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Reachable sets of dynamical systems

System: ẋ = f (x,w) State: x ∈ Rn Disturbance: w ∈W ⊂ Rm

State space

Initial set

x1

x1(T)

x′1(T)x2

x2(T)
State space

Initial set

T Reachable set

Initial set

Unsafe

Target

Overapproximation
T Reachable set

I Reachable sets characterize possible system evolution

I Overapproximations of reachable sets are appropriate for verification and safety
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Neural network feedback controllers: The reachability problem

System
ẋ = f (x,u,w)

x0 ∈ X0

u = N(x)

disturbance w ∈W

Unsafe

X0

Reachable
Set

I Goal: compute reachable sets of closed-loop system

Challenges: soundness, efficiency-vs-conservatism tradeoff

In this talk:
I Interval-based reachability using monotone systems theory

I Contraction-based adaptive partitioning

I Contraction with alternate partial orders for improved fidelity
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A starting point: Reachability estimates from contraction theory

For ẋ = f (x,w), x ∈ Rn and w ∈W ⊆ Rm, define
reachable set as

Rf (t;X0) = {x(t) : x(·) is sol’n for some w(·) with x0 ∈ X0}.
Suppose

µ

(
∂ f
∂x

(x,w)
)
≤ c and

∥∥∥∥ ∂ f
∂w

(x,w)
∥∥∥∥

w→x
≤ `.

x∗(0) x∗(t)

If X0 = B(r1,x∗0) andW = B(r2,w∗) where B(·, ·) is ball with radius and center, then

Rf (t;X0)⊆ B
(

ectr1 +
`

c
(ect−1)r2,x∗(t)

)
where ẋ∗(τ) = f (x∗(τ),w∗) for all τ .

(Pf. Rewriting of Grönwall Comparison Lemma, [Bullo, Corollary 3.17, p. 81].)
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Monotone dynamical systems

The system ẋ = f (x,w), x ∈ Rn, w ∈ Rm is monotone1 if

x0 �Kx x′0 implies that x(t)�Kx x′(t) for all time,

for any w(·) and w′(·) such that w(t)�Kw w′(t) for all t, where �K is some partial
order induced by cone K (Kx ⊂ Rn or Kw ⊂ Rm).

Test for monotonicity (standard order≤):
∂ f
∂x

(x,w) is Metzler (≥ 0 off-diag. entries)

∂ f
∂w

(x,w)≥ 0

x′

x

φ(1;x)

φ(1;x′)

Ordered
Trajectories

State Space

1D. Angeli and E. Sontag, “Monotone Control Systems”, IEEE TAC, 2003
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Reachability estimates for monotone systems

Reachability Analysis for Monotone Systems. For a monotone system,

Reachable set⊆ [lower trajectory,upper trajectory].

Reachability estimates from monotonicity are tight.
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Monotone System:[
ẋ1

ẋ2

]
=

[
x3

2− x1 +w
x1

]
[x,x] = [(−0.5,−0.5),(0.5,0.5)]

w ∈ [w,w] = [2.2,2.3]

T = 1
−1 0 1 2 3 4
−1

0

1

2

x

x

with w

with wOverapproximation

x1

x 2



When do monotone systems contract rectangles? 2,3

Theorem. A monotone system ẋ = f (x) (wrt. ≤) contracts at rate c any box with
sidelengths a multiple of η ∈ Rn

>0 if (equivalently, contracts w.r.t. ‖ · ‖∞,[η ]−1):

i)
(

∂ f
∂x

(x)
)

η ≤ cη for all x or, equivalently,

ii) f (y)− f (x)≤ c(y− x) for all x and y = x+βη for some β > 0

Proof for i): Follows from the fact

that
∂ f
∂x

(x) is Metzler and that

µ∞(A) = max
i

Aii +∑
j 6=i
|Aij|.

Proof sketch for ii):

x

y
η

f (x)

f (y)

2[Bullo, Ch. 4.5, Lemma 4.17, p. 117]
3S. Coogan, “A contractive approach to separable Lyapunov functions for monotone systems”,
Automatica, 2019.S. Coogan 8/31



Example

x1 x2 x3 x4 x5

I Consensus on line graph with anchored
node 0:

ẋ =


−2 1 0 ··· 0
1 −2 1 0 ··· 0
0 1 −2 1 ··· 0
... ... ... ...

0 ... 0 1 −2 1
0 ... 0 0 1 −1


︸ ︷︷ ︸

A

x

I A1 ≤ 0, so hypersquares are
nonexpansive

I Distribute“excess negativity” from first
column by choosing

η =


1

1+ ε1

1+ ε1 + ε2
...

1+ ε1 + . . .+ εn−1


with 1 > ε1 > ε2 > .. . > εn−1 > 0, then

Aη < 0.
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Reachability for nonmonotone systems

I Generally, cannot bound the reachable set between two extreme trajectories for
nonmonotone systems
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Nonmonotone System:[
ẋ1

ẋ2

]
=

[
x2

2 +2
x1

]
[x,x] = [(−0.5,−0.5),(0.5,0.5)]

T = 1
−1 0 1 2 3 4 5
−1

0

1

2

3

x

x

Not Overapproximation

x1

x 2



Mixed monotonicity embeds nonmonotone systems in a monotone system

I Given ẋ = f (x,w), disturbance input w ∈W = [w,w] = {w : w≤ w≤ w}

Mixed monotone approach: find decomposition functions d, d such that:
1 d(x,x,w,w) = d(x,x,w,w) for all x,w and

2 the 2n dimensional embedding system4,5[
ẋ
ẋ

]
=

[
d(x,x,w,w)
d(x,x,w,w)

]
is monotone w.r.t the southeast order ≤SE on R2n defined as:

(x, x̂)≤SE (y, ŷ) if and only if x≤ y and ŷ≤ x̂.
4G. Enciso, H. Smith, E. Sontag, “Non-monotone systems decomposable into monotone systems with
negative feedback”, Journal of Diff. Eq., 2006
5H. Smith, “Global stability for mixed monotone systems”, Journal of Difference Equations and
Applications, 2008
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Reachability from embedding system

Reachable set from embedding trajectory:

Rf (T; [x0,x0])⊆ [x(T),x(T)]

where x(t),x(t) is embedding system solution
with initial condition (x0,x0) x0

x0

x(T)

x(T)

Rf

I MM is fast: A single trajectory of the deterministic embedding bounds reachable
sets of the original system

I MM is scalable: If (xeq,xeq) is an equilibrium for embedding system, then
hyperrectangle [xeq,xeq] is robustly forward invariant6

6S. Coogan, “Mixed monotonicity for reachability and safety in dynamical systems”, IEEE CDC, 2020
(tutorial paper)
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Example
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Mixed Monotone System:[
ẋ1

ẋ2

]
=

[
x2

2 +2
x1

]
[x0,x0] = [(−0.5,−0.5),(0.5,0.5)]

T = 1

Decomposition Function:

d1(x, x̂) =


x2

2 +2 if x2 ≥ 0 and x2 ≥−x̂2,

x̂2
2 +2 if x̂2 ≤ 0 and x2 <−x̂2,

2 if x2 < 0 and x̂2 > 0.

d2(x, x̂) = x1, d(x, x̂) = d(x̂,x)

−1 0 1 2 3 4 5
−1

0

1

2

3

x0

x0

x(T)

x(T)Overapproximation

x1

x 2

−1 0 1 2 3 4 5
−1

0
1
2
3
4
5

x1 Reachable

Embedding Space

x1

x̂ 1

−1 0 1 2 3
−1

0

1

2

3 Embedding Space

x2 Reachable

x2

x̂ 2



Stability in the embedding space implies robust invariance
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Mixed Monotone System:[
ẋ1

ẋ2

]
=

[
−x3

1− x2−w
x2

1− x2 +w3

]

W = [−1,1]

Decomposition Function:

d1(x,w, x̂, ŵ) =−x3
1− x̂2− ŵ

d2(x,w, x̂, ŵ) =


x2

1− x2 +w3 if x1 ≥ 0 and x1 ≥−x̂1,

x̂2
1− x2 +w3 if x̂1 ≤ 0 and x1 <−x̂1,

−x2 +w3 if x1 < 0 and x̂1 > 0.

−2 0 2

−1

1

3

5 Invariant
Set from

Equilibrium

Smallest
Attractive Set

x1

x 2

−2 −1 0 1 2

−2
−1

0
1
2

Attractive Set

Embedding Space

x1
x̂ 1



Decomposition functions

Theorem7. Any system has best (i.e, tightest) decomposition functions satisfying

di(x, x̂,w, ŵ) = min
y∈[x,̂x],yi=xi,z∈[w,ŵ]

fi(y,z)

di(x, x̂,w, ŵ) = max
y∈[x,̂x],yi=x̂i,z∈[w,ŵ]

fi(y,z)

I Closed form sometimes possible, otherwise, several automated approaches for
finding decomposition functions8 (using, e.g., interval arithmetic, Jacobian bounds)

7M. Abate, M. Dutreix, S. Coogan, IEEE L-CSS, 2020.
8A. Harapanahalli, S. Jafarpour, S. Coogan, Python-based toolbox, forthcoming.
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−3 0 3 6

−1

0

1

T = 0.27 x1

x2
Jacobian DF

−1 1 3 5
−1

1

3

T = 1.0 x1

x2
Piecewise DF

−1 1 3 5
−1

1

3

T = 1.0 x1

x2
Tight DF



Contraction of the tight embedding is same as original system

Theorem. Let

[
ẋ
ẋ

]
=

[
d(x,x,w,w)
d(x,x,w,w)

]
=: e(x,x) be the embedding system construc-

tion from tight decomposition functions. For any η ∈ Rn,

µ∞,[η ]−1

(
∂ f
∂x

(x,w)
)
≤ c for all x

if and only if

µ∞,[(η ,η)]−1

(
∂e

∂ (x,x)
(x,x)

)
≤ c for all x,x.

I Reachable sets computed from a trajectory of the tight embedding system are at
least as good as using contraction alone on the original system
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Idea of adaptive partitioning

Nonadaptive partition Adaptive partitioning

12 partitions 10 final partitions, <50% integration time

I Fixing # of partitions, adaptive is faster and can be more accurate

I Fixing computation time, adaptive allows for more partitions
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Algorithm overview

1 Given

ẋ = f ol(x,u,w) (open-loop system)

u = N(x) (NN controller),

obtain decomposition function for closed-loop
system

ẋ = f cl(x,w) = f ol(x,N(x),w)

from
I Open-loop decomposition function for f ol and
I Bounding functions for open-loop controller N(x) (next slides)

2 Efficiently evolve embedding system to obtain overapproximation set

3 Adaptively (in space and time) partition to avoid compounding conservatism
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Neural network bounding functions

Given NN N(x) and bounds [z,z], N(z,z)(x,x) and N(z,z)(x,x) are bounding functions
for N(x) valid on [z,z] if

N(z,z)(x,x)≤ N(x)≤ N(z,z)(x,x) for all x ∈ [x,x]⊆ [z,z].

Example: CROWN9 is a NN verifier that produces affine bounds:
A(z,z)x+b(z,z) ≤ N(x)≤ A(z,z)x+b(z,z)

Lemma. Given CROWN bounds A(z,z)x+b(z,z) ≤ N(x)≤ A(z,z)x+b(z,z), then

N(z,z)(x,x) = [A(z,z)]
+x+[A(z,z)]

−x+b(z,z),

N(z,z)(x,x) = [A(z,z)]
+x+[A(z,z)]

−x+b(z,z)

are bounding functions for N(x) valid on [z,z].
9Zhang, Weng, Chen, Hsieh,Daniel, “Efficient neural network robustness certification with general
activation functions.” Advances in neural information processing systems, 2018.
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Mixed monotone reachability of neural network controlled systems

Assume we have:

1 Open-loop decomposition function dol for f ol(x,u,w)

2 Ability to construct NN bounding functions N(z,z), N(z,z)

I Construction is expensive while queries are cheap (e.g., CROWN vs matrix multiply)

For reachability of f cl(x,w) = f ol(x,N(x),w), we propose an algorithm that features:

1 Separation of bounding function construction from queries

2 Spatially and temporally adaptive partitioning for accuracy
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Closed-loop decomposition function

Theorem.10 Let N(z,z), N(z,z) be bounding functions for N(x) valid on some [z,z],
and let dol be a decomposition function for f ol. Then di defined by

di(x,x,w,w) = dol
i (x,x,η ,η ,w,w),

di(x,x,w,w) = dol
i (x,x,ν ,ν ,w,w),

where

η = N(z,z)(x,x[i:x]) η = N(z,z)(x,x[i:x]),

ν = N(z,z)(x,x[i:x]), ν = N(z,z)(x,x[i:x]),

is a decomposition function for f cl for any (x,x) such that [x,x]⊆ [z,z], where v[i:v′]
is the vector v with its i-th component replaced with that of v′.

10S. Jafarpour, A. Harapanahalli, S. Coogan, “Interval Reachability of Nonlinear Dynamical Systems
with Neural Network Controllers”, L4DC, 2023
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Spatially and temporally adaptive partitioning for accuracy

1 Evolving tree structure tracks
partitionings, leaves are current
partitions

2 Along an evolution step (e.g., control
update step) if partition expansion
exceeds threshold, add a partition and
reevolve

3 NN bounding construction performed
at some nodes, used for all descendent
leaves
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Case study: kinematic bicycle

x = (px,py,φ ,v) ∈ R4

ṗx = vcos(φ +β (u2))

ṗy = vsin(φ +β (u2))

φ̇ =
v
`r

sin(β (u2))

v̇ = u1 +w

I Obstacle-avoiding go-to-origin NN controller
(4×100×100×2 ReLU) trained from nonlinear MPC
data

Dp DN Runtime (s) Volume

non-adaptive 2 1 1.851±0.010 1.988
adaptive 2 1 1.583±0.010 1.689

non-adaptive 2 2 4.274±0.023 0.803
adaptive 2 2 3.332±0.012 0.787
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Benchmark: Double integrator

xt+1 =

[
1 1
0 1

]
xt +

[
0.5
1

]
ut

I 2×10×5×1 ReLU NN controller
from literature

t0 t1 t2

t3 t4 t5

1 0 1 2 3
1.5

1.0

0.5

0.0

0.5

1.0
runtime: 0.259 ± 0.001
area: 0.15472

= 0, Dp = 2, DN = 2

1 0 1 2 3
1.5

1.0

0.5

0.0

0.5

1.0
runtime: 1.466 ± 0.022
area: 0.00898

= 0, Dp = 6, DN = 2

1 0 1 2 3
1.5

1.0

0.5

0.0

0.5

1.0
runtime: 0.079 ± 0.001
area: 0.10045

= 0.1, Dp = 3, DN = 1

1 0 1 2 3
1.5

1.0

0.5

0.0

0.5

1.0
runtime: 0.833 ± 0.025
area: 0.00755

= 0.05, Dp = 6, DN = 2
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Benchmark: Double integrator

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1.5

1.0

0.5

0.0

0.5

1.0
ReachMM-CG
ReachLP-Uniform
ReachLipBnB

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1.5

1.0

0.5

0.0

0.5

1.0
ReachMM-CG
ReachLP-Uniform
ReachLipBnB

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1.5

1.0

0.5

0.0

0.5

1.0
ReachMM-CG
ReachLP-Uniform
ReachLipBnB

1.0 0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
1.5

1.0

0.5

0.0

0.5

1.0
ReachMM-CG
ReachLP-Uniform
ReachLipBnB

Method Setup Runtime (s) Area

ReachMM-CG (0.1, 3, 1) 0.079±0.001 1.0 ·10−1

(our method) (0.05, 6, 2) 0.833±0.025 7.5 ·10−3

ReachLP-Unif
4 0.212±0.002 1.5 ·10−1

16 3.149±0.004 1.0 ·10−2

ReachLP-GSG
55 0.913±0.031 5.3 ·10−1

205 2.164±0.042 8.8 ·10−2

ReachLipBnB
0.1 0.956±0.067 5.4 ·10−1

0.001 3.681±0.100 1.2 ·10−2
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Generalizing rectangular compatibility of monotonicity and contraction

Given a partial order �K induced by a cone K, for any η ∈ int(K), the corresponding
gauge norm (or seminorm) is defined as

‖v‖η ,K = inf{λ ∈ R≥0 | −η �K v�K η}.

I For the standard order ≤, gauge norms
are weighted `∞ norms and intervals

ηv

I More generally, any interval is a gauge
norm ball

−20 0 20−20
0

20

−10

0

10

20

x1
x2

x 3

Interval
Partial orders generating interval
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Monotonicity w.r.t. polyhedral cones
A polyhedral cone has the form K = {x ∈ Rn | Hx≥ 0m}︸ ︷︷ ︸

Halfspace rep

= {Vx ∈ Rn | x≥ 0m}︸ ︷︷ ︸
Vertex rep

Theorem.11 The system ẋ = f (x) is monotone w.r.t. �K , K a polyhedral cone, if
any of the following equivalent conditions hold:

1 There exists α(x,u) such that

H
(

∂ f
∂x(x)+α(x,u)In

)
V ≥ 0m×m for all x,u,

2 There exists Metzler P(x,u) such that

H ∂ f
∂x(x) = P(x,u)H for all x,u,

3 There exists Metzler Q(x,u) such that
∂ f
∂x(x)V = VQ(x,u) for all x,u.

11S. Jafarpour and S. Coogan, “Monotonicity and Contraction on Polyhedral Cones”, in submission to
IEEE TAC.
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Contraction with respect to gauge norms in monotone systems

Theorem.12 Let ẋ = f (x) be monotone w.r.t. �K , K polyhedral. Let η ∈ int(K),
c ∈ R. The following are equivalent:

1
∂ f
∂x

(x)η �K cη ,

2 H
∂ f
∂x

(x)≤ cHη ,

3 ‖y(t)− x(t)‖η ,K ≤ ect‖y(0)− x(0)‖η ,K for any two trajectories x(t),y(t)

12S. Jafarpour and S. Coogan, “Monotonicity and Contraction on Polyhedral Cones”, in submission to
IEEE TAC.
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Example: Inverted pendulum

I Inverted pendulum:

ẋ1 = x2

ẋ2 = sin(x1)+u

I Choose u =−k1x1− k2x2, to
stabilize origin, then

∂ f
∂x(x) =

[
0 1

cos(x1)−k1 −k2

]
I No controller contracts a rectangle

around the origin

−0.1 −0.05 0 0.05 0.1

−0.6

−0.3

0

0.3

0.6

x

y

I Alternative cone
K =

{
x |
[ 1 0

1 γ

]
x≥ 0m

}

−0.06 −0.03 0 0.03 0.06

−0.6

−0.3

0

0.3

0.6

x

y
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Example: Network flow

I Nodal flows:

ẋ =−BvBT
v︸ ︷︷ ︸

L

x, Bv =

[ 1 0 1 0
−1 1 0 0
0 −1 −1 1
0 0 0 1

]
I Edge flows: z = BT

v x.

I Non-pointed K = {x ∈ Rn : BT
v x≥ 04}:

−BvL =

[−3 0 0 0
−1 1 0 0
0 −1 −1 1
0 0 0 1

]
︸ ︷︷ ︸

Metzler

BT
v ,

so edge flow dynamic are monotone:
BT

v x(0)≤ BT
v y(0) =⇒ BT

v x(t)≤ BT
v y(t)∀t
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2
<latexit sha1_base64="PvkqMPf0KQ2ZiRgX4QPbidqMLN8=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHaVqEeiF4+QyCOBDZkdemFkdnYzM2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR3cxvPaHSPJYPZpygH9GB5CFn1FipftkrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa88SdcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmhdl76pcqVdK1dssjjycwCmcgwfXUIV7qEEDGCA8wyu8OY/Oi/PufCxac042cwx/4Hz+AICTjMA=</latexit>

3
<latexit sha1_base64="y+WDoqttszdexELZg6EJPDYoWM8=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XwVBIp6rHoxWMF+wFtKJvtpF272YTdjVBCf4EXD4pXf5M3/43bNgdtfTDweG+GmXlhKrg2nvftlDY2t7Z3yrvu3v7B4VHFPW7rJFMMWywRieqGVKPgEluGG4HdVCGNQ4GdcHI39zvPqDRP5KOZphjEdCR5xBk1VnqoDypVr+YtQNaJX5AqFGgOKl/9YcKyGKVhgmrd873UBDlVhjOBM7efaUwpm9AR9iyVNEYd5ItDZ+TcKkMSJcqWNGSh/p7Iaaz1NA5tZ0zNWK96c/E/r5eZ6CbIuUwzg5ItF0WZICYh86/JkCtkRkwtoUxxeythY6ooMzYb14bgr768TtqXNf+qVq82boswynAKZ3ABPlxDA+6hCS1ggPACb/DuPDmvzseyseQUEyfwB87nDxedi5c=</latexit>

4

I For η = [1.5 1.4 1 0.1]T ,

−BT
v Lη ≤ −3

4
BT

v η ,

so edge flows contract with rate 3/4.

I However, with coordinates z = BT
v x,

ż = BT
v ẋ =−BT

v Bv︸ ︷︷ ︸
LE

Bvx︸︷︷︸
z

=−LEz,

but LE is not Metzler nor Hurwitz.
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Conclusions

In this talk:

1 Contraction (and [mixed] monotonicity) for computing reachable sets, applications
to learning-based controllers

2 Gauge norms induced by partial orders are natural for computing with intervals

3 Opportunities for “computational contraction theory”

coogan.ece.gatech.edu for papers and code

Thank you
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Bounding accuracy

Theorem (informal).

‖partition(t)‖∞ ≤ect‖partition(0)‖∞ +
Lol

w (e
ct−1)
c

‖w−w‖∞

+
Lol

u (e
ct−1)
c

sup
z

max{‖N(z,z)−N(z)‖∞,‖N(z,z)−N(z)‖∞}

where

c = local contraction rate of closed-loop embedding system

Lol
u = local Lipschitz constant of open-loop embedding system w.r.t. u

Lol
w = local Lipschitz constant of open-loop embedding system w.r.t. w

I Separation=⇒ improve term 1 independent of term 3
I Spatial awareness=⇒ improved local Lipschitz constant Lol

w , Lol
u

I Temporal awareness=⇒ controlled ect‖partition(0)‖∞
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Bounding closed-loop contraction rate

Theorem (informal). Contraction rate c of closed loop system satisfies

c≤ col +Lol
u sup
(x,x)

max
{∥∥∥∥ ∂N

∂ (x,x)
(x,x)

∥∥∥∥
∞

,

∥∥∥∥ ∂N
∂ (x,x)

(x,x)
∥∥∥∥

∞

}
where col is contraction rate of the open-loop embedding system.

Moreover, when the open-loop decomposition function is tight, col matches the
contraction rate of the open-loop system.
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