorfler and F. Bullo. Synchronization in Complex Networks of Phase Oscillators: A Survey. Automatica,
50(6):1539-1564, 2014
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Social power along issue sequences

o Deliberative groups in social organization
e government: juries, panels, committees
e corporations: board of directors
e universities: faculty meetings

o Natural social processes along sequences:

o levels of openness and closure?
o influence accorded to others? emergence of leaders?
o rational/irrational decision making?

Groupthink = “deterioration of mental efficiency . ..from
in-group pressures,” by |. Janis, 1972

Wisdom of crowds = “group aggregation of information results
in better decisions than individual's” by J. Surowiecki, 2005




Opinion dynamics and social power along issue sequences

DeGroot opinion formation
y(k+1) = Ay(k)

Dominant eigenvector vi; is social power:

) lim y(k) = (viet - ¥(0))1n
k—o00
e A =: x; are self-weights / self-appraisal
@ Aj for i # j are interpersonal accorded weights

assume Aj; =: (1 — x;) Wj; for constant W,

A(x) = diag(x) + diag(1, — x)W ]

Wieft = (wa, ..., w,) = dominant eigenvector for W



Opinion dynamics and social power along issue sequences

Reflected appraisal phenomenon (Cooley 1902 and Friedkin 2012)

along issues s = 1,2, ..., individual dampens/elevates
self-weight according to prior influence centrality

self-weights <: relative control on prior issues = social power

‘}%@2 ver(A(s)
s Eﬁ social power |

reflected appraisal mechanism
| s+ 1) = neal(A((5))

D ) = (£ ...,1”_”"Xn)/ilw"
i=1

|4

1—X1, — X




Influence centrality and power accumulation

Existence and stability of equilibria?

Role of network structure and parameters?
.—|>.<1—. P
\ ,/ Emergence of autocracy and democracy?

For strongly connected W and non-trivial initial conditions

@ convergence to unique fixed point (= forgets initial condition)

lim x(s) = Iim Vieft (x(5)) = x*
5$—00 — 00
@ accumulation of social power and self-appraisal

o fixed point x* = x*(wiest) > 0 has same ordering of Wief
e social power threshold p: x* > w; > p and x* <w; < p




Emergence of democracy

If W is doubly-stochastic:
O the non-trivial fixed point is i

Q lims ;0 X(S) = lims—00 Vleft(X(s)) = 1—,7"

@ Uniform social power

@ No power accumulation = evolution to democracy

issue 2 issue 3 000 issue N




Emergence of autocracy

If W has star topology with center j:

@ there are no non-trivial fixed points

O lims_so0 X(5) = liMs_00 Vieft (x(5)) = €;

@ Autocrat appears in center node of star topology

@ Extreme power accumulation = evolution to autocracy

issue 1 issue 2 issue 3 000 issue N




Analysis methods

@ existence of x* via
Brower fixed point theorem

© monotonicity:
imax and imin are forward-invariant
x5(0)

*
J

Inax = argmax;

x;(s)

= Jmax = argmax; Pt for all subsequent s
J

© convergence via variation on classic “max-min” Lyapunov function:

X . X . .
V(x) = max (In —i) — min (In —i) strictly decreasing for x # x*
J Xj J XJ



Summary (Social Influence)

New perspective on influence networks and social power
@ dynamics and feedback in influence networks
@ novel mechanism for power accumulation / emergence of autocracy

@ measurement models and empirical validation

Open directions
@ robustness for distinct models of opinion dynamics and appraisal
@ cognitive models for time-varying interpersonal appraisals

@ appraisals and power accumulation mechanisms



Incomplete references on social powe

Social Influence
@ J. R. P. French. A formal theory of social power, Psychological Review, 63 (1956), pp. 181-194.

@ V. Gecas and M. L. Schwalbe. Beyond the looking-glass self: Social structure and efficacy-based self-esteem. Social
Psychology Quarterly, 46 (1983), pp. 77-88.

@ N. E. Friedkin. A formal theory of reflected appraisals in the evolution of power. Administrative Science Quarterly, 56
(2011), pp. 501-529.

Our recent work

@ P. Jia, A. MirTabatabaei, N. E. Friedkin, and F. Bullo. Opinion Dynamics and The Evolution of Social Power in
Influence Networks. SIAM Review, 57(3):367-397, 2015. J

@ P. Jia, N. E. Friedkin, and F. Bullo. The Coevolution of Appraisal and Influence Networks leads to Structural Balance.
IEEE Transactions on Network Science and Engineering, July 2014. Submitted

@ A. MirTabatabaei and F. Bullo. Opinion Dynamics in Heterogeneous Networks: Convergence Conjectures and Theorems.
SIAM Journal on Control and Optimization, 50(5):2763-2785, 2012.



Network systems in science and technology

e A4 T
}*\% 1T

averaging compartmental flows mutualism virus spread coupled oscillators social power

@ Models, behaviors, tools, and applications
PF and algebraic graphs for linear behaviors
variety of nonlinearities — elegant methods and broad impact

@ Power Networks and Social Influence
fundamental prototypical problems
nonlinear variations from linear framework
key outstanding questions remain

@ Outreach and collaboration opportunity for CDC community
biologists, ecologists, economists, physicists ...



