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contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

highly-ordered transient and asymptotic behavior:
@ unique globally exponential stable equilibrium
& two natural Lyapunov functions

@ robustness properties
bounded input, bounded output (iss)
finite input-state gain
robustness margin wrt unmodeled dynamics
robustness margin wrt delayed dynamics

© periodic input, periodic output

@ modularity and interconnection properties

© accurate numerical integration and equilibrium point computation

search for contraction properties
design  engineering systems to be contracting

M—
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Contraction theory: historical notes

@ Origins
S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux
équations intégrales. Fundamenta Mathematicae, 3(1):133-181, 1922. ¢ :

@ Dynamics:

G. Dahlquist. Stability and error bounds in the numerical integration of ordinary
differential equations. PhD thesis, (Reprinted in Trans. Royal Inst. of Technology,
No. 130, Stockholm, Sweden, 1959), 1958

S. M. Lozinskii. Error estimate for numerical integration of ordinary differen-
tial equations. |. /zvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 5:52-90,
1958. URL http://mi.mathnet.ru/eng/ivm2980. (in Russian)

@ Computation:

C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
analysis. |EEE Transactions on Circuit Theory, 19(5):480-486, 1972. 4

@ Systems and control:
W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):
683-696, 1998. ¢
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http://dx.doi.org/10.4064/fm-3-1-133-181
http://mi.mathnet.ru/eng/ivm2980
http://dx.doi.org/10.1109/TCT.1972.1083507
http://dx.doi.org/10.1016/S0005-1098(98)00019-3

o Incomplete list of contributors who influenced me
Aminzare, Arcak, Chung, Coogan, Di Bernardo, Manchester, Margaliot, Pavlov, Pham,
Proskurnikov, Russo, Sepulchre, Slotine, Sontag, ...

o Surveys:
Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some
open problems. In /[EEE Conf. on Decision and Control, pages 3835-3847, Dec. 2014. ¢

M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of

complex networks via contraction theory. In Complex Systems and Networks. Springer, 2016. ¢

H. Tsukamoto, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and
learning-based control: A tutorial overview. Annual Reviews in Control, 52:135-169, 2021. ¢

P. Giesl, S. Hafstein, and C. Kawan. Review on contraction analysis and computation of contraction

metrics. Journal of Computational Dynamics, 10(1):1-47, 2023. €
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http://dx.doi.org/10.1007/978-3-662-47824-0_12
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Contraction Theory
for Dynamical Systems

Francesco Bullo

Contraction Theory for Dynamical Systems, Francesco Bullo,
KDP, 1.0 edition, 2022, ISBN 979-8836646806

Textbook with exercises and answers. Format: textbook, slides,
and paperbook

Content:

Fixed point theory

Theory of contracting dynamics on vector spaces

Applications to nonlinear and interconnected systems

Self-Published and Print-on-Demand at:
https://www.amazon.com/dp/B0B4K1BTF4

PDF Freely available at
http://motion.me.ucsb.edu/book-ctds

10h minicourse on youtube:
https://youtu.be/RvR47Zbqljc

Future version to include: systems on Riemannian manifolds,
homogeneous spaces, and solid cones

" Continuous improvement is better than delayed perfection”
Mark Twain
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@ Contractivity of dynamical systems
@ From discrete-time to continuous-time dynamics
@ Table of infinitesimal contractivity conditions
@ Application to recurrent neural networks
@ Connection with convex optimization
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Linear algebra: induced norms

Vector norm Induced matrix norm
Induced matrix log norm
n n
Izlh = Zi:l il Il = st} Zi:l = 11(A) = max ((l i Zn |a; “)
" j&{l.(...m} 7 i=1,i#j Y
= max column “absolute sum” of A
n
lelo= /3" o2 Al =y Amar(AT 4) o
/‘2<4> - Amax(T)
n
lollo = max fo] A= max 3" ayl
i€{1,...,n} i€{l,....,n} j=1 (A) = i ( : n )
bool ) = (0 Dy 10

= max row “absolute sum" of A
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Discrete-time dynamics and Lipschitz constants

Zp+1 = F(zg) on R™ with norm || - || and induced norm || - ||

Lipschitz constant

Lip(F) = inf{¢ > 0 such that ||[F(z) — F(y)| < {||lx —y| for all z,y}
= sup, [[Jr(z)||

For scalar map f, Lip(f) = sup, |f'(z)]
For affine map F4(z) = Az +a

|z2,p = (" Pz)"/? Lipy p(Fa) = [Allop < ¢ <=  ATPA=(*P
1zlloo,n = maxfa;|/n: Loy (Fa) = [Allocn <€ = n'|A|<fn'
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Banach contraction theorem for discrete-time dynamics:
If p:= Lip(F) < 1, then
@ F is contracting = distance between trajectories decreases exp fast (o)

@ F has a unique, glob exp stable equilibrium z*

,,,,,,,,,,,,,,,
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From discrete to continuous time

The induced log norm of A € R™*™ wrt to || - ||:

. |Hn+RA| -1
A):=lim ————
uA) = g = J
subadditivity: u(A+ B) < u(A) + pu(B)
scaling: wu(bA) = bu(A), Vb >0
///,)\ € spec(A) NN A € spec(A) i
¥ X pA) x X o(A)
e % % *—i
. 3 x /1 " x o u4)
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Example induced log norms

Vector norm

Induced matrix norm

Induced matrix log norm

n
|Wh:§;ﬂﬂﬂ
n
— 2
lzllz = />, 3

[0 =

i€{l,...,n}

max |z

n
Al = S g
Al = max > las]

[A]l2 =

[Alloo =

Amax (AT A)

n
max Z [07¥3
i€{1,m) J‘=1| il

n
= (o4 3, )

je{l,...n}
= max column “absolute sum” of A
A+ AT
/J/Q(A) = Amax(T)

n
““(A):iegﬁﬁﬂ(a”47§:rﬂJ¢Ja”D
= max row “absolute sum" of A
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Continuous-time dynamics and one-sided Lipschitz constants

& = F(z) on R™ with norm || - || and induced log norm p(+)

One-sided Lipschitz constant

osLip(F) = inf{b € R such that (F(z) — F(y),z —y)) < bllz —y|*> for all z,y}
= sup, 4 (JrF(z))

For scalar map f, osLip(f) = sup, f'(z)
For affine map F4(z) = Az + a

osLipy p(Fa) = i2,p(A) — ATP+4+ AP < 2(P

</
OSLipoom(FA) = loon(A) <Y <~ ai; + Z lasjni/n; <L
JFi

F Bullo (UCSB) Contraction Theory in Systems and Control 13 /41



Banach contraction theorem for continuous-time dynamics:
If —c := osLip(F) < 0, then
@ F is infinitesimally contracting = distance between trajectories decreases exp fast (e ™)

@ F has a unique, glob exp stable equilibrium z*

ct
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From inner products to weak pairings

— DY@ = [.9]

e D7 is upper-right Dini derivative

e weak pairing [-,-] : R” x R™ — R exists for each norm, i.e.,

[y, 2]y = lzlh Sign(l‘)Ty (sign pairing)
ly, 2] = max zy for Ao (z) = {i | |zi| = ||z|loc}  (max pairing)
1€ A ()
theory of weak pairings: computational properties
and applications to monotone operators J
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Log norm Demidovich One-sided Lipschitz
bounds conditions conditions

pz,p(J(2)) < —¢ PJp(x) + Je(x) TP < —2¢P (@ —y)TP(F(z) — F(y)) < —clz =yl

mUe(@) < —c sign(v) Je(@)v < —cllvl sign(z —y) " (F(z) - F(y)) < —cllz =yl
poo(JF(@) < ¢ max v (Jp(x)v); < —cloll,  max (zi—yi)(Fi(z)~Fi(y) < —cllz—yll3
€A (V) 1€ Ao (z—Y)
Each row = three equivalent statements. To be understood for all ,y € R™ and all v € R™.
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One sided Lipschitz conditions

o

2]

o
o
o

simple sufficient condition for uniqueness of continuous ODEs in: A. F. Filippov. Differential Equations with
Discontinuous Righthand Sides. Kluwer, 1988. ISBN 902772699X (Chapter 1, page 5, citing Krasnosel'skii and
Krein 1955)

one-sided Lipschitz maps in: E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations I.
Nonstiff Problems. Springer, 1993. € (Section 1.10)

uniformly decreasing maps in: L. Chua and D. Green. A qualitative analysis of the behavior of dynamic nonlinear
networks: Stability of autonomous networks. |EEE Transactions on Circuits and Systems, 23(6):355-379, 1976. 4

maps with negative nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to
exponential stability analysis for Hopfield-type neural networks. |[EEE Transactions on Neural Networks, 12(2):
360-370, 2001. 4

dissipative Lipschitz maps in: T. Caraballo and P. E. Kloeden. The persistence of synchronization under
environmental noise. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461
(2059):2257-2267, 2005. 4

maps with negative lub log Lipschitz constant in: G. Séderlind. The logarithmic norm. History and modern theory.
BIT Numerical Mathematics, 46(3):631-652, 2006. ¢

QUAD maps in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled ordinary
differential systems. Physica D: Nonlinear Phenomena, 213(2):214—230, 2006. ¢

incremental quadratically stable maps in: L. D'Alto and M. Corless. Incremental quadratic stability. Numerical
Algebra, Control and Optimization, 3:175-201, 2013. 4
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http://dx.doi.org/10.1098/rspa.2005.1484
http://dx.doi.org/10.1007/s10543-006-0069-9
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http://dx.doi.org/10.3934/naco.2013.3.175

Advantages of non-Euclidean approaches

© well suited for certain class of systems
£1 for monotone flow systems

© computational advantages
01/l constraints lead to LPs, whereas /5 constraints leads to LMls

© robustness to structural perturbations
{1/l contractions are connectively robust (i.e., edge removal)

© adversarial input-output analysis
lo better suited for the analysis of adversarial examples than /5

© asynchronous distributed computation
{~ contractions converge under fully asynchronous distributed execution
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Application: /.-contracting neural networks

&t =—x+ ®(Ax + Bu+b) (recurrent NN)
z = ®(Az + Bu+1b) (implicit NN)
(

poo(A) < 1 (i.e., ai; + Zj la;j| < 1 for all 1)

o recurrent NN is contracting with rate 1 — poo(A)+

@ implicit NN is well posed
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Detour: convexity and fixed point theory

For differentiable V : R® — R, equivalent statements:
@ V is strongly convex with parameter m

@ — gradV is m-strongly infinitesimally contracting with respect to || - |2

F Bullo (UCSB) Contraction Theory in Systems and Control 20 / 41



Forward Euler theorem for contracting dynamics
Given arbitrary norm || - ||,

© & = F(z) is infinitesimally contracting

@ there exists a > 0 such that x5 = xx + aF(xy) is contracting

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = {/c > 1
@ Id +aF is contracting for

0<a<01{3(1+/£)

@ the optimal step size minimizing and minimum contraction factor:

“ =2 (ze—ae o))

1 1 1
ol
¢ 4/{2+8m3+0 KA
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Application: /.-contracting neural networks

&t =—z+ ®(Az + Bu+b) (recurrent NN)
x=®(Axr + Bu+b) (implicit NN)
Tpr1 = (1 — a)xg + a®(Axg + Bu + b) (forward Euler)

A <1 ('.e., i + ;7| < 1 for all f)
peol 4) e a3 fag| < 1for all

e recurrent NN is contracting with rate 1 — poo(A)+

@ implicit NN is well posed

— A 1
o forward Euler is contracting with factor 1 — Hoo(A)+ *

1-— mini(aii)_ = mini(aii)—

F Bullo (UCSB) Contraction Theory in Systems and Control
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Motivation: {..-contracting neural networks

While most ML architectures are feedforward,

biological neural networks are recurrent and recent interest for implicit ML architectures

9

artificial neural network AlexNet '12

C. elegans connectome '17

For recurrent NN, /..-contractivity characterizes the synaptic weights to ensure:
@ reproducible & robust behavior
@ highly-ordered transient+asymptotic dynamic behavior
o efficient computational methods

A. Krizhevsky, |. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 2012
G. Yan, P. E. Vértes, E. K. Towlson, Y. L.
eleo onne -

Chew, D. S. Walker, W. R. Schafer, and A.-L. Barabasi. Network control principles predict neuron function in the Caenorhabditis
gme _/\2 o Q(76 = 0
F Bullo (UCSB) Contraction Theory in Systems and Control


http://dx.doi.org/10.1038/nature24056

© From closed to open, interconnected and optimal systems
@ Incremental input-to-state stability
@ Interconnected contracting systems
@ Contractivity in indirect optimal control
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#1: From closed to open systems
Incremental ISS and input-state gain

Given normed spaces (X, || - ||x) and (U, || - |jes), consider

& = F(x,u(t)), 0 € X, u(t) el (1)
Assume:
@ contractivity wrt z: osLip,(F) < —¢ <0, uniformly in u
@ Lipschitz wrt u: Lip,,(F) <, uniformly in z

F Bullo (UCSB) Contraction Theory in Systems and Control 25 /41



Then
Q any soltns: x(t) with input u, and y(t) with input u,

Df||lz(t) —y(®)llx < —clla(®) —y@®llx + Elua(t) — uy(t)llu

@ F is incrementally ISS, that is, for all xg, yo

(1 — e~

l=(t) —y@)llx < e llzo — yollx + sup |[[ug (1) — uy (7) [lu

T€[0,¢]
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#2: From closed to interconnected contracting systems

Networks of contracting systems

Consider n interconnected subsystems
T; = Fi(xi,a;_i), fori € {1,...,n}

with state z; € RVi
with states of connected subsystems z_; € RY =i and
consider n local norms || - ||; on R™:

B

n subsystems

F Bullo (UCSB) Contraction Theory in Systems and Control
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Assume:

@ contractivity wrt z;: osLip,, (F;) < —¢; <0, uniformly in z_;

e Lipschitz wrt z;: Lip,, (Fi) < i, uniformly in z_;

Network contraction theorem

=Cjl ocoo Eln
If the Lipschitz constants matrix | : .| is Hurwitz
Enl ce. —Cp
= the interconnected system is infinitesimally contracting

History: interconnection of stable systems, method of vector Lyapunov functions, connective stability via M-matrix theory

— Matrosov and Bellman 1962, Strém, Siljak, Russo/DiBernardo/Sontag, ...
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is Metzler

Hurwitzness depends upon both topology and edge weights
@ Hurwitz iff there exists a positive £ such that M¢ < 0,, (power method)
o Hurwitz iff Lyapunov diagonally stable

e for n = 2, Hurwitz if and only if small gain condition

L
cycle gain .= —— <1
c

and, for n > 3, network small-gain theorem for Metzler matrices

X. Duan, S. Jafarpour, and F. Bullo. Graph-theoretic stability conditions for Metzler matrices and monotone systems. SIAM Journal on
Control and Optimization, 59(5):3447-3471, 2021. 4
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#3: From closed to systems with optimal controls

For & = F(z,u), compute u : [0, 7] — R* to minimize P(z(T)) —|—/ o(x, u)dt
0

Pontryagin Minimum Principle: u = FBSu] )
A /\_/
>
A
0/\/ F: &=F(z,u)
A (T) = %(éE(T))
3 B: A=—J(z,u)\— ¢z, u)
At F L z\ L)
. ”/‘/, .
A
u(t) S: w=argming \'F(zx, @)+ ¢(x, 1)
5 F > H(x,a,\)

F Bullo (UCSB) Contraction Theory in Systems and Control 30 /41



\

If osLip,(F) = —c and all other maps are Lipschitz,
@ osLip, (Adjoint(F)) = osLip,(F)

1-— —cT
@ Lip(FBS) = const x M FBS contracting for short T or large ¢

C
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contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

From closed to open, interconnected and optimal systems:
Q iISS
@ network small gain theorems
© numerical optimal control

Applications coupled neural-synaptic dynamics and ML via optimal control

O&.\ O
@ s = T = —cpi + ¢( Z], wij;)

wij = hijop(x:) () — cswij Q
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e Additional robustness, computational and stability properties
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From nominal to uncertain systems

Given a norm || - ||, consider
& =F(z) + A(x)
Assume:
e contractivity: osLip(F) < —c <0

@ bounded disturbance:  osLip(A) <d < ¢

Then
@ F + A is strongly contracting with rate ¢ — d

© the unique equilibria z¢ of F and zf, \ of F + A satisfy

[AGE)|
kK < N7 A\PF/1T
lzF — zFrall < c—d
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From global to local contractivity

Given a norm || - ||, consider

& =F(x)

Assume:
e contractivity over closed set D: osLip(F|p) < —c <0

e existence of almost equilibrium: D contains the closed B at = of radius r > ||F(Z)]| /¢

Then
@ B is forward invariant

@ F|p is strongly infinitesimally contracting
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From strongly to weakly contracting systems

Given a norm || - ||, consider

& =F(x) satisfying osLip(F) =0

Dichotomy for weakly-contracting systems

@ no equilibrium and every trajectory is unbounded, or

@ at least one equilibrium, every trajectory is bounded, and local asy stability = global

%

%gk&%%

T

J

- \&

:

S\

==

i

€
\@w




@ Contractivity of dynamical systems
@ From discrete-time to continuous-time dynamics
@ Table of infinitesimal contractivity conditions
@ Application to recurrent neural networks
@ Connection with convex optimization

© From closed to open, interconnected and optimal systems
@ Incremental input-to-state stability
@ Interconnected contracting systems
@ Contractivity in indirect optimal control

e Additional robustness, computational and stability properties

@ Conclusions and Future Research
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Robust and computationally-friendly stability theory

@ contractivity conditions on normed vector spaces
@ convexity and fixed point methods
© disturbances, interconnections and optimal control

'

Lyapunov Theory Contraction Theory for Dynamical Systems

F admits global Lyapunov function F is strongly contracting
existence of equilibrium | assumed implied 4+ computational methods
Lyapunov function arbitrary distance to trajectory (+ norm of vector field)
inputs ISS via KL and L functions iISS via explicit formulas

v
search for contraction properties
design  engineering systems to be contracting J
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Resources on contraction theory for dynamics, control and learning
@ tutorial session “Contraction Theory for Machine Learning” at the 2021 IEEE CDC conference:
https:/ /sites.google.com/view/contractiontheory

@ free online book and 10h minicourse
http://motion.me.ucsb.edu/book-ctds
https://youtu.be/RvR47Zbqljc

© upcoming Workshop on " Contraction Theory for Systems, Control, and Learning” at the 2023 American
Control Conference in San Diego, California (under review):
http://motion.me.ucsb.edu/contraction-workshop-2023
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Theoretical frontiers
@ higher order contraction
@ relationship with monotone operator theory

@ metric spaces: seminorms, Hilbert metrices ...

Limitations: not all stable systems are contractive:
@ Lyapunov-diagonally-stable networks
@ multistable systems

@ biochemical networks

Application to control and learning
control: optimization-based control design

ML: implicit models and energy-based learning

©0@0

neuroscience: robust dynamical modeling
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