Stability of a Cosserat-Rod Theoretic Boundary Observer

Tongjia Zheng^{1,2}, Qing Han², and Hai Lin¹

¹ Department of Electrical Engineering

² Department of Mathematics

University of Notre Dame

My Research

• PDE control: swarm robots (large number), soft robots (infinite Dof)

Swarm Robotics

Mean-field PDEs

Continuum mechanics PDEs

Soft Robotics

Soft Robot Arm: Continuum Mechanics Modeling

• Configuration: p – position, R – rotation,

pose
$$g = \begin{bmatrix} R & p \\ 0 & 1 \end{bmatrix} \in SE(3)$$

• Kinematics: η – body velocity, ξ – body strain

$$\partial_t g = g\eta^{\wedge}$$
$$\partial_s g = g\xi^{\wedge}$$

• Dynamics: ϕ – internal wrench, ψ – external wrench

$$J\partial_t \eta - ad_{\eta}^T J\eta = \partial_s \phi - ad_{\xi}^T \phi + \psi$$

Continuum/Soft robot

[1] Renda, Federico, et al. "Dynamic model of a multibending soft robot arm driven by cables." *IEEE Transactions on Robotics* 30.5 (2014): 1109-1122.

Boundary Observer

Boundary observer = model + boundary correction [1] $\begin{cases}
\partial_t \hat{\xi} = \partial_s \hat{\eta} + ad_{\hat{\xi}} \hat{\eta}, \\
J\partial_t \hat{\eta} = \partial_s \hat{\phi} - ad_{\hat{\xi}}^T \hat{\phi} + ad_{\hat{\eta}}^T J \hat{\eta} + \psi, \\
\hat{\eta}(0, t) = 0, \\
\hat{\phi}(\ell, t) = -\Gamma(\hat{\eta} - \eta)(\ell, t)
\end{cases}$ Boundary dissipation

Theorem Let $y = [\xi, \eta]^T$. Estimation error $\|\hat{y} - y\|_{H_x^1}$ is locally ISS to $\|y\|_{H_x^1}$ (true states).

[1] **Zheng, Tongjia**, Qing Han, and Hai Lin. "Full State Estimation of Soft Robots From Tip Velocities: A Cosserat-Theoretic Boundary Observer." *submitted to IEEE Transactions on Robotics.*

Simulation

- Two tendons actuated alternatively
- IMU sampling rate: 200 Hz
- Hypothesis: globally ISS

Discussion: stability of conservation laws

• **Hypothesis:** (1) is globally asymp. stable (in *L*²)

- Facts:
 - (1) is stable in L^2 , total energy $\dot{\mathcal{E}}(t) = -\Gamma \eta^2(\ell, t) \le 0$ (boundary value)
 - (1) is locally exp. stable in H^1 [1]
- Fact [2]: (2) is globally exp. stable in L^2 using $V = \int R_1^2 \exp(-\mu s) + R_2^2 \exp(\mu s) ds$.

$$\begin{cases} \partial_t \phi = \partial_s \eta, \\ \partial_t \eta = \partial_s \phi, \\ \eta(0, t) = 0, \\ \phi(\ell, t) = -\Gamma \eta(\ell, t) \end{cases}$$
(2)

Contraction theory for PDEs?

 ^[1] Rodriguez, Charlotte, and Günter Leugering. "Boundary feedback stabilization for the intrinsic geometrically exact beam model." SIAM Journal on Control and Optimization 58.6 (2020): 3533-3558.
 [2] Bastin, Georges, and Jean-Michel Coron. Stability and boundary stabilization of 1-d hyperbolic systems. Vol. 88. Basel: Birkhäuser, 2016.