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1 Textbook with exercises and answers.

2 Content:
Neural circuit models based on firing rates and Hopfield networks:
dynamics, interconnections, and local Hebbian adaptation rules
Stability in dynamic neural networks using Lyapunov methods,
multistability, and energy functions
Optimization in neural networks through biologically inspired gradient
dynamics and sparse representations.
Unsupervised learning via neural dynamics, linking Hebbian rules to
tasks like PCA, clustering, and similarity-based representation learning.

3 PDF Freely available at:
https://fbullo.github.io/lnd

”Continuous improvement is better than delayed perfection”
Mark Twain
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Outline

§1. Chapter #1: Context and motivation for biologically-plausible neural circuits

§2. Chapter #2: Neural circuits for optimization

§3. Chapter #3: Neural circuits for multiplayer optimization

§4. Conclusion and ongoing research
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Biological networks: function and design (1/3)

Despite incredible achievements, deep learning models remain limited in

interpretability,

computational efficiency, and

biological plausibility.

1 What are possible and optimal ways to process information, given the laws of physics?

2 How has the brain evolved biologically plausible strategies to approach these limits?

3 Can analog, oscillator-based, and neuromorphic computing extend these principles into
new technologies?

4 To what extent do these questions reduce to cost minimization and energy landscapes?
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Biological networks: function and design (2/3)

“The idea that the brain functions so as to minimize certain costs
pervades theoretical neuroscience.”

S. C. Surace, J.-P. Pfister, W. Gerstner, and J. Brea. On the choice of metric in gradient-based theories of brain function. PLOS Compu-
tational Biology , 16(4):e1007640, 2020.

Energy landscape for associative
memory in Hopfield models

S. Betteti, G. Baggio, F. Bullo, and S. Zampieri. Input-driven dy-
namics for robust memory retrieval in Hopfield networks. Science
Advances, 11(17), 2025a.

www.nature.com/scientificreports/

3SCIENTIFIC REPORTS |  (2018) 8:2507  | DOI:10.1038/s41598-018-20123-8

regional activation rate, where each region is taken as an i.i.d Bernoulli variable with the probability given by the 
“regional activation rate” to be active. Our results indicate that the structural connectivity between brain regions, 
and the assumption of energy minimization, together predict that regions that belong to the same cognitive sys-
tem will tend to be co-active with one another during diverse cognitive functions. Indeed, these predictions are 
consistent with previous studies of functional neuroimaging data demonstrating that groups of co-active regions 
tended to align well with known cognitive systems45,46.

Activation Rates of Cognitive Systems. Given the alignment of activation patterns with cognitive sys-
tems, we next asked whether certain cognitive systems were activated more frequently than others. To address 
this question, we studied the activation rate of each cognitive system, which measures how frequently the regions 
in the cognitive system participated in the set of states identified as local minima. Mathematically, the activation 
rate of a cognitive system is equal to the average activation rate of all nodes in the cognitive system. Intuitively, if 
the activation rate is high, the system is more likely to be active in diverse brain states. We observed that systems 
indeed showed significantly different activation rates (Fig. 2D). Sensorimotor systems (auditory, visual, soma-
tosensory) tended to display the lowest activation rates, followed by higher order cognitive systems (salience, 
attention, fronto-parietal, and cingulo-opercular), and subcortical structures. The system with the largest activate 
rate was the default mode system, suggesting that activation of this system is particularly explicable from struc-
tural connectivity and the assumption of energy minimization. The unique role of the default mode system is 
consistent with predictions from network control theory that highlight the optimal placement of default mode 
regions within the network to maximize potential to move the brain into many easily reachable states with min-
imal energetic costs32.

It is important to determine whether this activation rate is driven by simple properties of the structural con-
nectivity matrix that do not depend on assumptions of energy minimization. To address this question, we next 
assessed the relationship between a simple summary statistic of the structural connectivity matrix – the strength, 
or weighted degree, of a brain region – and the predicted activation rate drawn from the maximum entropy 
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Figure 1. Conceptual Schematic. (A) A weighted structural brain network represents the number of white 
matter streamlines connecting brain regions. (B) While neurophysiological dynamics create rich time series of 
continuously-valued activity magnitudes, we study a simplified model in which each brain region is a binary 
object, being either active or inactive. (C) A schematic to provide an intuition regarding the nature of an energy 
landscape for the more general case of continuously-valued brain states. In our particular study, we simplify this 
picture by using a maximum entropy model to infer the landscape of predicted (binary) activity patterns –  
vectors indicating the regions that are active and the regions that are not active – as well as the energy of each 
pattern (or state). We use this mathematical framework to identify and study local minima in the energy 
landscape: states predicted to form the foundational repertoire of brain function.

Energy of neurophysiological activity
S. Gu, M. Cieslak, B. Baird, S. F. Muldoon, S. T. Grafton,
F. Pasqualetti, and D. S. Bassett. The energy landscape of neuro-
physiological activity implicit in brain network structure. Scientific
Reports, 8(1), 2018.
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Recurrent neural networks: function and design (3/3)

Firing-rate network:

ẋ = FFR(x) := −x+Φ(Wx+Bu)

where W is synaptic matrix , Φ is activation function, and u is stimulus

1 What functionality does FFR implement?

2 What energy does FFR minimize?

3 Is there an optimization-based top-down framework for neural circuits?
That is, a framework that derives neural circuits from a mathematical objective?

C. Pehlevan and D. B. Chklovskii. Neuroscience-inspired online unsupervised learning algorithms: Artificial neural networks. IEEE Signal
Processing Magazine, 36(6):88–96, 2019.
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Outline
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Prologue to Chapter #2:
Regularized optimization and proximal gradient descent

Regularized optimization problem

min
x∈Rn

Eregularized(x, u) = f(x, u) + g(x)

nominal cost f(x, u) is well behaved

regularizer g(x) may be poor behaved

f(x) = ‖x‖2
2 g(x) = ‖x‖1 f(x) + g(x) = ‖x‖2

2 + ‖x‖1

9/42

proximal operator for the regularizer g

proxg(x) := argmin
z∈Rn

g(z) +
1

2
∥x− z∥22

· simple regularized problem
· the quadratic term keeps optimal point close to input x
· the prox is a map that turns x into a “g-better” point

|x|
minz |z| + 1

2‖x− z‖2
2

6.9. Summary of Prox Computations 177

6.9 Summary of Prox Computations

f(x) dom(f) proxf (x) Assumptions Reference

1
2xT Ax +

bT x + c

Rn (A + I)−1(x− b) A ∈ Sn
+, b ∈

Rn, c ∈ R
Section 6.2.3

λx3 R+
−1+
√

1+12λ[x]+
6λ λ > 0 Lemma 6.5

µx [0, α] ∩ R min{max{x− µ, 0}, α} µ ∈ R, α ∈
[0,∞]

Example 6.14

λ‖x‖ E
(
1− λ

max{‖x‖,λ}

)
x ‖·‖—Euclidean

norm, λ > 0
Example 6.19

−λ‖x‖ E

(
1 + λ

‖x‖

)
x, x '= 0,

{u : ‖u‖ = λ}, x = 0.
‖·‖—Euclidean
norm, λ > 0

Example 6.21

λ‖x‖1 Rn Tλ(x) = [|x| − λe]+ ( sgn(x) λ > 0 Example 6.8

‖ω ( x‖1 Box[−α, α] Sω,α(x) α ∈ [0,∞]n,
ω ∈ Rn

+

Example 6.23

λ‖x‖∞ Rn x− λPB‖·‖1
[0,1](x/λ) λ > 0 Example 6.48

λ‖x‖a E x− λPB‖·‖a,∗ [0,1](x/λ) ‖x‖a—
arbitrary
norm, λ > 0

Example 6.47

λ‖x‖0 Rn H√
2λ(x1)× · · · × H√

2λ(xn) λ > 0 Example 6.10

λ‖x‖3 E 2

1+
√

1+12λ‖x‖
x ‖·‖—Euclidean

norm, λ > 0,
Example 6.20

−λ
n∑

j=1

log xj Rn
++




xj+

√
x2

j
+4λ

2




n

j=1

λ > 0 Example 6.9

δC(x) E PC(x) ∅ '= C ⊆ E Theorem 6.24

λσC (x) E x− λPC(x/λ) λ > 0, C '= ∅
closed convex

Theorem 6.46

λmax{xi} Rn x− λP∆n (x/λ) λ > 0 Example 6.49

λ
∑k

i=1 x[i] Rn x− λPC(x/λ),
C = He,k ∩ Box[0,e]

λ > 0 Example 6.50

λ
∑k

i=1 |x〈i〉| Rn x− λPC(x/λ),
C = B‖·‖1

[0, k] ∩ Box[−e, e]
λ > 0 Example 6.51

λMµ
f (x) E x +

λ
µ+λ

(
prox(µ+λ)f (x)− x

) λ, µ > 0, f
proper closed
convex

Corollary 6.64

λdC(x) E x +

min
{

λ
dC (x)

, 1
}

(PC(x)− x)

∅ '= C closed
convex, λ > 0

Lemma 6.43

λ
2 d2

C(x) E λ
λ+1 PC(x) + 1

λ+1x ∅ '= C closed
convex, λ > 0

Example 6.65

λHµ(x) E
(
1− λ

max{‖x‖,µ+λ}

)
x λ, µ > 0 Example 6.66

ρ‖x‖21 Rn
(

vixi
vi+2ρ

)n

i=1
, v =

[√
ρ
µ |x| − 2ρ

]
+

,eT v = 1 (0

when x = 0)

ρ > 0 Lemma 6.70

λ‖Ax‖2 Rn x − AT (AAT + α∗I)−1Ax,
α∗ = 0 if ‖v0‖2 ≤ λ; oth-
erwise, ‖vα∗‖2 = λ; vα ≡
(AAT + αI)−1Ax

A ∈ Rm×n

with full row
rank, λ > 0

Lemma 6.68
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A. Beck. First-Order Methods in Optimization.
SIAM, 2017. ISBN 978-1-61197-498-0
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Transcribing regularized optimization into prox gradient descent

min f(x, u)︸ ︷︷ ︸
nominal

+ g(x)︸︷︷︸
regularizer

proximal gradient descent:

ẋ = −x + proxg
(
x−∇xf(x, u)

)
=: FProxG(x, u)

note: energy system, determined by the energies f and g
(just like gradient descent ẋ = −∇xf is determined by the energy f)

S. Hassan-Moghaddam and M. R. Jovanović. Proximal gradient flow and Douglas-Rachford splitting dynamics: Global exponential stability
via integral quadratic constraints. Automatica, 123:109311, 2021.
A. Gokhale, A. Davydov, and F. Bullo. Proximal gradient dynamics: Monotonicity, exponential convergence, and applications. IEEE Control
Systems Letters, 8:2853–2858, 2024.
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End of the prologue:
Result #1: proximal gradient descent = firing rate network

ẋ = FFR(x, u) := −x + Φ (Wx+Bu)

ẋ = FProxG(x, u) := −x + proxg
(
x−∇xf(x, u)

)

If f is quadratic in (x, u) and Φ(x) = proxg(x),
then FProxG = FFR

12/42



Result #2: the Hopfield energy is a regularized energy

The firing rate recurrent neural network

ẋ = FFR(x, u) = −x + Φ(Wx+Bu)

is the proximal gradient descent for Hopfield energy = regularized energy

Eregularized(x, u) = Enetwork(x, u) +
∑n

i=1
Eactivation,i(xi),

network energy captures interaction and effect of stimulus

Enetwork(x, u) = 1
2x

⊤(In −W )x− x⊤Bu

activation energy determines activation function

Φi(y) = proxEactivation,i(y)

S. Betteti, W. Retnaraj, A. Davydov, J. Cortes, and F. Bullo. Competition, stability, and functionality in excitatory-inhibitory neural circuits.
Technical report, 2025c. . arXiv:2512.05252

13/42

g(x) =

{
0 if 0 ≤ x ≤ 1

+∞ otherwise
=⇒ proxg(x) =

<latexit sha1_base64="77/jB/JGOYwjzu78cRyP6vNqa0Y="></latexit>

x

<latexit sha1_base64="W9G56mfa/8gt9rcrUFWviTbtzbA="></latexit>

sat0,1(x) = [x]10

<latexit sha1_base64="3ntt0G0ALWClEZANKOUDsGFRxLo="></latexit>

1
<latexit sha1_base64="X6h8DyqsEVuir2ogY1RH+oCVjvc="></latexit>

0

Firing rate network = linear threshold model

ẋ = −x+ [Wx+Bu]10
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Result #3: Dynamical systems analysis of proximal gradient descent

1 FProxG is well-posed, Lipschitz, and uniquely determined by f and g

2 equivalence: x∗ minimizes f + g ⇐⇒ x∗ is an equilibrium of FProxG

3 decreasing energy:

(when bounded) regularized cost f + g non-increasing along flow

4 contractivity:

W ≺ In =⇒ flow along FProxG is a contraction

5 proximal Polyak– Lojasiewicz condition

A. Gokhale, A. Davydov, and F. Bullo. Proximal gradient dynamics: Monotonicity, exponential convergence, and applications. IEEE Control
Systems Letters, 8:2853–2858, 2024.
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Result #4: Analog circuit implementation1950 IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 71, NO. 2, FEBRUARY 2024

Fig. 1. Circuit framework of PPNN (3).

searching different local optimal solutions of nonconvex com-
posite optimization problems by choosing different value of
parameter η. The use of ηy in IPPNN can be explained
from the following point of view. In control perspective,
it can be considered as a “differential feedback” and per-
forms the role of a damping term. In optimization perspective,
ηy determines the direction of movement of x at the next
moment.

III. CIRCUIT FRAMEWORKS AND THEORETICAL ANALYSIS

In this section, two circuit frameworks are designed to realize
PPNN (3) and IPPNN (4). The equivalent conditions of the
neural networks and our circuits are given. Besides, the stability
of proposed analog circuit frameworks is proved.

A. Circuit Framework of PPNN

A framework is designed, as shown in Fig. 1 which is com-
posed of operational amplifiers, resistors, capacitors, and other
basic electronic components.

Assuming V is the output voltage of operational amplifier
A1 and the input voltage u1 = −R1C

dV
dt of an integrator which

contains A1, resistor R1, RC , and capacitor C can be derived.
The output voltage of F (·) model is F (V ). A2 combines with
resistorsR2 −R5 as subtracter and the output voltage is R5

R3
V −

R5

R4
F (V ), and the voltage reaches prox(R5

R3
V − R5

R4
F (V )) after

prox(·) model. Another subtracter is formed by operational
amplifier A3 and four resistors R6 −R9 and its output voltage
is R9

R6
V − R9

R7
prox(R5

R3
V − R5

R4
F (V )) which is also equal to u1.

Thus we can obtain the following equation:

dV

dt
=

1

R1C

(
R9

R7
prox

(
R5

R3
V − R5

R4
F (V )

)
− R9

R6
V

)
(5)

moreover, (5) can be written in the following form by adjusting
the value of these resistors R3, R5, R6, R7, and R9 to the same
value

dV

dt
=

1

R1C

(
prox

(
V − R5

R4
F (V )

)
− V

)
. (6)

We can choose the appropriate resistors R1, R4, R5 and capac-
itor C according to the different value of α in specific optimiza-
tion problems. Equation (6) could be equivalent to PPNN (3).

Remark 2: Compared with the existing circuit frame-
work [27], ours, as shown in Fig. 1, employs a simpler structure.
As a result, less electronic components are used and the cost of
the fabricating circuit board is reduced in the proposed circuit
framework. Moreover, the circuit in [27] is a special case of
ours when g(·) = IC(·), where IC(·) is the indicator function
of set C.

Equation (6) can be represented by an linear time-invariant
system

dV

dt
= AV +BJ

Z = CV (7)

where V is the output voltage of operational amplifier A1,
defining J(Z) = prox(Z − R5

R4
F (Z)) is a nonlinear term, A =

−I,B = C = I .
Assumption 1: 1) f(·) is µ-strongly convex, i.e.,

f(y) ≥ f(x)+〈F (x), y−x〉+µ

2
‖y−x‖2∀x, y ∈ Rn.

2) F (·) is L-Lipschitz continuous, i.e.,

f(y) ≤ f(x) + 〈F (x), y − x〉+ L

2
‖y − x‖2∀x, y ∈ Rn

where L > µ > 0.
Assumption 1 is not uncommon in recent literature [29], [30]

by which a critical inequality associated with proximal operators
can be derived in the following lemma.

Lemma 1: Let Assumption 1 hold, for any Z ∈ Rn, Ẑ ∈ Rn,
we have

J(Z) = prox

(
Z − R5

R4
F (Z)

)

J(Ẑ) = prox

(
Ẑ − R5

R4
F (Ẑ)

)

the following inequality can be derived
∥∥∥J − Ĵ

∥∥∥
2

2
≤ β2

∥∥∥Z − Ẑ
∥∥∥

2

2
(8)

where β = max{|1− R5

R4
µ|, |1− R5

R4
L|} and J(Z) is contrac-

tile when R5

R4
∈ (0, 2

L ).
Proof: According to the firmly nonexpansive [31] of proxi-

mal operator, we have the following formula:

∥∥∥J − Ĵ
∥∥∥

2

2
≤
∥∥∥∥Z − R5

R4
F (Z)− (Ẑ − R5

R4
F (Ẑ))

∥∥∥∥
2

2

=

∥∥∥∥Z − Ẑ − R5

R4
(F (Z)− F (Ẑ))

∥∥∥∥
2

2

=
∥∥∥Z − Ẑ

∥∥∥
2

2
+ (

R5

R4
)2
∥∥∥F (Z)− F (Ẑ)

∥∥∥
2

2

− 2
R5

R4

〈
Z − Ẑ, F (Z)− F (Ẑ)

〉
.

(9)

Authorized licensed use limited to: Univ of Calif Santa Barbara. Downloaded on November 29,2025 at 07:06:25 UTC from IEEE Xplore.  Restrictions apply. 

Analog circuit implementation: 3 amplifiers for each dimension, F (·) denotes ∇f .

J. Wu, X. He, Y. Niu, T. Huang, and J. Yu. Circuit implementation of proximal projection neural networks for composite optimization
problems. IEEE Transactions on Industrial Electronics, 71(2):1948–1957, 2024.
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Comments

From regularized energy to firing rate networks

Enetwork(x, u) +
∑n

i=1
Eactivation,i(xi) =⇒ ẋ = −x+Φ(Wx+Bu)

network energy Enetwork describe interaction

regularization terms Eactivation,i capture physical limitations

1 firing-rate dynamics re-interpreted as proximal gradient dynamics
defined by regularized energy

2 symmetric synapses

3 normative framework = optimization-based top–down framework
that derives neural circuits from a mathematical objective

17/42

Outline

§1. Chapter #1: Context and motivation for biologically-plausible neural circuits

§2. Chapter #2: Neural circuits for optimization
Proximal gradient descent
Case study #1: Sparse signal reconstruction
Case study #2: Policy composition via free energy

§3. Chapter #3: Neural circuits for multiplayer optimization
Proximal gradient play
Case study #3: Contrast enhancement via excitatory-inhibitory networks

§4. Conclusion and ongoing research

18/42

Case study #1: Sparse signal reconstruction

terms of a strategy to represent natural sounds as sparse
independent events [24!!,25].

Several theorists have proposed that natural images (as
well as other sensory data) lie along a continuous curved
surface or ‘manifold’ embedded in the high-dimensional
state space of images (i.e., where pixel magnitudes form
the axes of the space— see figure 2) [26!,27,28!,29]. The
surface represents the smooth changes that follow from
the transformations that are likely to occur in natural
scenes (e.g., translation, scale, rotation, etc.). For exam-
ple, an object that moves across the pixel array of an image
gives rise to a series of different spatial patterns. Each of
these spatial patterns corresponds to a point in the state
space, and the set of all points resulting from this motion
would form a smooth, curved trajectory in the state space
(Figure 2). So how can the visual system represent this
curved surface of probable images? One possibility is that
this is achieved through an overcomplete representation
of the state space, in which the number of neurons used to
represent the image is potentially much greater than the
dimensionality of the input (number of pixels) [30–32]. In
this coding scheme, each neuron would have a preferred
pattern in the input space (represented by the vectors in
figure 2), and a neuron would become active only when
the input pattern is sufficiently close to its preferred
pattern. We suggest that the advantage of such a coding
scheme is that the manifold then becomes flattened out
(less curvature) in the higher-dimensional space defined
by the neural responses, thus making it easier for higher

areas to learn structure in the data (i.e., the shape of the
manifold).

Interestingly, a ubiquitous property of primary sensory
cortical areas is that they over-represent their sensory
inputs (as relayed from the thalamus) many times over.
For example, in cat V1 there is an approximate 25:1
expansion ratio in terms of the number of axons project-
ing from layers 2/3 on to higher areas relative to the
number of inputs from the lateral geniculate nucleus
[11]. One possibility, then, is that this over-representation
is utilized to produce an even higher degree of sparsity
among neurons bymaking themmore selective to specific
patterns of input, hence making it possible for higher
areas to learn structure in the data. If the idea of sparse
overcomplete codes is carried to an extreme, however, it
inevitably leads to a ‘grandmother cell’ type representa-
tion, in which a single unique neuron is active for each
and every event occurring in the environment [33]. Thus,
there is a tradeoff between the gains achieved from
overcompleteness and the cost incurred from having to
utilize more neurons, and it is possible that the 25:1
expansion in cat V1 is the result of striking the proper
balance between these two factors.

Another reason for favoring sparse codes is that they are
energy efficient [34]. Attwell and Laughlin [35] have
recently produced an estimate of the energy required
for signaling in cortical neurons, and they conclude that
average firing rates must be rather low, that is, less than

482 Sensory systems

Figure 1

Current Opinion in Neurobiology

Learned receptive fields

Outputs of sparse coding network

Pixel values

Image

Sparse coding of natural images. On the left is a set of receptive fields that are learnt by maximizing sparseness in the output of a neural
network. Each patch shows the receptive field of a model neuron within a 12 " 12 pixel image patch. The network was trained on approximately
half a million image patches (of the same size) extracted from whole images of natural scenes. The receptive fields that emerge from training are
spatially localized, oriented, and bandpass (i.e., selective to spatial structure at a particular scale), similar to cortical simple cells. On the right is
an example image patch and its encoding by the sparse coding network. The bar chart directly above the image patch shows the 144 pixel
values contained in the patch. These input activities are transformed into a much sparser representation in the output of the network, shown in
the bar chart at the top. The value of an output unit corresponds (roughly) to the degree of similarity between its receptive field and the input
image. As the receptive fields are matched to the structures that typically occur in natural scenes, an image can usually be fully represented
using a small number of active units.

Current Opinion in Neurobiology 2004, 14:481–487 www.sciencedirect.com

primary visual area (V1) sparsifies signals

receptive fields (≈ dictionary) are learned empirically

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature,
381(6583):607–609, 1996.

B. A. Olshausen and D. J. Field. Sparse coding of sensory inputs. Current Opinion in Neurobiology , 14(4):481–487, 2004.
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From mammals to insects

mushroom body of a locust

Kenyon cells and a giant (GABAergic) interneuron

each excitatory → inhibitory interneuron → all excitatory : enables sparse coding

M. Papadopoulou, S. Cassenaer, T. Nowotny, and G. Laurent. Normalization for sparse encoding of odors by a wide-field interneuron.
Science, 332(6030):721–725, 2011.
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Sparse signal reconstruction in engineering
2.1 Applications of Sparse Signal Modeling 41

Figure 2.4 Image Denoising by Sparse Approximation. Left: A noisy input
image. The image is broken into patches y1, . . . , yp. A dictionary A = [a1 | · · · | an] is
learned such that each input patch can be approximated as yi ⇡ Axi, with xi sparse.
Right: dictionary patches a1, . . . , an. Center: denoised image, reconstructed from
the approximations ŷi = Axi. Figures from [MES08,WMM+10]. Image reprinted
with permission from Julien Mairal.

In denoising, we do not actually observe yiclean. Rather, we observe noisy patches

yi = yiclean + zi = A ⇥ xi + zi, i = 1, . . . , p.

Based on these patches y1, . . . ,yp, we learn a dictionary Â such that

yi
i-th image patch

⇡ Â
learned dictionary

⇥ x̂i
sparse coe�cient vector

= ŷi.
denoised patch

The dictionary Â and sparse coe�cients x̂i can be learned by solving a nonconvex

optimization problem, which attempts to strike an optimal balance between the

sparsity of the coe�cients x̂1, . . . , x̂p and the accuracy of the approximation

yi ⇡ Âx̂i. More detail will be given in Chapter 7. We take ŷi = Âx̂i as an

estimate of yiclean.

Figure 2.4 (left) shows the noisy input image; Figure 2.4 (center) shows a de-

noised image constructed from ŷ1, . . . , ŷp. Figure 2.4 (right) shows the dictionary

Â learned from the noisy patches. Although the sparse dictionary prior is rela-

tively simple, and does not capture all of the global geometric structure of the im-

age, it leads to surprisingly good performance on many low-level image processing

tasks including image super-resolution [YWHM10] or restoration [MES08]. We

discuss modeling and computational aspects of dictionary learning in detail in

Chapters 7 and 9. For now, the key point is that the problem of reconstructing

the clean image from noisy patches again leads us to an underdetermined linear

system of equations, yi ⇡ Axi.

2.1.3 An Example from Face Recognition

Sparsity also arises naturally in problems in which we wish to perform reliable

inference from unreliable measurements. For example, due to sensor errors or

a noisy input image denoised image, reconstructed from sparse approx dictionary patches

identify and exploit sparsity in signals

dimensionality reduction in machine learning

E. J. Candes and T. Tao. Decoding by linear programming. IEEE Transactions on Information Theory , 51(12):4203–4215, 2005

J. Wright and Y. Ma. High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications. Cam-
bridge University Press, 2022
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Positive lasso as a regularized objective

min
x∈RN , x≥0

Elasso(x) := ∥u− Φx∥22︸ ︷︷ ︸
quadratic reconstruction cost

+ λ ∥x∥1︸︷︷︸
sparsity-promoting regularizer

where Φ overcomplete dictionary matrix , with ∥Φi∥ = 1 and Φi ·Φj = similarity between (i, j)

u

(M×1)

≈ Φ

(M×N)
x

(N×1)

= Φ1 |Φ2 | · · · |ΦN

(M×N)
x

(N×1)

where x is k-sparse and k ≪ M ≪ N
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Firing rate network for sparse reconstruction

min
x∈RN , x≥0

Elasso(x) := ∥u− Φx∥22 + λ∥x∥1

proximal gradient dynamics is positive competitive network:

ẋ = −x+ relu
(
(In − Φ⊤Φ)x+Φ⊤u− λ1n

)

C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A. Olshausen. Sparse coding via thresholding and local competition in neural circuits.
Neural Computation, 20(10):2526–2563, 2008.
A. Balavoine, J. Romberg, and C. J. Rozell. Convergence and rate analysis of neural networks for sparse approximation. IEEE Transactions
on Neural Networks and Learning Systems, 23(9):1377–1389, 2012.
V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Positive competitive networks for sparse reconstruction. Neural Compu-
tation, 36(6):1163–1197, 2024.
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Biological interpretation = competition via direct lateral inhibition

Nonnegative firing rates and non-negative dictionary elements Φi:

ẋi = −xi + relu

(∑
j ̸=i

(−Φ⊤
i Φj)︸ ︷︷ ︸

≤0, lateral inhibition

xj + Φ⊤
i u︸︷︷︸

stimulus

− λ︸︷︷︸
bias

)
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Case study #2: The free energy principle

Probabilistic mind theory: information as probabilities + Bayesian inference

situations. The experiments suggest that, to operate in open environments, agents determining actions

using free energy models, require built-in mechanisms for policy robustness and these mechanisms are

crucial to compensate for poor training. DR-FREE, providing such a mechanism, delivers this capability.

Ultimately, DR-FREE is the first free energy computational model revealing how free energy minimizing

agents can compute optimal actions that are also robust to ambiguity. It establishes a normative framework

to both empower the design of artificial agents built upon free energy models with robust decision-making

abilities, and to understand natural behaviors beyond current free energy explanations.28–32 In fact, despite

its success, there is no theory currently explaining if and how these free energy-minimizing agents can

compute optimal actions in ambiguous settings. DR-FREE provides these explanations.

Figure 1: Comparison between free energy and robust free energy for policy computation. a.
A robotic agent navigating a stochastic environment to reach a destination while avoiding obstacles. At a
given time-step, k ⌐ 1, the agent determines an action Uk from a policy using a model of the environment
(e.g., available at training via a simulator possibly updated via real world data) and observations/beliefs
(grouped in the state Xk⌐1). The environment and model can change over time. Capital letters are random
variables, lower-case letters are realizations. b. The trained model and the agent environment di!er. This
mismatch is a training/environment ambiguity: for a state/action pair, the ambiguity set is the set of all
possible environments that have statistical complexity from the trained model of at most ωk (xk⌐1,uk). We
use the wording trained model in a very broad sense. A trained model is any model available to the agent
o”ine: for example, this could be a model obtained from a simulator or, for natural agents, this could be
hardwired into evolutionary processes or even determined by prior beliefs. c. A free energy minimizing
agent in an environment matching its own model. The agent determines an action by sampling from the
policy p⋆k (uk ⌜ xk⌐1). Given the model, the policy is obtained by minimizing the variational free energy: the
sum of a statistical complexity (with respect to a generative model, q0⋊N ) and expected loss (state/action

costs, c
(x)
k (xk) and c

(u)
k (uk)) terms. d. DR-FREE extends the free energy principle to account for model

ambiguities. According to DR-FREE, the maximum free energy across all environments – in an ambiguity
set – is minimized to identify a robust policy. This amounts to variational policy optimization under the
epistemic uncertainty engendered by ambiguous environmnent.

3

Free energy principle: adaptive behaviors in natural/artificial agents
arise from minimization of free energy (or “surprise”)

(perception:) adjust beliefs (variational Bayesian inference)

(learning:) update generative models

(decision:) change the sensory input (acting so the world matches predictions)

K. Friston. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2):127–138, 2010.

A. Shafiei, H. Jesawada, K. Friston, and G. Russo. Distributionally robust free energy principle for decision-making. Nature Communication,
2025. . To appear
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Optimal policy composition

min
probabilities w

surprise(x, u)︸ ︷︷ ︸
prior belief vs actual outcomes

− τ entropy(w)︸ ︷︷ ︸
uncertainty

(free energy)

where policy(u |x) =
∑

α
wa primitivea(u |x) (mixture of policies)

resulting firing rate network =
softmax gradient descent

ẇ = −w + softmax
(
−τ−1∇surprise(x,w)

)

F. Rossi, V. Centorrino, F. Bullo, and G. Russo. Neural policy composition from free energy minimization. Technical report, 2025. .
arXiv:2512.04745
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Dale’s law: a neuron has the same type of effect,
inhibitory or excitatory, on all its neighbors.

Classic motifs obeying Dale’s law, with excitatory (E) and inhibitory (I) neurons
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I

Wilson-Cowan model
excitatory-inhibitory pair

H. R. Wilson and J. D. Cowan. Excitatory and inhibitory interactions
in localized populations of model neurons. Biophysical Journal , 12
(1):1–24, 1972.
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I

Central inhibitory neuron mediates
winner-take-all dynamic between two

excitatory neurons

Dale’s law (neuromodulator version): each neuron releases the same type of neuromodulator at all of its synapses.
29/42
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Excitatory

For asymmetric/E-I networks,

rich dynamic behavior is possible:
global asymp. stability, multistability, limit cycles, chaotic behavior, etc

lack of general analysis framework (stability and functionality)

lack of general design framework (e.g., optimization-based, top-down)
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Results on asymmetric networks

1 novel interpretation: neurons are playing a game

2 monostability

3 functionality

S. Betteti, W. Retnaraj, A. Davydov, J. Cortes, and F. Bullo. Competition, stability, and functionality in excitatory-inhibitory neural circuits.
Technical report, 2025c. . arXiv:2512.05252
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Result #1: Neural circuits for multiplayer optimization

Symmetric networks: ẋ = −x+Φ(Wx+Bu) is proximal gradient descent for

Eregularized(x, u) = Enetwork(x, u) +
∑n

i=1
Eactivation,i(xi)

where Enetwork(x, u) = 1
2x

⊤(In −W )x− x⊤Bu ϕi(y) = proxEactivation,i(y)

Asymmetric networks: ẋ = −x+Φ(Wx+Bu) is proximal gradient play for

Eregularized,i(xi, x−i, u) = Eindividual,i(xi, x−i, u) + Eactivation,i(xi)

where

Eindividual,i(xi, x−i, u) =
∑n

j=1
(12δij − 1)Wijxixj − x⊤Bu ϕi(y) = proxEactivation,i(y)

32/42



Result #1: Neural circuits for multiplayer optimization

E(x1, x2)

Nash Equilibrium

E1(x1, x2) E2(x1, x2)

S. Betteti, W. Retnaraj, A. Davydov, J. Cortes, and F. Bullo. Competition, stability, and functionality in excitatory-inhibitory neural circuits.
Technical report, 2025c. . arXiv:2512.05252
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Results on asymmetric networks

1 novel interpretation: neurons are playing a game

2 monostability: monostability via constraints on synaptic weights

3 functionality
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S. Betteti, W. Retnaraj, A. Davydov, J. Cortes, and F. Bullo. Competition, stability, and functionality in excitatory-inhibitory neural circuits.
Technical report, 2025c. . arXiv:2512.05252
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Result #2: Monostability for E-I networks

ẋ = −x+Φ(Wx+ u), satisfying Dale’s law : each neuron is either E or I

1 for each i ∈ E and j ∈ I, reciprocal connections

(i, j) is an edge ⇐⇒ (j, i) is an edge

2 synaptic weights are homogeneous:
wEE = weight of each E to E
wEI = weight of each I to E
wIE = weight of each E to I
wII = weight of each I to I
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Excitatory

Monostability (single eq. point exists and is globally asymp stable) if

(degreein + degreeout
2

)
wEE < 1 and

(degreein + degreeout
2

− 2
)
wII < 1
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Results on asymmetric networks

1 novel interpretation: neurons are playing a game

2 monostability: monostability via constrains on synaptic weights
3 functionality: contrast enhancement via lateral inhibition

1 Lateral inhibition in E-I-E networks
2 Winner-take-all in Ek-I networks
3 Contrast enhancement in columns of E-I-E motifs

S. Betteti, W. Retnaraj, A. Davydov, J. Cortes, and F. Bullo. Competition, stability, and functionality in excitatory-inhibitory neural circuits.
Technical report, 2025c. . arXiv:2512.05252
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Result #3: Lateral inhibition in E-I-E networks

ẋ = −x+ [Wx+Bu]10

satisfying Dale’s law with:

{
wEE < 1 (monostability)
wIE ≥ 1 + wII (functionality)
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lateral inhibition leads to binary decisions:

when uleft > uright + δ, then (left E is high) and (right E is low)

when uright > uleft + δ, then vice-versa

where δ := 1− wEE + wEI > 0

37/42

Result #3: Winner-take-all in Ek-I networks

ẋ = −x+ [Wx+Bu]10

satisfying Dale’s law with:

{
wEE < 1 (monostability)
wIE ≥ 1 + wII (functionality)
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k

mutual inhibition leads to winner-take-all:

when ui > uj + 2δ, then (Ei is high) and (every other neuron j is low)

where δ := 1− wEE + wEI > 0
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Result #3: Contrast enhancement in columns of E-I-E motifs

ẋ = −x+ [Wx+Bu]10

satisfying Dale’s law with:

{
wEE < 1/2 (monostability)
wIE ≥ 1 + wII (functionality)
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ω

competition amount E pathways leads to contrast enhancement:
take uleft > uright + 2ϵ, for some small ϵ

if (number of layers) ℓ ≥ ℓbinary := 1 +
ln(ϵ/δ)

ln(1/wEE − 1)

then, at layer ℓ ≥ ℓbinary, uleft > uright + δ, and full contrast enhancement
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Outline

§1. Chapter #1: Context and motivation for biologically-plausible neural circuits

§2. Chapter #2: Neural circuits for optimization
Proximal gradient descent
Case study #1: Sparse signal reconstruction
Case study #2: Policy composition via free energy

§3. Chapter #3: Neural circuits for multiplayer optimization
Proximal gradient play
Case study #3: Contrast enhancement via excitatory-inhibitory networks

§4. Conclusion and ongoing research
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Future work at intersection of dynamical neuroscience & ML

1 system-theoretic problems in neuroscience
biologically-plausible learning and control
stimulus-driven cognitive phenomena
computational paradigms: astrocytes, dendritic computation, Hebbian learning, equilibrium
propagation
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2 connections with ML
unsupervised representation learning
self-attention dynamics and transformers
structured state space sequence models
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Fig. 1. Circuit framework of PPNN (3).

searching different local optimal solutions of nonconvex com-
posite optimization problems by choosing different value of
parameter η. The use of ηy in IPPNN can be explained
from the following point of view. In control perspective,
it can be considered as a “differential feedback” and per-
forms the role of a damping term. In optimization perspective,
ηy determines the direction of movement of x at the next
moment.

III. CIRCUIT FRAMEWORKS AND THEORETICAL ANALYSIS

In this section, two circuit frameworks are designed to realize
PPNN (3) and IPPNN (4). The equivalent conditions of the
neural networks and our circuits are given. Besides, the stability
of proposed analog circuit frameworks is proved.

A. Circuit Framework of PPNN

A framework is designed, as shown in Fig. 1 which is com-
posed of operational amplifiers, resistors, capacitors, and other
basic electronic components.

Assuming V is the output voltage of operational amplifier
A1 and the input voltage u1 = −R1C

dV
dt of an integrator which

contains A1, resistor R1, RC , and capacitor C can be derived.
The output voltage of F (·) model is F (V ). A2 combines with
resistorsR2 −R5 as subtracter and the output voltage is R5

R3
V −

R5

R4
F (V ), and the voltage reaches prox(R5

R3
V − R5

R4
F (V )) after

prox(·) model. Another subtracter is formed by operational
amplifier A3 and four resistors R6 −R9 and its output voltage
is R9

R6
V − R9

R7
prox(R5

R3
V − R5

R4
F (V )) which is also equal to u1.

Thus we can obtain the following equation:

dV

dt
=

1

R1C

(
R9

R7
prox

(
R5

R3
V − R5

R4
F (V )

)
− R9

R6
V

)
(5)

moreover, (5) can be written in the following form by adjusting
the value of these resistors R3, R5, R6, R7, and R9 to the same
value

dV

dt
=

1

R1C

(
prox

(
V − R5

R4
F (V )

)
− V

)
. (6)

We can choose the appropriate resistors R1, R4, R5 and capac-
itor C according to the different value of α in specific optimiza-
tion problems. Equation (6) could be equivalent to PPNN (3).

Remark 2: Compared with the existing circuit frame-
work [27], ours, as shown in Fig. 1, employs a simpler structure.
As a result, less electronic components are used and the cost of
the fabricating circuit board is reduced in the proposed circuit
framework. Moreover, the circuit in [27] is a special case of
ours when g(·) = IC(·), where IC(·) is the indicator function
of set C.

Equation (6) can be represented by an linear time-invariant
system

dV

dt
= AV +BJ

Z = CV (7)

where V is the output voltage of operational amplifier A1,
defining J(Z) = prox(Z − R5

R4
F (Z)) is a nonlinear term, A =

−I,B = C = I .
Assumption 1: 1) f(·) is µ-strongly convex, i.e.,

f(y) ≥ f(x)+〈F (x), y−x〉+µ

2
‖y−x‖2∀x, y ∈ Rn.

2) F (·) is L-Lipschitz continuous, i.e.,

f(y) ≤ f(x) + 〈F (x), y − x〉+ L

2
‖y − x‖2∀x, y ∈ Rn

where L > µ > 0.
Assumption 1 is not uncommon in recent literature [29], [30]

by which a critical inequality associated with proximal operators
can be derived in the following lemma.

Lemma 1: Let Assumption 1 hold, for any Z ∈ Rn, Ẑ ∈ Rn,
we have

J(Z) = prox

(
Z − R5

R4
F (Z)

)

J(Ẑ) = prox

(
Ẑ − R5

R4
F (Ẑ)

)

the following inequality can be derived
∥∥∥J − Ĵ

∥∥∥
2

2
≤ β2

∥∥∥Z − Ẑ
∥∥∥

2

2
(8)

where β = max{|1− R5

R4
µ|, |1− R5

R4
L|} and J(Z) is contrac-

tile when R5

R4
∈ (0, 2

L ).
Proof: According to the firmly nonexpansive [31] of proxi-

mal operator, we have the following formula:

∥∥∥J − Ĵ
∥∥∥

2

2
≤
∥∥∥∥Z − R5

R4
F (Z)− (Ẑ − R5

R4
F (Ẑ))

∥∥∥∥
2

2

=

∥∥∥∥Z − Ẑ − R5

R4
(F (Z)− F (Ẑ))

∥∥∥∥
2

2

=
∥∥∥Z − Ẑ

∥∥∥
2

2
+ (

R5

R4
)2
∥∥∥F (Z)− F (Ẑ)

∥∥∥
2

2

− 2
R5

R4

〈
Z − Ẑ, F (Z)− F (Ẑ)

〉
.

(9)
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3 connections with nonconventional and analog computing
analog implementation of prox gradient descent
analog implementation of proximal primal-dual gradient descent
oscillator-based computing
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