Contraction-guided reachability analysis of neural network controlled systems

Sam Coogan

Associate professor Electrical and Computer Engineering Civil and Environmental Engineering

Workshop on contraction theory for systems, control, and learning American Control Conference 2023 May 30, 2023

Acknowledgements

- S. Jafarpour, A. Harapanahalli, S. Coogan, "Interval Reachability of Nonlinear Dynamical Systems with Neural Network Controllers", L4DC, 2023, arXiv:2301.07912
- A. Harapanahalli, S. Jafarpour, S. Coogan, "Contraction-Guided Adaptive Partitioning for Reachability Analysis of Neural Network Controlled Systems", in submission to IEEE CDC, arXiv:2304.03671
- S. Jafarpour and S. Coogan, "Monotonicity and Contraction on Polyhedral Cones", in submission to IEEE TAC, arXiv:2210.11576

Saber Jafarpour Akash Harapanahalli

System: $\dot{x} = f(x, w)$ **State:** $x \in \mathbb{R}^n$ **Disturbance:** $w \in \mathcal{W} \subset \mathbb{R}^m$

- Reachable sets characterize possible system evolution
- Overapproximations of reachable sets are appropriate for verification and safety

Neural network feedback controllers: The reachability problem

Goal: compute reachable sets of closed-loop system

Challenges: soundness, efficiency-vs-conservatism tradeoff

In this talk:

- Interval-based reachability using monotone systems theory
- Contraction-based adaptive partitioning
- Contraction with alternate partial orders for improved fidelity

A starting point: Reachability estimates from contraction theory

For $\dot{x} = f(x, w)$, $x \in \mathbb{R}^n$ and $w \in \mathcal{W} \subseteq \mathbb{R}^m$, define reachable set as

$$\mathcal{R}^{f}(t;X_{0}) = \{x(t): x(\cdot) \text{ is sol'n for some } w(\cdot) \text{ with } x_{0} \in X_{0}\}.$$

Suppose

$$\mu\left(\frac{\partial f}{\partial x}(x,w)\right) \leq c \quad \text{and} \quad \left\|\frac{\partial f}{\partial w}(x,w)\right\|_{w\to x} \leq \ell.$$

If $X_0 = B(r_1, x_0^*)$ and $\mathcal{W} = B(r_2, w^*)$ where $B(\cdot, \cdot)$ is ball with radius and center, then $\mathcal{R}^f(t; X_0) \subseteq B\left(e^{ct}r_1 + \frac{\ell}{c}(e^{ct} - 1)r_2, x^*(t)\right)$ where $\dot{x}^*(\tau) = f(x^*(\tau), w^*)$ for all τ .

(Pf. Rewriting of Grönwall Comparison Lemma, [Bullo, Corollary 3.17, p. 81].)

The system $\dot{x} = f(x, w)$, $x \in \mathbb{R}^n$, $w \in \mathbb{R}^m$ is monotone¹ if

 $x_0 \preceq_{K_x} x_0'$ implies that $x(t) \preceq_{K_x} x'(t)$ for all time,

for any $w(\cdot)$ and $w'(\cdot)$ such that $w(t) \preceq_{K_w} w'(t)$ for all t, where \preceq_K is some partial order induced by cone K ($K_x \subset \mathbb{R}^n$ or $K_w \subset \mathbb{R}^m$).

Test for monotonicity (standard order
$$\leq$$
):
 $\frac{\partial f}{\partial x}(x,w)$ is Metzler (≥ 0 off-diag. entries)
 $\frac{\partial f}{\partial w}(x,w) \geq 0$

¹D. Angeli and E. Sontag, "Monotone Control Systems", *IEEE TAC*, 2003 S. Coogan

Reachability estimates for monotone systems

Reachability Analysis for Monotone Systems. For a monotone system,

Reachable set \subseteq [lower trajectory, upper trajectory].

Reachability estimates from monotonicity are tight.

Theorem. A monotone system $\dot{x} = f(x)$ (wrt. \leq) contracts at rate c any box with sidelengths a multiple of $\eta \in \mathbb{R}^n_{>0}$ if (equivalently, contracts w.r.t. $\|\cdot\|_{\infty,[\eta]^{-1}}$):

i)
$$\left(\frac{\partial f}{\partial x}(x)\right)\eta \le c\eta$$
 for all x or, equivalently,
ii) $f(y)-f(x) \le c(y-x)$ for all x and $y = x + \beta\eta$ for some $\beta > 0$

Proof for i): Follows from the fact that $\frac{\partial f}{\partial x}(x)$ is Metzler and that $\mu_{\infty}(A) = \max_{i} A_{ii} + \sum_{j \neq i} |A_{ij}|.$ Proof sketch for ii):

²[Bullo, Ch. 4.5, Lemma 4.17, p. 117]

 3 S. Coogan, "A contractive approach to separable Lyapunov functions for monotone systems", s. Coogan dutomatica, 2019.

Example

 $\rightarrow (x_3) \leftarrow$ (x_5)

Consensus on line graph with anchored Distribute "excess negativity" from first column by choosing

$$\dot{x} = \underbrace{\begin{bmatrix} -2 & 1 & 0 & \cdots & 0 \\ 1 & -2 & 1 & 0 & \cdots & 0 \\ 0 & 1 & -2 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots & \vdots \\ 0 & \cdots & 0 & 1 & -2 & 1 \\ 0 & \cdots & 0 & 0 & 1 & -1 \end{bmatrix}}_{A} x$$

► A1 ≤ 0, so hypersquares are nonexpansive

$$\eta = \begin{bmatrix} 1\\ 1+\varepsilon_1\\ 1+\varepsilon_1+\varepsilon_2\\ \vdots\\ 1+\varepsilon_1+\ldots+\varepsilon_{n-1} \end{bmatrix}$$
 with $1 > \varepsilon_1 > \varepsilon_2 > \ldots > \varepsilon_{n-1} > 0$, then $A\eta < 0$.

Reachability for nonmonotone systems

Generally, cannot bound the reachable set between two extreme trajectories for nonmonotone systems

Mixed monotonicity embeds nonmonotone systems in a monotone system

• Given $\dot{x} = f(x, w)$, disturbance input $w \in \mathcal{W} = [\underline{w}, \overline{w}] = \{w : \underline{w} \le w \le \overline{w}\}$

Mixed monotone approach: find decomposition functions \underline{d} , \overline{d} such that: **1** $\underline{d}(x,x,w,w) = \overline{d}(x,x,w,w)$ for all x, w and

2 the 2n dimensional embedding system^{4,5}

$$\begin{bmatrix} \underline{\dot{x}} \\ \overline{\dot{x}} \end{bmatrix} = \begin{bmatrix} \underline{d}(\underline{x}, \overline{x}, \underline{w}, \overline{w}) \\ \overline{d}(\underline{x}, \overline{x}, \underline{w}, \overline{w}) \end{bmatrix}$$

is monotone w.r.t the *southeast order* \leq_{SE} on \mathbb{R}^{2n} defined as:

 $(x, \hat{x}) \leq_{\mathsf{SE}} (y, \hat{y})$ if and only if $x \leq y$ and $\hat{y} \leq \hat{x}$.

⁴G. Enciso, H. Smith, E. Sontag, "Non-monotone systems decomposable into monotone systems with negative feedback", *Journal of Diff. Eq.*, 2006

⁵H. Smith, "Global stability for mixed monotone systems", *Journal of Difference Equations and Applications*, 2008

S. Coogan

```
Reachable set from embedding trajectory:
```

```
\mathcal{R}^{f}(T; [\underline{x}_{0}, \overline{x}_{0}]) \subseteq [\underline{x}(T), \overline{x}(T)]
```

where $\underline{x}(t),\overline{x}(t)$ is embedding system solution with initial condition $(\underline{x}_0,\overline{x}_0)$

- MM is fast: A single trajectory of the deterministic embedding bounds reachable sets of the original system
- ▶ MM is scalable: If $(\underline{x}_{eq}, \overline{x}_{eq})$ is an equilibrium for embedding system, then hyperrectangle $[\underline{x}_{eq}, \overline{x}_{eq}]$ is robustly forward invariant⁶

⁶S. Coogan, "Mixed monotonicity for reachability and safety in dynamical systems", IEEE CDC, 2020 (tutorial paper)

Example

Mixed Monotone System:

$$\begin{bmatrix} \dot{x}_1\\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} x_2^2 + 2\\ x_1 \end{bmatrix}$$
$$[\underline{x}_0, \overline{x}_0] = [(-0.5, -0.5), (0.5, 0.5)]$$
$$T = 1$$

Decomposition Function:

$$\underline{d}_{1}(x,\hat{x}) = \begin{cases} x_{2}^{2} + 2 & \text{if } x_{2} \ge 0 \text{ and } x_{2} \ge -\hat{x}_{2}, \\ \widehat{x}_{2}^{2} + 2 & \text{if } \widehat{x}_{2} \le 0 \text{ and } x_{2} < -\widehat{x}_{2}, \\ 2 & \text{if } x_{2} < 0 \text{ and } \widehat{x}_{2} > 0. \end{cases}$$
$$\underline{d}_{2}(x,\hat{x}) = x_{1}, \qquad \overline{d}(x,\hat{x}) = \underline{d}(\widehat{x}, x)$$

Stability in the embedding space implies robust invariance

Mixed Monotone System:

 $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -x_1^3 - x_2 - w \\ x_1^2 - x_2 + w^3 \end{bmatrix}$

W = [-1, 1]

Decomposition Function:

$$d_1(x, w, \widehat{x}, \widehat{w}) = -x_1^3 - \widehat{x}_2 - \widehat{w}$$

$$d_2(x, w, \widehat{x}, \widehat{w}) = \begin{cases} x_1^2 - x_2 + w^3 & \text{if } x_1 \ge 0 \text{ and } x_1 \ge -\widehat{x}_1, \\ \widehat{x}_1^2 - x_2 + w^3 & \text{if } \widehat{x}_1 \le 0 \text{ and } x_1 < -\widehat{x}_1, \\ -x_2 + w^3 & \text{if } x_1 < 0 \text{ and } \widehat{x}_1 > 0. \end{cases}$$

Theorem⁷. Any system has best (i.e, tightest) decomposition functions satisfying $\underline{d}_i(x, \hat{x}, w, \hat{w}) = \min_{y \in [x, \hat{x}], y_i = x_i, z \in [w, \hat{w}]} f_i(y, z)$ $\overline{d}_i(x, \hat{x}, w, \hat{w}) = \max_{y \in [x, \hat{x}], y_i = \hat{x}_i, z \in [w, \hat{w}]} f_i(y, z)$

Closed form sometimes possible, otherwise, several automated approaches for

 $^{8}\mbox{A}.$ Harapanahalli, S. Jafarpour, S. Coogan, Python-based toolbox, forthcoming.

Theorem. Let
$$\begin{bmatrix} \dot{x} \\ \dot{\bar{x}} \end{bmatrix} = \begin{bmatrix} \underline{d}(\underline{x}, \overline{x}, \underline{w}, \overline{w}) \\ \overline{d}(\underline{x}, \overline{x}, \underline{w}, \overline{w}) \end{bmatrix} =: e(\underline{x}, \overline{x})$$
 be the embedding system construction from tight decomposition functions. For any $\eta \in \mathbb{R}^n$,
 $\mu_{\infty, [\eta]^{-1}} \left(\frac{\partial f}{\partial x}(x, w) \right) \leq c \quad \text{for all } x$
if and only if
 $\mu_{\infty, [(\eta, \eta)]^{-1}} \left(\frac{\partial e}{\partial (x, \overline{x})}(\underline{x}, \overline{x}) \right) \leq c \quad \text{for all } \underline{x}, \overline{x}.$

Reachable sets computed from a trajectory of the tight embedding system are at least as good as using contraction alone on the original system

- ▶ Fixing # of partitions, adaptive is faster and can be more accurate
- Fixing computation time, adaptive allows for more partitions

- ▶ Fixing # of partitions, adaptive is faster and can be more accurate
- Fixing computation time, adaptive allows for more partitions

- Fixing # of partitions, adaptive is faster and can be more accurate
- Fixing computation time, adaptive allows for more partitions

- ▶ Fixing # of partitions, adaptive is faster and can be more accurate
- Fixing computation time, adaptive allows for more partitions

- Fixing # of partitions, adaptive is faster and can be more accurate
- Fixing computation time, adaptive allows for more partitions

Algorithm overview

Given

 $\dot{x} = f^{ol}(x, u, w)$ (open-loop system) u = N(x) (NN controller),

obtain decomposition function for closed-loop system

$$\dot{x} = f^{cl}(x, w) = f^{ol}(x, N(x), w)$$

from

- ▶ Open-loop decomposition function for f^{ol} and
- Bounding functions for open-loop controller N(x) (next slides)
- 2 Efficiently evolve embedding system to obtain overapproximation set
- 3 Adaptively (in space and time) partition to avoid compounding conservatism

Neural network bounding functions

Given NN N(x) and bounds $[\underline{z}, \overline{z}]$, $\underline{N}_{(\underline{z}, \overline{z})}(\underline{x}, \overline{x})$ and $\overline{N}_{(\underline{z}, \overline{z})}(\underline{x}, \overline{x})$ are bounding functions for N(x) valid on $[\underline{z}, \overline{z}]$ if

 $\underline{N}_{(\underline{z},\overline{z})}(\underline{x},\overline{x}) \leq N(x) \leq \overline{N}_{(\underline{z},\overline{z})}(\underline{x},\overline{x}) \quad \text{ for all } x \in [\underline{x},\overline{x}] \subseteq [\underline{z},\overline{z}].$

Example: CROWN⁹ is a NN verifier that produces affine bounds:

$$\underline{A}_{(\underline{z},\overline{z})}x + \underline{b}_{(\underline{z},\overline{z})} \le N(x) \le \overline{A}_{(\underline{z},\overline{z})}x + \overline{b}_{(\underline{z},\overline{z})}$$

Lemma. Given CROWN bounds $\underline{A}_{(\underline{z},\overline{z})}x + \underline{b}_{(\underline{z},\overline{z})} \leq N(x) \leq \overline{A}_{(\underline{z},\overline{z})}x + \overline{b}_{(\underline{z},\overline{z})}$, then

$$\begin{split} \underline{N}_{(\underline{z},\overline{z})}(\underline{x},\overline{x}) &= [\underline{A}_{(\underline{z},\overline{z})}]^+ \underline{x} + [\underline{A}_{(\underline{z},\overline{z})}]^- \overline{x} + \underline{b}_{(\underline{z},\overline{z})}, \\ \overline{N}_{(\underline{z},\overline{z})}(\underline{x},\overline{x}) &= [\overline{A}_{(\underline{z},\overline{z})}]^+ \overline{x} + [\overline{A}_{(\underline{z},\overline{z})}]^- \underline{x} + \overline{b}_{(\underline{z},\overline{z})} \end{split}$$

are bounding functions for N(x) valid on $[\underline{z}, \overline{z}]$.

⁹Zhang, Weng, Chen, Hsieh,Daniel, "Efficient neural network robustness certification with general activation functions." *Advances in neural information processing systems*, 2018. S. Coogan Assume we have:

- **①** Open-loop decomposition function d^{ol} for $f^{ol}(x, u, w)$
- 2 Ability to construct NN bounding functions $\underline{N}_{(z,\overline{z})}$, $\overline{N}_{(z,\overline{z})}$
 - Construction is expensive while queries are cheap (e.g., CROWN vs matrix multiply)

For reachability of $f^{cl}(x,w) = f^{ol}(x,N(x),w)$, we propose an algorithm that features:

- 1 Separation of bounding function construction from queries
- Spatially and temporally adaptive partitioning for accuracy

Theorem.¹⁰ Let $\underline{N}_{(\underline{z},\overline{z})}$, $\overline{N}_{(\underline{z},\overline{z})}$ be bounding functions for N(x) valid on some $[\underline{z},\overline{z}]$, and let d^{ol} be a decomposition function for f^{ol} . Then d_i defined by

$$\begin{split} \underline{d}_i(\underline{x}, \overline{x}, \underline{w}, \overline{w}) &= d_i^{ol}(\underline{x}, \overline{x}, \underline{\eta}, \overline{\eta}, \underline{w}, \overline{w}), \\ \overline{d}_i(\underline{x}, \overline{x}, \underline{w}, \overline{w}) &= d_i^{ol}(\overline{x}, \underline{x}, \overline{v}, \underline{v}, \overline{w}, \underline{w}), \end{split}$$

where

$$\begin{split} \underline{\eta} &= \underline{N}_{(\underline{z},\overline{z})}(\underline{x},\overline{x}_{[i:\underline{x}]}) \quad \overline{\eta} &= \overline{N}_{(\underline{z},\overline{z})}(\underline{x},\overline{x}_{[i:\underline{x}]}), \\ \underline{\nu} &= \underline{N}_{(\underline{z},\overline{z})}(\overline{x},\underline{x}_{[i:\overline{x}]}), \quad \overline{\nu} &= \overline{N}_{(\underline{z},\overline{z})}(\overline{x},\underline{x}_{[i:\overline{x}]}), \end{split}$$

is a decomposition function for f^{cl} for any $(\underline{x}, \overline{x})$ such that $[\underline{x}, \overline{x}] \subseteq [\underline{z}, \overline{z}]$, where $v_{[i:v']}$ is the vector v with its *i*-th component replaced with that of v'.

¹⁰S. Jafarpour, A. Harapanahalli, S. Coogan, "Interval Reachability of Nonlinear Dynamical Systems with Neural Network Controllers", *L4DC*, 2023

Spatially and temporally adaptive partitioning for accuracy

- Evolving tree structure tracks partitionings, leaves are current partitions
- Along an evolution step (e.g., control update step) if partition expansion exceeds threshold, add a partition and reevolve
- S NN bounding construction performed at some nodes, used for all descendent leaves

Case study: kinematic bicycle

 Obstacle-avoiding go-to-origin NN controller (4×100×100×2 ReLU) trained from nonlinear MPC data

	D_p	D_{N}	Runtime (s)	Volume
non-adaptive	2	1	1.851 ± 0.010	1.988
adaptive	2	1	1.583 ± 0.010	1.689
non-adaptive	2	2	4.274 ± 0.023	0.803
adaptive	2	2	3.332 ± 0.012	0.787

Benchmark: Double integrator

$$x_{t+1} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} x_t + \begin{bmatrix} 0.5 \\ 1 \end{bmatrix} u_t$$

► $2 \times 10 \times 5 \times 1$ ReLU NN controller from literature

Benchmark: Double integrator

Generalizing rectangular compatibility of monotonicity and contraction

Given a partial order \leq_K induced by a cone K, for any $\eta \in int(K)$, the corresponding gauge norm (or seminorm) is defined as

$$\|v\|_{\eta,K} = \inf\{\lambda \in \mathbb{R}_{\geq 0} \mid -\eta \preceq_{K} v \preceq_{K} \eta\}.$$

► For the standard order ≤, gauge norms are weighted ℓ_∞ norms and intervals

Monotonicity w.r.t. polyhedral cones

A polyhedral cone has the form $K = \{x \in \mathbb{R}^n \mid Hx \ge \mathbb{O}_m\} = \{Vx \in \mathbb{R}^n \mid x \ge \mathbb{O}_m\}$ Halfspace rep Vertex rep **Theorem.**¹¹ The system $\dot{x} = f(x)$ is monotone w.r.t. \leq_K , K a polyhedral cone, if anv of the following equivalent conditions hold: **①** There exists $\alpha(x, u)$ such that $H\left(\frac{\partial f}{\partial x}(x) + \alpha(x,u)I_n\right)V \ge \mathbb{O}_{m imes m} \quad \text{for all } x,u,$ There exists Metzler P(x, u) such that 2 $H\frac{\partial f}{\partial x}(x) = P(x,u)H$ for all x, u, There exists Metzler Q(x, u) such that 3 $\frac{\partial f}{\partial x}(x)V = VQ(x,u)$ for all x, u. ¹¹S. Jafarpour and S. Coogan, "Monotonicity and Contraction on Polyhedral Cones", in submission to IEEE TAC.

S. Coogan

Theorem.¹² Let $\dot{x} = f(x)$ be monotone w.r.t. \leq_K , K polyhedral. Let $\eta \in int(K)$, $c \in \mathbb{R}$. The following are equivalent: **1** $\frac{\partial f}{\partial x}(x)\eta \leq_K c\eta$, **2** $H\frac{\partial f}{\partial x}(x) \leq cH\eta$, **3** $\|y(t) - x(t)\|_{\eta,K} \leq e^{ct} \|y(0) - x(0)\|_{\eta,K}$ for any two trajectories x(t), y(t)

¹²S. Jafarpour and S. Coogan, "Monotonicity and Contraction on Polyhedral Cones", in submission to *IEEE TAC*.

Example: Inverted pendulum

Inverted pendulum:

 $\dot{x}_1 = x_2$ $\dot{x}_2 = \sin(x_1) + u$

► Choose u = -k₁x₁ - k₂x₂, to stabilize origin, then

$$\frac{\partial f}{\partial x}(x) = \begin{bmatrix} 0 & 1\\ \cos(x_1) - k_1 & -k_2 \end{bmatrix}$$

 No controller contracts a rectangle around the origin

- Alternative cone
 - $K = \left\{ x \mid \begin{bmatrix} 1 & 0 \\ 1 & \gamma \end{bmatrix} x \ge \mathbb{O}_m \right\}$

Example: Network flow

► Nodal flows:

$$\dot{x} = -\underbrace{B_{\nu}B_{\nu}^{T}}_{L}x, \quad B_{\nu} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

• Edge flows: $z = B_v^T x$.

▶ Non-pointed
$$K = \{x \in \mathbb{R}^n : B_v^T x \ge \mathbb{O}_4\}$$
:

$$-B_{\nu}L = \underbrace{\begin{bmatrix} -3 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 0 & -1 & -1 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix}}_{\text{Metzler}} B_{\nu}^{T},$$

so edge flow dynamic are monotone: $B_{\nu}^{T}x(0) \leq B_{\nu}^{T}y(0) \implies B_{\nu}^{T}x(t) \leq B_{\nu}^{T}y(t) \forall t$

In this talk:

- Contraction (and [mixed] monotonicity) for computing reachable sets, applications to learning-based controllers
- ② Gauge norms induced by partial orders are natural for computing with intervals
- Opportunities for "computational contraction theory"

coogan.ece.gatech.edu for papers and code

Thank you

Bounding accuracy

Theorem (informal).

$$\begin{aligned} \mathsf{partition}(t) \|_{\infty} &\leq e^{ct} \|\mathsf{partition}(0)\|_{\infty} + \frac{L^{\mathrm{ol}}_{w}(e^{ct}-1)}{c} \|\overline{w}-\underline{w}\|_{\infty} \\ &+ \frac{L^{\mathrm{ol}}_{u}(e^{ct}-1)}{c} \sup_{z} \max\{\|\underline{N}(z,z)-N(z)\|_{\infty}, \|\overline{N}(z,z)-N(z)\|_{\infty}\} \end{aligned}$$

where

 $c = {\rm local}$ contraction rate of closed-loop embedding system $L_u^{\rm ol} = {\rm local} \ {\rm Lipschitz} \ {\rm constant} \ {\rm of} \ {\rm open-loop} \ {\rm embedding} \ {\rm system} \ {\rm w.r.t.} \ u$ $L_w^{\rm ol} = {\rm local} \ {\rm Lipschitz} \ {\rm constant} \ {\rm of} \ {\rm open-loop} \ {\rm embedding} \ {\rm system} \ {\rm w.r.t.} \ w$

• Separation \implies improve term 1 independent of term 3

• Spatial awareness \implies improved local Lipschitz constant L_w^{ol} , L_u^{ol}

• Temporal awareness \implies controlled $e^{ct} \| partition(0) \|_{\infty}$

Theorem (informal). Contraction rate c of closed loop system satisfies $c \leq c^{\text{ol}} + L_u^{\text{ol}} \sup_{(\underline{x},\overline{x})} \max \left\{ \left\| \frac{\partial \underline{N}}{\partial(\underline{x},\overline{x})}(\underline{x},\overline{x}) \right\|_{\infty}, \left\| \frac{\partial \overline{N}}{\partial(\underline{x},\overline{x})}(\underline{x},\overline{x}) \right\|_{\infty} \right\}$ where c^{ol} is contraction rate of the open-loop embedding system.

Moreover, when the open-loop decomposition function is tight, $c^{\rm ol}$ matches the contraction rate of the open-loop system.