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Motivation



Small input perturbation x+∆x
⇓

Large output change y +∆y

Image: Aleksander Madry, MIT.



(a) Image (b) Prediction

(c) Adversarial Example (d) Prediction

Image: Metzen et al, Universal Adversarial Perturbations Against Semantic
Image Segmentation, 1704.05712v3.



Image: CNET, 2016





Adversarial Policy Beat Superhuman GO AIs

"...our adversaries do not win by learning

to play Go better than KataGo. In fact,

our adversaries are easily beaten by human

amateurs. Instead, our adversaries win by

tricking KataGo into making serious blunders..."

Wang et. al., arXiv:2211.00241.



Today’s Goal

Static and dynamic models which are:

Compatible with ML tools
(autodiff, SGD)
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Compatible with nonlinear
& robust stability theory
(IQC)



Adversarial Inputs and Lipschitz Bounds

◮ Adversarial perturbations are small input perturbations
leading to large input perturbations

◮ If a model x 󰀁→ y satisfies a Lipschitz bound:

󰀂ya − yb󰀂 ≤ γ󰀂xa − xb󰀂

then the effect of adversarial perturbations is bounded.

◮ The Lipschitz constant Lip(f) is defined as

Lip(f) := inf
󰁱
L : 󰀂f(xa)− f(xb)󰀂 ≤ γ󰀂xa − xb󰀂, ∀xa, xb

󰁲

◮ For neural networks, exact computation of Lip(f) is NP-hard.



Direct Parameterizations

Non-convex Convex Direct

x1

x2

◮ How to impose Lip(f) ≤ γ during training?
◮ Our approach: construct direct parameterization of models

satisfying this bound.
◮ smooth mapping from RN to a set of models with Lip(f) ≤ γ.
◮ a.k.a. an intrinsic parameterization of the constraint manifold.

◮ Learn via unconstrained optimization: SGD, ADAM, etc.



Robust Neural Networks



Lipschitz bound estimation for DNN

◮ A DNN f : Rn → Rm is of the form

fθ(x) = WLσ(WL−1σ(· · ·σ(W0x))) (1)

y W0W1W2W3 x

σ

◮ θ are the learnable parameters
◮ σ is a fixed scalar nonlinear activations

◮ The Lipschitz constant Lip(f) is defined as

Lip(f) := inf {L : 󰀂f(x1)− f(x2)󰀂 ≤ L󰀂x1 − x2󰀂, ∀x1, x2}

◮ Computing Lip(fθ) exactly is NP hard.



Different Viewpoint on DNN Structure

y W0W1W2W3 x

σ

“Pull apart” the weights and activations:
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DNNs as Feedback Interconnections
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Group the linear and nonlinear parts:

G

σ

xy

zv z = σ(v)

G : v = Wz + Ux, y = Y z

More general structure: equilibrium (aka implicit) network



IQC Analysis Flow

◮ The possible input/output pairs are (x, y) ∈ S (nasty set)

◮ What you want to prove about these pairs:

q󰂏(x, y) ≥ 0, ∀x, y ∈ S

◮ What you know about S:

qi(x, y) ≥ 0, ∀i, ∀x, y ∈ S,

◮ Find some multipliers λi ≥ 0, such that

q󰂏(x, y) ≥
󰁛

i

λiq
i(x, y), ∀(x, y)

can be verified (usually SDP)

◮ Then

(x, y) ∈ S =⇒ qi(x, y) ≥ 0, ∀i =⇒ q󰂏(x, y) ≥ 0



Incremental Sector Bounds for σ(·)
Common activations include z = tanh(v), the rectified linear unit
(ReLU): z = max(v, 0)
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Most activations satisfy the incremental sector bound: 0 ≤ ∆z
∆v ≤ 1
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Incremental Sector Bounds
◮ Each activation function i satisfies :

0 ≤ ∆i
z

∆i
v
≤ 1, ∀ ∆i

v ∕= 0

◮ This can be rewritten as

∆i
z(∆

i
v −∆i

z) ≥ 0

◮ Since this holds for all activation functions, we can also take
positive combinations of these, with λi > 0:

󰁛

i

λi∆
i
z(∆

i
v −∆i

z) ≥ 0

◮ Collecting terms with Λ = diag(λ1, ...,λp)

2∆T
z Λ(∆

i
v −∆i

z) ≥ 0.



Apply the S-Procedure

◮ Network representation:

z = σ(v), v = Wz + Ux, y = Y z

◮ Lipschitz bound via multipliers (S-Procedure)

γ|∆x|2 − 1
γ |∆y|2

󰁿 󰁾󰁽 󰂀
Lipschitz condition

≥ 2∆T
z Λ(

∆v󰁽 󰂀󰁿 󰁾
W∆z + U∆x−∆z)󰁿 󰁾󰁽 󰂀

≥0 due to sector bounds

(2)

◮ Take Schur complement and write as SDP1 :

H =

󰀵

󰀷
γI −U⊤Λ

−ΛU 2Λ− ΛW −W⊤Λ Y ⊤

Y γI

󰀶

󰀸 ≽ 0

1Fazlyab et al. NeurIPS2019



Direct Parameterization

◮ Basic idea: H ≽ 0 ⇔ H = PP⊤

◮ Problem: construct P s.t. H has the right sparsity structure:

H =

󰀵

󰀹󰀹󰀹󰀹󰀹󰀷

γI −Ŵ⊤
0

−Ŵ0 2Λ0 −Ŵ⊤
1

. . .
. . .

. . .

−ŴL−1 2ΛL−1 −Ŵ⊤
L

−ŴL γI

󰀶

󰀺󰀺󰀺󰀺󰀺󰀸
(3)

The main diagonal blocks γI, 2Λ0, 2Λ1, ... are diagonal
matrices.



Direct Parameterization via Cayley Transform

= ×

H P P!

2Λk

−ΛkWk

ΨkAk

−ΨkBk A!
k
Ψk

−B!
k
Ψk

A!
k−1

Ψk−1

◮ Let Ψk =
√
Λk be positive diagonal

◮ We need [Ak Bk ] semi-orthogonal: AkA
⊤
k +BkB

⊤
k = I.

◮ This can be parameterized directly via the Cayley transform:
󰀅
Ak Bk

󰀆
= cayley(Xk, Yk)

:=
󰀅
(I − Z)(I + Z)−1 −2(I + Z)−1Y ⊤󰀆

where Z = Xk −X⊤
k + Y ⊤

k Yk
◮ Xk, Yk are free variables.



Complete Parameterization

This construction provides a complete direct parameterization of
all networks satisfying the SDP condition of Fazlyab et al (2019):

Theorem

The following two conditions are eqivalent:

1. A network with weights W satisfies the SDP H ≽ 0 from
Fazlyab et al (2019).

2. The weights can be constructed as

Wk = 2Ψ−1
k BkA

⊤
k−1Ψk−1

with A,B constructed via the Cayley transform and Ψk

positive diagonal.



Tightness: fitting a squarewave, imposing slope ≤ 10
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AOL: slope 4.8
Orthogon: slope = 6.5
SLL: slope = 6.8
Ours: slope = 9.4
Best possible: slope = 10



Empirical robustness comparison on Tiny-Imagenet

Empirical accuracy: clean and adversarial perturbation

Clean Accuracy  = 36/255  = 72/255  = 108/255
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Wang & Manchester, ICML 2023. SLL method: Araujo et al, ICLR 2023.



Contracting and Lipschitz Dynamic Models



What is contraction?

◮ A contracting dynamical system

xt+1 = f(xt, t)

Has the property that all solutions converge exponentially

◮ I.e. there exists K,λ > 0 such that:

|xat − xbt | ≤ Ke−λt|xa0 − xb0|.

◮ Under mild assumptions, equivalent to:

∞󰁛

t=0

|xat − xbt |2 ≤ d(xa0, x
b
0)

where d is a distance metric.

◮ Can be interpreted as a Lipschitz condition on the mapping
x0 󰀁→ {x1, x2, x3, ...}



Recurrent Equilibrium Networks (REN)

A REN is an interconnection of a linear system G and nonlinear
elementwise “activation functions” σ:

G

σ

uy

wv

x+ = Ax+B1w +B2u+ bx
v = C1x+D11w +D12u+ bv
y = C2x+D21w +D22u+ by

󰀼
󰁀

󰀾 = G, w = σ(v)

Note the nonlinear equilibrium (a.k.a. implicit) network:

vt = C1x+D11σ(vt) +D12ut + bv

Can be interpreted as singular perturbation (slow/fast) model.



Model Parametrization - Model expressiveness

The REN contains many commonly used model structures:
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◮ Linear Time Invariant Systems

- Recurrent Neural Networks

- Equilibrium Networks
- Feedforward Neural Networks, Residual Networks, solutions of convex

optimization problems,...

- Block oriented models
- Wiener-Hammerstein, Hammerstein-Wiener,...
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Direct Parameterization for Contraction

◮ Convex contraction condition

∆T
+P∆+ −∆TP∆

󰁿 󰁾󰁽 󰂀
Metric decrease

− 2∆T
+(E∆+ − F∆− B̃∆w)󰁿 󰁾󰁽 󰂀
=0 due to linear block

+ 2∆T
w(C̃∆+ D̃11∆w − Λ∆w)󰁿 󰁾󰁽 󰂀
≥0 due to sector condition

≤ −󰂃|∆|2

◮ This can be written as an LMI in terms of model parameters:

H =

󰀵

󰀷
(E + ET − P ) −F −B̃

−F T P −C̃T

−B̃T −C̃ (2Λ− D̃11 − D̃T
11)

󰀶

󰀸 ≻ 0.

◮ Lower-right term: well-posedness of the equilibrium network
◮ Can be interpreted as contraction of “fast” dynamics

◮ Direct parameterization: via H = PP T + 󰂃I



Lipschitz Bounds and Dissipation

◮ The same idea can be used to guarantee model robustness

∞󰁛

t=0

|yat − ybt |2 ≤ γ

∞󰁛

t=0

|uat − ubt |2

Here γ is a Lipschitz bound (a.k.a. incremental ℓ2 gain)

◮ Verified via the dissipation inequality

∆T
+P∆+ −∆TP∆ ≤ γ|∆u|2 − |∆y|2

where ∆u = uat − ubt and ∆y = yat − ybt .

◮ More generally:incremental dissipativity

󰁛

t

󰀗
∆u

∆y

󰀘T 󰀗
Q S
ST R

󰀘 󰀗
∆u

∆y

󰀘
≥ 0

◮ Includes incremental gain (aka Lipschitz), incremental
passivity (aka monotonicity), more general IQC



Applications



Nonlinear Observer Design

◮ Given a nonlinear system of the form

xt+1 = fm(xt, ut), yt = gm(xt, ut)

A standard structure is an observer of the form

x̂t+1 = fm(x̂t, ut) + l(x̂t, ut, yt)

◮ Includes EKF and many other designs as special cases.

◮ How to design l for global stability and good statistical
properties performance?

◮ Generally difficult and problem dependent



Contracting Observers: a New Paradigm

Theorem

Given a nonlinear system:

xt+1 = fm(xt, ut), yt = gm(xt, ut)

Construct an observer of the form

x̂t+1 = fo(x̂t, ut, yt) (4)

such that:

1. The system (4) is contracting

2. The following “correctness” condition holds for all x, u:

fm(x, u) = fo(x, u, gm(x, u))

i.e. solutions of the true system are solutions of the observer

Then x̂t → xt as t → ∞.



Reaction Diffusion PDE

Nonlinear Unstable PDE: ∂tξ = ∂zzξ +
1
2ξ(1− ξ)(ξ − 1

2)
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Youla-REN: Direct Adaptive Control?

◮ Uncertain linear model parameterized by ρ in bounded range.

◮ 󰀂G(ρ)−G(ρ̂)󰀂∞ < α

◮ Qθ: contracting nonlinear REN with Lipschitz bound 1/α.

◮ Train with randomized ρ

−

Qθ

x̃v

G(ρ)
z

x

w

G( ̂ρ)
̂x

0

GΔ



Youla-REN: Direct Adaptive Control?
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◮ Youla REN “adapts”: without knowing ρ, performs almost as
well as LQR with knowledge of ρ



Summary

We provide direct parameterizations of robust static (DNN,
CNN) and dynamic (REN) models.

Direct parameterization:easily imple-
mentable with ML tools (pytorch, etc)
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uy
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Incremental IQC compatible with non-
linear & robust stability theory.
Applications in SysID, observers, con-
trollers...

Plenty more to be explored...
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