Network Systems, Kuramoto Oscillators, and Synchronous Power Flows

Outline

Francesco Bullo

Department of Mechanical Engineering Center for Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.me.ucsb.edu

20th Int. Conf. on Control, Automation and Systems (ICCAS) Online and @ Busan, Korea, October 13-16, 2020 Track 1: Multi-agent systems, Chair: Hyo-Sung Ahn

Saber Jafarpour UCSB

Elizabeth Huang UCSB

Kevin D. Smith UCSB

Network systems

Linear Network Systems

F. Bullo. Lectures on Network Systems.
 Kindle Direct Publishing, 1.4 edition, July 2020.
 With contributions by J. Cortés, F. Dörfler, and S. Martínez.
 URL: http://motion.me.ucsb.edu/book-lns

² Kuramoto Synchronization and Synchronous Power Flows

Model	Dynamics	Function	Structure
averaging system	$\dot{x} = -Lx$	consensus	\exists globally reach node
(Abelson '64)	Laplacian matrix		
network flow	$\dot{x} = -(L^{ op} + D)x + u$	stationary	outflow-connected
(Noy Meir '73)	compartmental matrix	distribution	

Acknowledgments

New text "Lectures on Network Systems"		Outline	
<section-header></section-header>	Lectures on Network Systems, Francesco Bullo, KDP, 1.4 edition, 2020, ISBN 978-1-986425-64-3 Self-Published and Print-on-Demand at: https://www.amazon.com/dp/1986425649 PDF Freely available at http://motion.me.ucsb.edu/book-1ns: For students: free PDF for download For instructors: slides and solution manual incorporates lessons from 2 decades of research: robotic multi-agent, social networks, power grids version 1.4 332 pages 171 exercises, 220 pages solution manual 5.8K downloads Jun 2016 - Oct 2020 46 instructors in 17 countries 	 Linear Network Systems Kuramoto Synchronization (existence) S. Jafarpour and F. Bullo. Synchronization of Kuramoto oscillators via cutset projections. IEEE Transactions on Automatic Control, 64(7):2830–2844, 2019. doi:10.1109/TAC.2018.2876786 problem statement solution Kuramoto Multi-Stability (lack of uniqueness) S. Jafarpour, E. Y. Huang, K. D. Smith, and F. Bullo. Flow and elastic networks on the <i>n</i>-torus: Geometry, analysis and computation. SIAM Review, October 2019. Submitted. URL: https://arxiv.org/pdf/1901.11189.pdf 	
Today: Sync & Multi-Stability in Coupled Oscillators		Model #1: Spring network analog and applications	
		Coupled swing equations Euler-Lagrange eq for spring network on ring:	

$m_i \ddot{ heta}_i + d_i \dot{ heta}_i = au_i - \sum_j k_{ij} \sin(heta_i - heta_j)$

Kuramoto coupled oscillators

$$\dot{ heta}_i = \omega_i - \sum_j a_{ij} \sin(heta_i - heta_j)$$

Kuramoto equilibrium equation

$$0 = \omega_i - \sum\nolimits_j a_{ij} \sin(\theta_i - \theta_j)$$

Kuramoto model

- *n* oscillators with angle $\theta_i \in \mathbb{S}^1$
- non-identical natural frequencies $\omega_i \in \mathbb{R}^1$
- **coupling** with strength $a_{ij} = a_{ji}$

$$\dot{ heta}_i = \omega_i - \sum_{j=1}^n a_{ij} \sin(heta_i - heta_j)$$

 $\|B^{ op}L^{\dagger}p_{\mathsf{actv}}\|_{\infty} \leq g(\|\mathcal{P}\|_{\infty})$ (New ∞ -norm T)

fmincon does not converge

Outline

Introduction to Network Systems

F. Bullo. Lectures on Network Systems.
 Kindle Direct Publishing, 1.4 edition, July 2020.
 With contributions by J. Cortés, F. Dörfler, and S. Martínez.
 URL: http://motion.me.ucsb.edu/book-lns

Synchronization (existence)

 S. Jafarpour and F. Bullo. Synchronization of Kuramoto oscillators via cutset projections. IEEE Transactions on Automatic Control, 64(7):2830–2844, 2019. doi:10.1109/TAC.2018.2876786

Multi-Stability (lack of uniqueness)

 S. Jafarpour, E. Y. Huang, K. D. Smith, and F. Bullo. Flow and elastic networks on the *n*-torus: Geometry, analysis and computation.
 SIAM Review, October 2019.
 Submitted.
 URL: https://arxiv.org/pdf/1901.11189.pdf

Lack of uniqueness and winding solutions

Given topology (incidence B), admittances (Laplacian L), injections p_{actv} ,

$$p_i = \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j)$$

- Is solution unique?
- 2 how to localize/classify solutions?

Phenomenon #2: Multiple power flows

Theoretical observation: multiple solutions exist

Practical observations:

sometimes undesirable power flows around loops sometimes sizable difference between predicted and actual power flows

New York Independent System Operator, Lake Erie Loop Flow Mitigation, Technical Report, 2008

Winding number of *n* angles

Given undirected graph with a cycle $\sigma = (1, ..., n_{\sigma})$ and orientation • winding number of $\theta \in \mathbb{T}^n$ along σ is:

$$w_{\sigma}(\theta) = \frac{1}{2\pi} \sum_{i=1}^{n_{\sigma}} d_{cc}(\theta_i, \theta_{i+1})$$

2 given basis $\sigma_1, \ldots, \sigma_r$ for cycles, winding vector of θ is

 $w(\theta) = (w_{\sigma_1}(\theta), \ldots, w_{\sigma_r}(\theta))$

