Contraction of Continuous-Time Proximal Gradient Dynamics

> Alexander (Sasha) Davydov
> Center for Control,
> Dynamical Systems \& Computation University of California at Santa Barbara davydovalexander.github.io

ACC Workshop: Contraction Theory for Systems, Control, and Learning San Diego, CA, May 30, 2023

Acknowledgments

Veronica Centorrino Scuola Sup Meridionale

Giovanni Russo
Univ Salerno

Anand Gokhale UCSB

Francesco Bullo UCSB
A. Davydov, V. Centorrino, A. Gokhale, G. Russo, F. Bullo. Contracting Dynamics for Time-Varying Convex Optimization. arXiv, May 2023, https://arxiv.org/abs/2305.15595.

Convexity and contractivity

Kachurovskii's Theorem: For differentiable $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$, equivalent statements:
(1) f is strongly convex with parameter m
(2) $-\nabla f$ is (strongly) infinitesimally contracting with respect to $\|\cdot\|_{2}$ with rate m

Also: global minimum of $f=$ globally-exponentially stable equilibrium of $-\nabla f$

For strongly convex f, provides natural way to solve minimization with dynamical system
(1) The minimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)
$$

(2) strongly infinitesimally contracting dynamics

$$
\dot{x}=-\nabla f(x)
$$

How about more general minimization problems like $\min _{x \in \mathbb{R}^{n}} f(x)+g(x)$?

For strongly convex + strongly smooth f, convex, closed, proper $g: \mathbb{R}^{n} \rightarrow \overline{\mathbb{R}}$,

$$
\begin{aligned}
x^{\star}=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} f(x)+g(x) \quad & x^{\star}=\operatorname{prox}_{\gamma g}\left(x^{\star}-\gamma \nabla f(x)\right) \\
& \operatorname{prox}_{\gamma g}(z)=\underset{x \in \mathbb{R}^{n}}{\operatorname{argmin}} g(x)+\frac{1}{2 \gamma}\|x-z\|_{2}^{2} .
\end{aligned}
$$

Transcription from
(1) The minimization problem

$$
\min _{x \in \mathbb{R}^{n}} f(x)+g(x)
$$

(2) to strongly infinitesimally contracting proximal gradient dynamics

$$
\dot{x}=-x+\operatorname{prox}_{\gamma g}(x-\gamma \nabla f(x))
$$

$$
\dot{x}=-x+\operatorname{prox}_{\gamma g}(x-\gamma \nabla f(x))
$$

Contractivity properties

(1) For $\gamma \in] 0,2 / \ell\left[\right.$, prox. gradient is contracting w.r.t. $\|\cdot\|_{2}$ with rate

$$
c=1-\max \{|1-\gamma m|,|1-\gamma \ell|\}
$$

Optimal $\gamma^{\star}=\frac{2}{m+\ell}$
(2) For $f(x)=\frac{1}{2} x^{\top} A x+b^{\top} x, A \succ 0$ prox. gradient is contracting w.r.t. $\|\cdot\|_{\left(\gamma A-I_{n}\right)}$ with rate

$$
c=1
$$

for every $\gamma \in] 1 / \lambda_{\text {min }}(A),+\infty[$

Thank you

