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• Operator methods, functional spaces, integral quadratic constraints

	   Popov, Desoer, Vidyasagar, Yakubovich, Zames, Falb, Rasvan, Megretskii, Rantzer,… 

✓ General Volterra equations (also, infinite-dimensional)

✓ Stability in integral L2 norm, little information about transient process

✓ Conditions in frequency domain: hard to verify in MIMO case
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Lyapunov condition for contractivity: how to get it? Slope inequality!

?

S-procedure: implication ? holds if

for some τ ≥ 0 and all variables

It is an LMI on

Yakubovich S-Lemma (informal):

In reality, we do not lose anything

(“S-procedure is lossless”)


Mathematically: (?) holds for all 
variables 

if and only if τ ≥ 0 exists.

Vladimir Andreevich 
Yakubovich

1926-2012

Simple (if) part can be extended to “pseudo-quadratic mappings”, LMI is 
replaced by some log-norm inequality.


Hard (only if) part can be proved in some situations, see journal version
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Norms, log-norms, “weak pairing”: table for lp norms

Easy to find: p=1,2, ∞


Quite difficult to find for a general 
p, non-convex mathematical 
programming.


Operator p-norm computation is 
known to be NP hard.


Most probably, also log-norm.
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?

Lemma. Let the WP [ , ] and the log-norm µ correspond to the same vector norm          .


The implication (?) is valid for each vector x if a parameter τ ≥ 0 exists such that

Proof: Without loss of generality (since both inequalities are homogeneous), 
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Quadratic case S-Lemma: when the norm is usual l2
Suppose that one wishes to prove the following implication for the standard inner-product:

?

Lemma. Let the WP [ , ] and the log-norm µ correspond to the same vector norm          .


The implication (?) is valid for each vector x if a parameter τ ≥ 0 exists such that

How does this condition look like in a simpler form?

Yakubovich S-lemma: the only if statement holds provided that for at least one vector

This does not hold for the general norm (counter-examples available in the journal version).
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Theorem. The system is contractive 

with respect to the (non-Euclidean) norm 


and rate c if τ ≥ 0 exists such that


Remarks: 

• For a fixed weight matrix, the condition is 

convex (as usual in S-lemma).

• Non-convex with respect to the weights!


• But, there are situation where the problem 
reduces to quasi-convex optimization 
(Davydov et al., arXiv:2110.08298)


	 p=1 or ∞ + diagonal weight matrix R 

• p=2: classical LMIs from absolute stability 

theory (see the journal text).


• Example in the paper: for positive linear 
part systems, contraction holds if and only 
if the matrix is Hurwitz


	 	 

Strong version of Kalman conjecture for 
positive systems: stability under all linear 
feedbacks implies contractivity of all 
nonlinear systems with slope restriction.
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Journal Paper Upcoming 


(accepted by SICON, out in 2-3 months) :
Arxiv: 2207.14579

I consider this paper as work-in-progress

THINGS TO DO:


• Efficient computational algorithms: 

	  how to validate log-norm criteria?

• Applications to robust certificates in neural 

networks, resilience to adversarial attacks.


• Complicated nonlinearities: 

	  NNs, dynamical blocks, optimization solvers (control  
	  allocation logic, MPC etc.)

• Does non-quadratic norms work better?

	  Can we outperform classical stability criteria?


More general form of the S-Lemma, conic 
log-norms, criteria for global stability 

(sector constraint instead of slope one) 
some examples (including the Kalman 

conjecture for positive system)
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