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contractivity = robust computationally-friendly stability
fixed point theory + Lyapunov stability theory + geometry of metric spaces J

highly-ordered transient and asymptotic behavior:

@ unique globally exponential stable equilibrium
& two natural Lyapunov functions

@ robustness properties
bounded input, bounded output (iss)
finite input-state gain
robustness margin wrt unmodeled dynamics
robustness margin wrt delayed dynamics

>

search for contraction properties
design  engineering systems to be contracting J
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Contraction Theory
for Dynamical Systems

Francesco Bullo

F Bullo (UCSB)

Contraction Theory for Dynamical Systems, Francesco Bullo,
KDP, 1.1 edition, 2023, ISBN 979-8836646806

Q@ Textbook with exercises and answers. Format: textbook, slides,
and paperbook
@ Content:
Fixed point theory
Theory of contracting dynamics on vector spaces
Applications to nonlinear and interconnected systems

© Self-Published and Print-on-Demand at:
https://www.amazon.com/dp/B0B4K1BTF4

© PDF Freely available at
http://motion.me.ucsb.edu/book-ctds

@ 10h minicourse on youtube:
https://youtu.be/RvR47Zbqljc

@ Future version to include: systems on Riemannian manifolds,
homogeneous spaces, and solid cones

" Continuous improvement is better than delayed perfection”
Mark Twain
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© A brief review of contractivity concepts
@ From discrete-time to continuous-time dynamics
@ Table of infinitesimal contractivity conditions
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Linear algebra: induced norms

Vector norm Induced matrix norm
Induced matrix log norm
n n
Iell = Zi:l i 4l = J'Ef[rll,ajfn} Zi:l |aij| 1n(A) = max (0 ij Zn la; ‘)
a j&{l.(...m} 2 i=1,i#j Y
= max column “absolute sum” of A
n
lellz = /3" 2 Al =y Anax(ATA) A AT
/‘2<4> - Amax(T)
n
[#llc = max |z;]  [|Allc = max ||
i€{L,...,n} i€{l,..,n} —5=1 (A) = ax ( ; " i )
bool ) = (0 Dy 10

= max row “absolute sum" of A
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Discrete-time dynamics and Lipschitz constants

Zp+1 = F(zg) on R™ with norm || - || and induced norm || - ||

Lipschitz constant

Lip(F) = inf{¢ > 0 such that ||[F(z) — F(y)| < {||lx —y| for all z,y}
= sup, [[Jr(z)||

For scalar map f, Lip(f) = sup, |f'(z)]
For affine map F4(z) = Az +a

|z2,p = (" Pz)"/? Lipy p(Fa) = [Allop < ¢ <=  ATPA=(*P
1zlloo,n = maxfa;|/n: Loy (Fa) = [Allocn <€ = n'|A|<fn'
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Banach contraction theorem for discrete-time dynamics:
If p:= Lip(F) < 1, then
@ F is contracting = distance between trajectories decreases exp fast (o)

@ F has a unique, glob exp stable equilibrium z*
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From discrete to continuous time

The induced log norm of A € R™*™ wrt to || - ||:

. |Hn+RA| -1
A):=lim ————
= )
subadditivity: u(A+ B) < u(A) + pu(B)
scaling: wu(bA) = bu(A), Vb >0
A € spec(A) \\‘ \\\\ A € spec(A) i i
X X o) . X a(4)
e % % *—i
X x I/\/,AH . X u(lA)
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Example induced log norms

Vector norm

Induced matrix norm

Induced matrix log norm

n
|Wh:§;ﬂﬂﬂ
n
— 2
lzllz = />, 3

[0 =

i€{l,...,n}

max |z

n
Al = S g
Al = max > las]

||A||2 = /\maX(ATA)

n
Alloo = ma Z ai;
[ Allo ie{l,.fn} =1 |as;]

n
= (o4 3, )

je{l,...n}
= max column “absolute sum” of A
A+ AT
/J/Q(A) = Amax(T)

n
HoolA) = max (a” DL |)
= max row “absolute sum" of A
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Continuous-time dynamics and one-sided Lipschitz constants

& = F(z) on R™ with norm || - || and induced log norm p(+)

One-sided Lipschitz constant

osLip(F) = inf{b € R such that (F(z) — F(y),z —y)) < bllz —y|*> for all z,y}
= sup, 4 (JrF(z))

For scalar map f, osLip(f) = sup, f'(z)
For affine map F4(z) = Az + a
= AP+ AP = 20P

= aii + Y lagmi/n < ¢
i#i

osLipy p(Fa) = po,p(4) <
OSLipoo,n(FA) = ;U’OO,W(A) <
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Banach contraction theorem for continuous-time dynamics:
If —c := osLip(F) < 0, then
@ F is infinitesimally contracting = distance between trajectories decreases exp fast (e ™)

@ F has a unique, glob exp stable equilibrium z*

ct
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Log norm Demidovich One-sided Lipschitz
bounds conditions conditions

pz,p(J(2)) < —¢ PJp(x) + Je(x) TP < —2¢P (@ —y)TP(F(z) — F(y)) < —clz =yl

mUe(@) < —c sign(v) Je(@)v < —cllvl sign(z —y) " (F(z) - F(y)) < —cllz =yl
poo(JF(@) < ¢ max v (Jp(x)v); < —cloll,  max (zi—yi)(Fi(z)~Fi(y) < —cllz—yll3
€A (V) 1€ Ao (z—Y)
Each row = three equivalent statements. To be understood for all ,y € R™ and all v € R™.
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© Semicontractivity, ergodic coefficients, and duality
@ Systems with invariance/conservation properties
@ Induced seminorms and duality
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Consider a vector field F : R — R", and let £, € R™.

@ Invariance property: for all z,y € R” and o € R,
F(x + af) = F(z) or equivalently
o Conservation property: for all x,y € R™,

n F(z) =n"F(y) or equivalently

F Bullo (UCSB) Ergodicity and Equilibrium Tracking

DF(z)¢ =0,
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Prototypical dynamics — extensively studied by Fabio and Sandro

Let A € R"*" be row-stochastic: A1,, =1,, and A >0

Averaging Systems

Tpy1 = Axy

Dynamical Flow Systems

.
Tpy1 = A T

Invariance: dynamics unaffected by Conservation: quantity 1!z is constant

translations in span{1,}

Examples: compartmental models, Markov

Examples: distributed optimization, chains

robotic coordination, frequency
synchronization, ...

F Bullo (UCSB)
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Historical starting point

Given row-stochastic A € R"*™,
Markov-Dobrushin ergodic coefficient

71(A) = max ||ATz||1
HZ”l:l’lIz:O

71(A) < 1 under mild connectivity conditions
75(A) also defined for general p € [1, o0]

How is 7; an induced norm?

A. A. Markov. Extensions of the law of large numbers to dependent quantities. /zvestiya Fiziko-matematicheskogo obschestva pri Kazanskom

universitete, 15, 1906. (in Russian)
R. L. Dobrushin. Central limit theorem for nonstationary Markov chains. |. Theory of Probability & Its Applications, 1(1):65-80, 1956. 4
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http://dx.doi.org/10.1137/1101006

A € R™*"™ row-stochastic

Classical Property of Averaging Systems  x;; = Axy
Given € R"®, max-min disagreement:

s(Az) < 71(A) s(x), where s(z) = mzax{mi} — mjin{:cj}

Classical Property of Markov Chains  zj.; = A"z,
Given 7,0 in the simplex A,,, total variation distance:

drv(ATm, ATo) < ni(4) dry(m o),  where dry(m,0) =3 |mi—o;

Why is the same 77 relevant in both cases?

F Bullo (UCSB) Ergodicity and Equilibrium Tracking 21 /51



Seminorms

A seminorm is a function || - || : R® — R>p s.t., Va € R and Vz,y € R™
O (homogeneity): [|ax| = |a ||
@ (subadditivity): ||z + ylll < [l=[l + [lyl

The kernel is the vector space:
K={zeR":|z]| =0}

We focus on consensus seminorms, where K = span{1,}.

Note: || - || is invariant under translations in K

F Bullo (UCSB) Ergodicity and Equilibrium Tracking



Projection and distance-based seminorms: graphical definitions

Projection seminorms

A

Distance seminorms

4

llllprojp = ML ||, I = 1]

F Bullo (UCSB)
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Consensus seminorms

When K = span{1,}, consensus seminorms

|||33”|pr0j,p |||x|||dist,p
n 5] n
h Dl = avgl PIECED DR
i=1 i=1 J=I21+1
lo \/% Z”(xz —z;)? \/% Z”(xz —xj)?

lo

where we have sorted z(1) > @) > -+~

F Bullo (UCSB)
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p=1 p=2

2 El 0 1 2 2 E] 0 1 2

Figure: Two-dimensional sections of three-dimensional unit disks of projection (solid contours) and distance (dashed
contours) consensus seminorms. We plot the sections corresponding to (z1,z2,z3 = 0).
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Induced matrix seminorms

Consider a seminorm || - || on R™ with kernel .
Induced matrix seminorm: function || - ||| : R**™ — R>g where
Al = max [[Az]l, VAR
lzll<1
1K

Inequality is true if z € K+ or AK C K

AN In general, [|Az]] £ |4l J

F Bullo (UCSB) Ergodicity and Equilibrium Tracking



Key facts about dual and induced norms

Properties of dual and induced norms
© /, and /;, norms are dual, for 1/p+1/g=1

-l = (- o). -llg = (- llp).

@ dual norm satisfies (sharp) Holder inequality:  x'y < |lz|l, |lyllq
@ equality between dual induced norms:  ||All, = [|AT |,

Q induced norm is submultiplicative: || AB| < ||A]|||B]|

F Bullo (UCSB) Ergodicity and Equilibrium Tracking



Key facts about dual and induced seminorms

Properties of dual and induced seminorms

@ /,-distance and /,-projection seminorms are dual, for 1/p+1/g=1

- Maisep = (- lprosa) - Moros.g = (Il - st )

@ dual seminorm satisfies (sharp) Markov inequality: x' Tl y < ||2|laist.p l|¥lllproj.q
@ equality between dual induced seminorms: || Alllaistp = 1A lproj.q

Q induced seminorm is submultiplicative:  [|AB]| < [|A||||B]| if AK C K or BET C KT

v

Ergodic coefficients are induced seminorms

1A aist. = 1A Hprojq = 7(A) :=

— max ATz,
lzllg=1, zL1n

F Bullo (UCSB) Ergodicity and Equilibrium Tracking



How Markov and Banach's results meet

Classical Property of Averaging Systems
Given row-stochastic A € R™*" and z,y € R™

Az = Y)lldist.co < 71 (A2 = Ylldist, 00

= 1Al dist o0 1% = ¥l

Classical Property of Markov Chains
Given row-stochastic A € R™*™ and , o in the simplex A,:

-
A" (m = )llprojr < (AT = lllproj,1

= |HAT|Hproj,1m7T - O-mproj,l

F Bullo (UCSB) Ergodicity and Equilibrium Tracking



Summary and future work

@ ergodic coefficients are contraction factors
@ duality explains their roles in both averaging and flow systems
© nonEuclidean norms play a key role

@ semicontraction theory

@ discrete/continuous-time Markov chains
@ discrete/continuous-time nonlinear consensus algorithms
@ local contractivity of Kuramoto and Kuramoto-Sakaguchi models

consider the set of undirected, unweighted connected graphs + selfloops

for each adjacency A;, define row-stochastic A; = diag(A4;1,) 1 4; (equal neighbor)
find a consensus seminorm || - ||| such that, for each 1,
Al <1

or prove that it does not exist

F Bullo (UCSB) Ergodicity and Equilibrium Tracking



Continuous-time semicontraction theory

The induced log seminorm of A € R™*"™ is

M+ RAJ -1
pg(A) = lim

Laplacian L, corresponding to weighted digraph with adj. matrix A:

[31-1 n—1
fidist,1 (—L) = —min (out)j = > @i+ O @y s dous = Aly
P =21

[idist,c0(—L) = —1};51 aij + agi + Z min{ag, ajk
k#i,5

Let p,q € [1,00] such that p~! + ¢! = 1. For any matrix M € R™ ", and any kernel K,

,udist,p(M) = Hproj,q (MT)

|
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0 Application to time-varying convex optimization via contracting dynamics
@ Examples
@ Convexity and contractivity
@ Tracking equilibrium trajectories

F Bullo (UCSB) Ergodicity and Equilibrium Tracking



Solving optimization problems via dynamical systems

()

’—(> @ = Optimizer(t, u,y) —u>{ (SEJEZE) Y.

studies in linear and nonlinear programming (Arrow, Hurwicz, and Uzawa 1958)
neural networks (Hopfield and Tank 1985) and analog circuits (Kennedy and Chua 1988)
optimization on manifolds (Brockett 1991)

power grids (Bolognani, Carli, Cavraro, Zampieri 2013)

online and dynamic feedback optimization (Dall'Anese, Dorfler, Simonetto, .. .)

F Bullo (UCSB) Ergodicity and Equilibrium Tracking



Example #1: Gradient flow for strongly convex function

Given strongly convex f : R™ — R with parameter p, gradient dynamics

&= fo(z) := =V f(x)

fc is infinitesimally contracting wrt || - |2 with rate p J

If f is twice-differentiable, then Hess f(x) = ul,, for all =

Jvp (@) = —Hess f(2) = —pln
= Lidevp@) + v @) L < —2ul,

F Bullo (UCSB) Ergodicity and Equilibrium Tracking 34 /51



Example #2: Primal-dual gradient dynamics

strongly convex function f s.it. 0 < pmindn = Hess f < pimaxIn
constraint matrix A sit. 0 =< amindm < AAT < amaxIm
min T
min  f(z)
st. Ax=1b

primal-dual gradient dynamics:

[ﬂ = froe(z, ) == [—V];(é)_—bAT/\}

fepg is infinitesimally contracting wrt weighted | - ||, p1/> with rate c

! 1 1 i 5 i i
Pz[I” i ],az—min{ an}7 and c:—min{amn,amnumin}

aA I 3 ,umax? Amax 18 Mmax  @max
—Q —-AT1" —Q —AT
For each :u'min[n = Q = ,Umax[n,y |: %iz 0 :| P+P |: A(2 0 :| =< —2cP
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Example #3: Time-varying optimization algorithms
w(t)

Y — Optimi u Plant y
|—> @ = Optimizer(t,u,y) | b o >
optimization via dynamical systems
online time-varying optimization, optimization-based feedback control, ... J

min  cost;(u) + costa(y) @ = Optimizer(t,u,y)
st.  y = Plant(u,w(t)) y = Plant(u, w(t))

F Bullo (UCSB) Ergodicity and Equilibrium Tracking



Convexity and contractivity

Kachurovskii’'s Theorem: For differentiable f : R™ — R, equivalent statements:

@ f is strongly convex with parameter m
@ —Vf is (strongly) infinitesimally contracting with respect to || - ||2 with rate m
Also: global minimum of f = globally-exponentially stable equilibrium of —V f

For map F : R — R"™, equivalent statements:

© F is a monotone operator (or a coercive operator) with parameter m,

@ —F is infinitesimally contracting with rate m

R. 1. Kachurovskii. Monotone operators and convex functionals. Uspekhi Matematicheskikh Nauk, 15(4):213-215, 1960
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From convex optimization to contracting dynamics — time-varying

Many convex optimization problems can be solved with contracting dynamics

= F(z,0)

Convex Optimization

Contracting Dynamics

Unconstrained miRn f(z,0) &= —-V,f(z,0)

TER™
min  f(x,0)

Constrained | z€R" & = —x + Projy(g)(x — vV f(z,0))
st. zeX()

Composite m}qn f(z,0) +g(x,0) | & = —x+prox, , (v — ¥V f(x,0))
rER™
min  f(z,0) P = —Vf(x,0)— ATX

Equality zER™ v f(@,0) ’

st. Az =b(0) A=Az —b(0)
min  f(z,0) i = —Vf(z,0) — ATVM, ) (Az + 7\

Inequality zeR™ l’ f($7 ) 'y,b(9)( 1"—{_7 )7
st. Az < b(d) A= 9(=A+ VM, 5 (Az +yN))

F Bullo (UCSB)
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Tracking equilibrium trajectories

For parameter-dependent vector field F : R” x R? — R™ and differentiable § : R>o — R?

Assume there exist norms || - ||x and || - || s.t.
e contractivity wrt z: osLip,(F) < —¢ <0, uniformly in w
e Lipschitz wrt u: Lip,,(F) <, uniformly in x

Theorem: Incremental ISS any two soltns: z(t) with input u, and y(t) with input w,

Dfllz(t) —y(@®)llx < —clla(®) —y@®llx + Llua(t) —uy(t)lle )

Ergodicity and Equilibrium Tracking
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Tracking equilibrium trajectories

For parameter-dependent vector field F : R” x R — R™ and differentiable 6 : R>o — R4

Assume there exist norms || - ||x and || - || s.t.
osLip,(F) < —¢ <0, uniformly in u

Lip,(F) <, uniformly in x

@ contractivity wrt z:

o Lipschitz wrt u:

Theorem: Equilibrium tracking for contracting dynamics

© for each fixed 6, there exists a unique equilbrium x*(6)

@ the equilibrium map z*(-) is Lipschitz with constant -
C

© DF|lz(t)—2*(0(t)llx < —cllz)—2"(O®))lx + éllé(t)lle

Ergodicity and Equilibrium Tracking
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Consequences for tracking error

DF|lz(t)—z*(0(t)llx < —clla(t)—2*(0@)]x + gHé(t)He

bounded input, bounded error
with asymptotic bound:

: l . ;
benpla) — e @l = 5 Boem(Re)]
—00

t—o00

bounded energy input, bounded energy error
vanishing input, vanishing error

exponentially vanishing input, exponentially vanishing error

periodic input, periodic error

F Bullo (UCSB) Ergodicity and Equilibrium Tracking



Numerical simulations

1 ) 1 )

min  —|lz—7r(¢ min —|lz+r(t

min Sl (03 min e+ ()3

sit.  x1 + 229 + x3 = sin(wt), sit.  —x1 + 29 < cos(wt),
r(t) = (sin(wt), cos(wt), 1),w = 0.2 r(t) = (sin(wt), cos(wt)),w = 0.2
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Proof sketch for equilibrium tracking

Given & = F(z,0(t)) with osLip,(F) < —c and Lip,(F) < ¢
Task: compare trajectory z(t) with equilibrium trajectory 2*(0(t))

Consider auxiliary dynamics with two trajectories:

z=F(z,0()+v(t) = Faux(z,0,v)
Quv=0 = trajectory z(t)
Q v=1%(6(t)) = equilibrium trajectory z*(6(t))

Faux is contracting with osLip, (Fa.x) < —c and Lip,(Faux) =1.  Hence, ilSS:

DT ||z (t)—2*(0(t))l|x

IN

—c - |lz(&)—z*(0@)|lx + 1-]0—3*01))|x
—c - |lz(t)—2*(0(t))||x + £-||é(t)||@ (since Lip(x*):é)

IN

F Bullo (UCSB) Ergodicity and Equilibrium Tracking




Summary and future work

Summary:
© from convex optimization to contracting dynamics
@ tracking-bounds for time-varying contracting systems

© applications to standard convex optimization problems

Ongoing work and open problems:
© contracting predictor-corrector methods
@ tracking bounds in time-varying norms

© convex but not strongly convex problems
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© Introduction

© A brief review of contractivity concepts
@ From discrete-time to continuous-time dynamics
@ Table of infinitesimal contractivity conditions

© Semicontractivity, ergodic coefficients, and duality
@ Systems with invariance/conservation properties
@ Induced seminorms and duality

0 Application to time-varying convex optimization via contracting dynamics
@ Examples
@ Convexity and contractivity
@ Tracking equilibrium trajectories

© Conclusions and future research
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Robust and computationally-friendly stability theory

@ contractivity conditions on normed vector spaces
@ application to recurrent and implicit neural networks
© application to time-varying convex optimization

'

Lyapunov Theory Contraction Theory for Dynamical Systems

F admits global Lyapunov function F is strongly contracting
existence of equilibrium | assumed implied 4+ computational methods
Lyapunov function arbitrary |z — 2*| and ||F(z)]]
inputs ISS via K and KL functions iISS via explicit formulas

v
search for contraction properties
design  engineering systems to be contracting J
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Supplementary slides
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Convexity and contractivity

Kachurovskii’s Theorem: For differentiable f : R — R, equivalent statements:

© [ is strongly convex with parameter m
@ —Vf is (strongly) infinitesimally contracting with respect to | - |2 with rate m
Also: global minimum of f = globally-exponentially stable equilibrium of —V f

For strongly convex f, provides natural way to solve minimization with dynamical system

@ The minimization problem
min f(z)

@ strongly infinitesimally contracting dynamics

&= V() )

How about more general minimization problems like min,crn f(z) + g(z)?

R. I. Kachurovskii. Monotone operators and convex functionals. Uspekhi Matematicheskikh Nauk, 15(4):213-215, 1960
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Composite minimization and proximal gradient

For strongly convex + strongly smooth f, convex, closed, proper g : R® — R,

x* = argmin f(x) + g(z) = x* = prox. (2% — vV f(z))
rER™

. 1 2
prox.,(z) = argming(z) + — ||z — 2||3-
1o(2) = argming(a) + 5o =3
Transcription from

© The minimization problem

min f(z) + g(z)

@ to strongly infinitesimally contracting proximal gradient dynamics

i = —x + prox,,(z — vV f(z))
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Contractivity of proximal gradient

&= —x + prox,,(z — vV f(z))

Contractivity properties

Q For v €]0,2/¢], prox. gradient is contracting w.r.t. || - ||2 with rate

¢ =1 — max{|L — yml, |1 - v£[}

2
Optimal v* = ——
Py = e
1
Q For f(z) = éxTAa? +b'x, A= 0, and v € |1/ Amin(A), +00]
proximal gradient is contracting w.r.t. || - ||(ya—y,) with rate c =1
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