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Lur’e, Barbashin, Persidskii, Kalman, Rosenwasser, Yakubovich, Popov, Narendra,...

Y
Viz)=z'Hz +/ p(s)ds (optional)
0

v Lyapunov condition V < 0: quadratic constraints + S-Lemma
v Existence of the LF (stability): frequency-domain via KYP lemma or (now) SDP.
v Also: contractivity, output stability, instability, oscillations, ....

« Operator methods, functional spaces, integral quadratic constraints

Popov, Desoer, Vidyasagar, Yakubovich, Zames, Falb, Rasvan, Megretskii, Rantzer,...
v General Volterra equations (also, infinite-dimensional)
v Stability in integral L2 norm, little information about transient process
v Conditions in frequency domain: hard to verify in MIMO case
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Yakubovich S-Lemma (informal):
In reality, we do not lose anything
(“S-procedure is lossless”)

Mathematically: (?) holds for all
variables Aw € R, Az € R”

if and only if T = 0 exists.

Viladimir Andreevich

Yakubovich
1926-2012
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Yak ' -L ] : . .« .. .
akubovich 5-Lemma (informal) S-procedure: implication ? holds if
In reality, we do not lose anything
(“S-procedure is lossless”) Q(Ax) | H(AAm € BAw) 4 ngHg
—1
. < 7Aw(x "Aw — CAx
Mathematically: (?) holds for all = < )
variables Aw € R, Az € R” for some t = 0 and all variables
—— .:‘andonlylfrzaemsts. Aw € R, Ax € R™.
adimir Andreevic .
Yakubovich tisanLMlon H >0,7>0
1926-2012
Simple (if) part can be extended to “pseudo-quadratic mappings”, LMl is
replaced by some log-norm inequality.
Hard (only if) part can be proved in some situations, see journal version
Lyapunov condition for contractivity: how to get it? Slope inequality!

. , ? Aw( TAw — Ay) <0,
V+5HA;UH2§O CEE——— Ay = C Az
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Norms, log-norms, “weak pairing”: table for IIO norms

Norm Weak pairing Log norms and Lumer’s equality

po(A) = FAmax (A + A")

-
ol = VaTz [ l, =Ty a7 Ar
|z|l2=1
1/p
T, = p) , — |
| ”p (Z |z, | - [[1 . y]]p ,U'p(A) = max (x o |;1?|P—2)TA$
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TABLE 1

Table of norms, weak pairings, and log norms for €a, £, forp € (1,00), €1, and £ norms. We
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Table of norms, weak pairings, and log norms for €o, £, for p € (1,00), €1, and £ norms. We

adopt the shorthand I (x) = {2 € {1,....n} | |zi;| = ||z| e }-

Easy to find: p=1,2, oo
Quite difficult to find for a general
p, nhon-convex mathematical

programming.

Operator p-norm computation is
known to be NP hard.

Most probably, also log-norm.
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2
Px,z| <0 —— Qx,z] <0

Lemma. Let the WP [, ] and the log-norm u correspond to the same vector norm H , H :

The implication (?) is valid for each vector x if a parameter t = 0 exists such that ,u(P — TQ) < 0.

Proof: Without loss of generality (since both inequalities are homogeneous), ||z|| = 1.

Px, x| < |Pr—7Qux, x|+ |7Qx, x| < u(P—71Q)+7|Qx, x| < 7|Qx, x|.
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Suppose that one wishes to prove the following implication for the standard inner-product:

?
v Pr =[Pz, 1] <) (— r Qr=|Qr,x| <0

Lemma. Let the WP [, ] and the log-norm u correspond to the same vector norm H , H :

The implication (?) is valid for each vector x if a parameter t = 0 exists such that

How does this condition look like in a simpler form?

ua(P=1Q) =3 [(P+ PT) ~ Q@+ Q)] <0

Yakubovich S-lemma: the only if statement holds provided that for at least one vector :COTQ:E() < 0.
This does not hold for the general norm (counter-examples available in the journal version).



Final remarks about non-quadratic S-lemma

v Pr=[Pr,z] <0 (—i'Qr=Qz, x]<0

 S-lemma in the general case reduces to optimization problem (the implication holds if inf <= 0)
e The problem is convex

« The oracle computing the function (and gradient, if needed) is of high complexity, except for
special norms,e.g. /, , L, I, .

« Leads to new absolute stability and absolute contraction criteria in non-Euclidean norms.
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S-procedure for absolute contractivity: non-Euclidean norm case

W

It remains to apply S-lemmal

V< —cHAme

<

(

A+cl B
0 0

©(t) = Ax(t) + Bw(t), Y
t) = Cx(t
y(t) = Cx(t) Program: repeat the trick with S-lemma.
« Write the slope restriction as a “pseudo-
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S-procedure for absolute contractivity: main result
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Remarks:

For a fixed weight matrix, the condition is
convex (as usual in S-lemma).
Non-convex with respect to the weights!

But, there are situation where the problem
reduces to quasi-convex optimization
(Davydov et al., arXiv:2110.08298)

p=1 or o= + diagonal weight matrix R

p=2: classical LMIs from absolute stability
theory (see the journal text).

Example in the paper: for positive linear
part systems, contraction holds if and only
if the matrix is Hurwitz A + »»B(

Strong version of Kalman conjecture for
positive systems: stability under all linear
feedbacks implies contractivity of all
nonlinear systems with slope restriction.
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Abstract. The celebrated S-Lemma was originally proposed to ensure the existence of a qua-
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1. Introduction. The history of the S-Lemma dates back to early works on
stability of nonlinear control systems with partially uncertain dynamics [2, 41]. In
many situations, such a system may be represented in the Lur’e form, that is, as a
feedback superposition of two blocks as shown in Fig. 1. One block is a known linear
time-invariant system, whereas the other block may be nonlinear (and is traditionally
referred to as the “nonlinearity”) and uncertain or have no simple analytic represen-
tation as exemplified by neural network architectures [28] and lookup-table functions.
A prototypical assumption on the uncertain block is that its input/output behavior
satisfies some rough estimates. In the case of a static nonlinearity, such an estimate
often takes the form of the sector condition

w(t)

(1.1) a; < —= <o <= (y(t) — aq 'w(t))(y(t) — og w(t)) <0,
y(1)

where —o00 < a3 < as < 4o00. The classical Lur’e problem [38, 41] was to find
conditions on the coefficients of the known LTI block and the sector slopes {a1, s}
that ensure global asymptotic stability of the closed-loop system for all nonlinearities
in the sector. Later the term absolute stability has been coined for such problems; the
term “absolute” emphasizes the applicability of the stability criteria to all unknown
systems whose “nonlinear” parts belong to a certain class.

Historically, the first approach to absolute stability theory [7, 41] was based on
quadratic Lyapunov functions and their extensions (e.g., a quadratic form plus a
definite integral of the nonlinearity). The validation of the Lyapunov property (the
Lyapunov function’s derivative along each trajectory is non-positive) leads to the
following problem: When is one quadratic inequality (the Lyapunov condition) implied
by another quadratic inequality (the sector condition)? More generally, when is a

More general form of the S-Lemma, conic
log-norms, criteria for global stability
(sector constraint instead of slope one)
some examples (including the Kalman
conjecture for positive system)
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| consider this paper as work-in-progress

THINGS TO DO:

Efficient computational algorithms:

how to validate log-norm criteria?
Applications to robust certificates in neural
networks, resilience to adversarial attacks.

Complicated nonlinearities:

NNs, dynamical blocks, optimization solvers (control
allocation logic, MPC etc.)

Does non-quadratic norms work better?

Can we outperform classical stability criteria?
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