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Lectures on Neural Dynamics, Francesco Bullo, May 2025.
(144-xiv pages, 66 figures, 18 exercises)

Lectures on Latest revision: Jan 23, 2026
Neural Dynamlcs O Textbook with exercises and answers. §1. Chapter #1: Context and motivation for biologically-plausible neural circuits
@ Content:

o Neural circuit models based on firing rates and Hopfield networks:
dynamics, interconnections, and local Hebbian adaptation rules

o Stability in dynamic neural networks using Lyapunov methods,
multistability, and energy functions B . . R )

o Optimization in neural networks through biologically inspired gradient §3 Chapter #3 Neural circuits for mu|tlp|ayel’ optimization
dynamics and sparse representations.

o Unsupervised learning via neural dynamics, linking Hebbian rules to

tasks like PCA, clustering, and similarity-based representation learning. §4_ Conclusion and ongoing research
© PDF Freely available at:
https://fbullo.github.io/Ind

§2. Chapter #2: Neural circuits for optimization

Francesco Bullo

" Continuous improvement is better than delayed perfection”
Mark Twain
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Biological networks: function and design Biological networks: function and design

“The idea that the brain functions so as to minimize certain costs

Despite incredible achievements, deep learning models remain limited in i ) g
pervades theoretical neuroscience.

o interpretability,
. ] S. C. Surace, J.-P. Pfister, W. Gerstner, and J. Brea. On the choice of metric in gradient-based theories of brain function. PLOS Compu-
e computational efficiency, and tational Biology, 16(4):¢1007640, 2020. €

o biological plausibility.

Activation Magnitude (a.u)

@ What are possible and optimal ways to process information, given the laws of physics?

@ How has the brain evolved biologically plausible strategies to approach these limits?

© Can analog, oscillator-based, and neuromorphic computing extend these principles into
new technologies?

Energy landscape for associative

@ To what extent do these questions reduce to cost minimization and energy landscapes? memory in Hopfield models S .
) Energy of neurophysiological activity

S. Betteti, G. Baggio, F. Bullo, and S. Zampieri. Input-driven dy-
namics for robust memory retrieval in Hopfield networks. Science
Advances, 11(17), 2025a. 4

\
State 2
@ State 3

S. Gu, M. Cieslak, B. Baird, S. F. Muldoon, S. T. Grafton,
F. Pasqualetti, and D. S. Bassett. The energy landscape of neuro-
physiological activity implicit in brain network structure. Scientific
Reports, 8(1), 2018. ¢

5/42
Recurrent neural networks: function and design (3/3) Outline
Firing-rate network:
. 1. Chapter #1: Context and motivation for biologically-plausible neural circuits
& = Fer(z) := —2 + ®(Wax + Bu) ; per # slealyp
where W is synaptic matrix, ® is activation function, and u is stimulus §2. Chapter #2: Neural circuits for optimization
@ Proximal gradient descent
@ Case study #1: Sparse signal reconstruction
@ Case study #2: Policy composition via free energy
@ What functionality does Fgr implement?
© What energy does Frr minimize? §3. Chapter #3: Neural circuits for multiplayer optimization
© s there an optimization-based top-down framework for neural circuits? @ Proximal gradient play

That is, a framework that derives neural circuits from a mathematical objective? @ Case study #3: Contrast enhancement via excitatory-inhibitory networks

§4. Conclusion and ongoing research

C. Pehlevan and D. B. Chklovskii. Neuroscience-inspired online unsupervised learning algorithms: Artificial neural networks. /[EEE Signal
Processing Magazine, 36(6):88-96, 2019. 4




Prologue to Chapter #2:

Regularized optimization and proximal gradient descent

Regularized optimization problem

min
rER™

gregularized (xy u) = f(mv U) + g("L')

@ nominal cost f(x,u) is well behaved
@ regularizer g(z) may be poor behaved

f@) = =3 9(x) = llll f(z) +9(x) = ll=l + ||l

N

7

Transcribing regularized optimization into prox gradient descent

min  f(z,u) +  g(z)
N—— ~—~
nominal regularizer

proximal gradient descent:

= —x + proxg(x—sz(x,u)) =: Fproxc(z,u)

note: energy system, determined by the energies f and g
(just like gradient descent & = —V, f is determined by the energy f)
V.

S. Hassan-Moghaddam and M. R. Jovanovi¢. Proximal gradient flow and Douglas-Rachford splitting dynamics: Global exponential stability
via integral quadratic constraints. Automatica, 123:109311, 2021. ¢

A. Gokhale, A. Davydov, and F. Bullo. Proximal gradient dynamics: Monotonicity, exponential convergence, and applications. /EEE Control
Systems Letters, 8:2853-2858, 2024. 4
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proximal operator for the regularizer g

. 1
prox,(r) := argmin g(z)+ §||x — z|)?
z€R™

- simple regularized problem
- the quadratic term keeps optimal point close to input x
- the prox is a map that turns x into a “g-better” point

— lal

— min; |z]+ |z — 2|3

A. Beck. First-Order Methods in Optimization.
SIAM, 2017. ISBN 978-1-61197-498-0

End of the prologue:
Result #1: proximal gradient descent = firing rate network

-z + & (Wzx+ Bu)

@ = Frr(z,u) =
& - + proxg(:l:—me(x,u))

= FProxG(xa u) =

If fis quadratic in (z,u) and

®(z) = prox,(z), J
then

Fproxc = FFR
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sato1(z) = [z]}

Result #2: the Hopfield energy is a regularized energy

. 0 fo<z<l1 @
The firing rate recurrent neural network g(z) = -7 = _— proxg(x) = Ul :
400 otherwise I
z = Fer(z,u) = —2x + ®(Wzx + Bu) |
is the proximal gradient descent for Hopfield energy = regularized energy Firing rate network = linear threshold model
. i = —x+ Wz + Bul}
gregularized(xau) = Enetwork(T,u) + E i1 Eactivation i (Zi),
e S ke " f"(/) o " st et i Tasirion of bl aperator
: . . N
e network energy captures interaction and effect of stimulus . \
Snetwork(xa U) = %$T(In — W)ZE — 2" Bu ) I 4
@ activation energy determines activation function L& [> AI//——\\
(Pi (y) = proxgactivation,i (y) |

SIS
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S. Betteti, W. Retnaraj, A. Davydov, J. Cortes, and F. Bullo. Competition, stability, and functionality in excitatory-inhibitory neural circuits.
Technical report, 2025¢. 4. arXiv:2512.05252

Result #3: Dynamical systems analysis of proximal gradient descent

Q@ Fproxc is well-posed, Lipschitz, and uniquely determined by f and ¢

@ equivalence: x* minimizes f +¢g <= z* is an equilibrium of Fp,og

© decreasing energy:

(when bounded) regularized cost f + g non-increasing along flow J

A; ,
Q contractivity: e prox(:) model
: :
W <1, == flow along Fp,oxG is a contraction )
% Analog circuit implementation: 3 amplifiers for each dimension, F(-) denotes V f.
© proximal Polyak—tojasiewicz condition )

J. Wu, X. He, Y. Niu, T. Huang, and J. Yu. Circuit implementation of proximal projection neural networks for composite optimization
A. Gokhale, A. Davydov, and F. Bullo. Proximal gradient dynamics: Monotonicity, exponential convergence, and applications. /EEE Control problems. IEEE Transactions on Industrial Electronics, 71(2):1948-1957, 2024. 4
Systems Letters, 8:2853-2858, 2024. 4
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Comments Outline

From regularized energy to firing rate networks
§1. Chapter #1: Context and motivation for biologically-plausible neural circuits

n
gnetWOrk(x’ u) + Zi:l gactivation,i(mi) - r=-—-x+ (I)(Wl' + B’LL)
o ] §2. Chapter #2: Neural circuits for optimization

@ network energy Enetwork describe interaction @ Proximal gradient descent

e regularization terms E,ctivation,; capture physical limitations @ Case study #1: Sparse signal reconstruction

@ Case study #2: Policy composition via free energy
. . . . . . §3. Chapter #3: Neural circuits for multiplayer optimization
@ firing-rate dynamics re-interpreted as proximal gradient dynamics @ Proximal gradient play
defined by regularized energy @ Case study #3: Contrast enhancement via excitatory-inhibitory networks

@ symmetric synapses

© normative framework = optimization-based top—down framework §4. Conclusion and ongoing research
that derives neural circuits from a mathematical objective
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Case study #1: Sparse signal reconstruction From mammals to insects
- Kenyon cells
Learned receptive fields
HiANSEaanmaNS N i
] Outputs of sparse coding network
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sparse output
@ primary visual area (V1) sparsifies signals
o receptive fields (= dictionary) are learned empirically
@ mushroom body of a locust
@ Kenyon cells and a giant (GABAergic) interneuron

B. A. Olshausen and D. J. Field. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, @ each excitatory N inhibitory interneuron — all excitatory - enables sparse coding
381(6583):607-609, 1996. & )
B. A. Olshausen and D. J. Field. Sparse coding of sensory inputs. Current Opinion in Neurobiology, 14(4):481-487, 2004. ¢ M. Papadopoulou, S. Cassenaer, T. Nowotny, and G. Laurent. Normalization for sparse encoding of odors by a wide-field interneuron.

Science, 332(6030):721-725, 2011. €
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signal reconstruction in engineering

Positive lasso as a regularized objective

a noisy input image denoised image, reconstructed from sparse approx dictionary patches

o identify and exploit sparsity in signals

@ dimensionality reduction in machine learning

E. J. Candes and T. Tao. Decoding by linear programming. |EEE Transactions on Information Theory, 51(12):4203-4215, 2005

J. Wright and Y. Ma. High-Dimensional Data Analysis with Low-Dimensional Models: Principles, Computation, and Applications. Cam-
bridge University Press, 2022
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Firing rate network for sparse reconstruction

. o 2
min Elasso(T) 1= |lu — ®x|5 + A 1|l
zERN, >0 N—— ——
quadratic reconstruction cost sparsity-promoting regularizer
where ® overcomplete dictionary matrix, with ||®;|| = 1 and ®; - ®; = similarity between (i, j)
u ~ 0] = q>1|q>2|..,|q>N
(M x1)
(MxN) x (MxN) r

(Nx1)
where z is k-sparse and k < M < N

Biological interpretation = competition via direct lateral inhibition

min
z€RN, >0

Eiasso(t) = [lu — P[5 + M|z

e

proximal gradient dynamics is positive competitive network:

b= —z+ relu((In T+ 0T /\1n)

C. J. Rozell, D. H. Johnson, R. G. Baraniuk, and B. A. Olshausen. Sparse coding via thresholding and local competition in neural circuits.
Neural Computation, 20(10):2526-2563, 2008. d

A. Balavoine, J. Romberg, and C. J. Rozell. Convergence and rate analysis of neural networks for sparse approximation. /EEE Transactions
on Neural Networks and Learning Systems, 23(9):1377-1389, 2012. ¢

V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Positive competitive networks for sparse reconstruction. Neural Compu-
tation, 36(6):1163-1197, 2024. 4
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Nonnegative firing rates and non-negative dictionary elements ®;:

—x; + relu Z#i

€5

(—; ©;)

<0, lateral inhibition

- Pu — A
i+ P u

stimulus bias

xRN
N M
sparse
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Outline Case study #2: The free energy principle

Probabilistic mind theory: information as probabilities + Bayesian inference

§1. Chapter #1: Context and motivation for biologically-plausible neural circuits Expected Pl
Loss \ | X,
Ch : N | i i f imi i vv. Generative > Min. Free g
§2. apter #2: Neural circuits for optimization ~—] model Energy r
‘ Environment / ) dptim%l p&liéy; Uy 1
Model P (w %)
@ Case study #2: Policy composition via free energy
§3. Chapter #3: Neural circuits for multiplayer optimization Free energy principle: adaptive behaviors in natural/artificial agents

arise from minimization of free energy (or “surprise”)
o (perception:) adjust beliefs (variational Bayesian inference)
o (learning:) update generative models
§4. Conclusion and ongoing research @ (decision:) change the sensory input (acting so the world matches predictions)

K. Friston. The free-energy principle: a unified brain theory? Nature Reviews Neuroscience, 11(2):127-138, 2010. &

A. Shafiei, H. Jesawada, K. Friston, and G. Russo. Distributionally robust free energy principle for decision-making. Nature Communication,
2025. 4. To appear
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min surprise(z, u) — 7 entropy(w) (free energy)
probabilities w N——— N——

Optimal policy composition

prior belief vs actual outcomes uncertainty §1. Chapter #1: Context and motivation for biologically-plausible neural circuits

where policy(u | z) = Za wa primitive, (u | z) (mixture of pOIIOeS)J §2. Chapter #2: Neural circuits for optimization
@ Proximal gradient descent
@ Case study #1: Sparse signal reconstruction

‘@ @ Case study #2: Policy composition via free energy

§3. Chapter #3: Neural circuits for multiplayer optimization
@ Proximal gradient play
@ Case study #3: Contrast enhancement via excitatory-inhibitory networks

resulting firing rate network =
softmax gradient descent

W= —w + SOftmaX(—T_1Vsurprise(m,w)) §4. Conclusion and ongoing research

F. Rossi, V. Centorrino, F. Bullo, and G. Russo. Neural policy composition from free energy minimization. Technical report, 2025. 4.
arXiv:2512.04745
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Dale’s law: a neuron has the same type of effect,
inhibitory or excitatory, on all its neighbors. J

Classic motifs obeying Dale’s law, with excitatory (E) and inhibitory (I) neurons

S

Wilson-Cowan model
excitatory-inhibitory pair

Central inhibitory neuron mediates
winner-take-all dynamic between two

H. R. Wilson and J. D. Cowan. Excitatory and inhibitory interactions excr'tatory neurons

in localized populations of model neurons. Biophysical Journal, 12
(1):1-24, 1972. ¢

Dale’s law (neuromodulator version): each neuron releases the same type of neuromodulator at all of its synapses.

29 /42

Excitatory

Inhibitory

For asymmetric/E-l networks,

@ rich dynamic behavior is possible:
global asymp. stability, multistability, limit cycles, chaotic behavior, etc

@ lack of general analysis framework (stability and functionality)

@ lack of general design framework (e.g., optimization-based, top-down)

Result #1: Neural circuits for multiplayer optimization

Results on asymmetric networks

@ novel interpretation: neurons are playing a game
@ monostability
© functionality

S. Betteti, W. Retnaraj, A. Davydov, J. Cortes, and F. Bullo. Competition, stability, and functionality in excitatory-inhibitory neural circuits.

Technical report, 2025¢. 4. arXiv:2512.05252
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Symmetric networks: & = —x + ®(Wz + Bu) is proximal gradient descent for
n
<</‘regularized (xv U) Enetwork (Ia U) + Zi:l gactivation,i(mi)

%xT(In — W)z —2' Bu

B

Asymmetric networks: & = —z + ®(Wx + Bu) is proximal gradient play for

Where gnetwork (.’E, U) = ¢1(y) = proxgactivation,i (y)

gregularized,i(xiv i, u) = gindividual,i (Z‘i, X—i, U) + Sactivation,i(xi)

where

n
Eindividuali (Ti, T—i, u) = ijl(%% — 1)Wijziz; — ' Bu $i(y) = ProXe, ;)

v

32/42




Result #1: Neural circuits for multiplayer optimization

Results on asymmetric networks

E(x1,29) (w1, 22)

T

S. Betteti, W. Retnaraj, A. Davydov, J. Cortes, and F. Bullo. Competition, stability, and functionality in excitatory-inhibitory neural circuits.
Technical report, 2025c. . arXiv:2512.05252

Result #2: Monostability for E-I networks

@ novel interpretation: neurons are playing a game
© monostability: monostability via constraints on synaptic weights

© functionality

S. Betteti, W. Retnaraj, A. Davydov, J. Cortes, and F. Bullo. Competition, stability, and functionality in excitatory-inhibitory neural circuits.
Technical report, 2025¢c. &, arXiv:2512.05252

Results on asymmetric networks

t=—zcz+0Wz+u), satisfying Dale’s law: each neuron is either E or I

@ for each i € K and j € 1, reciprocal connections

(17]) is an edge — (]72) is an edge EXCit‘dtOI‘y IIlhibitOI'y
© synaptic weights are homogeneous: /.

= weight of each E to E

WEE

wgy = weight of each Tto E
wyg = weight of each E to 1
wrp = weight of each Tto I

Monostability (single eq. point exists and is globally asymp stable) if

( (

degree;, + degree,

degree;, + degree,
2

2

and

)wEE<1 —2>1UH<1
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@ novel interpretation: neurons are playing a game
@ monostability: monostability via constrains on synaptic weights
© functionality: contrast enhancement via lateral inhibition

@ Lateral inhibition in E-I-E networks
@ Winner-take-all in EF-I networks
@ Contrast enhancement in columns of E-I-E motifs

S. Betteti, W. Retnaraj, A. Davydov, J. Cortes, and F. Bullo. Competition, stability, and functionality in excitatory-inhibitory neural circuits.
Technical report, 2025¢. 4. arXiv:2512.05252
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Result #3: Winner-take-all in E*-| networks

Result #3: Lateral inhibition in E-I-E networks

WEE

—WEL

WIE
Uleft

&= —x+ [Wz + Bu|}

satisfying Dale's law with:

wgg < 1
wig > 1+ wi

WiE
Uright

(monostability)
(functionality)

lateral inhibition leads to binary decisions:

then and

then

(left E is high)

vice-versa

when ujege > Uright + 0, (right E is low)

when Uright > Uleft 1 3,

where § := 1 — wgg + wgg > 0

Result #3: Contrast enhancement in columns of E-I-E motifs

&= —x+ [Wz + Bul}

satisfying Dale's law with:

(monostability)

wgg < 1
(functionality)

wig > 1+ wi

mutual inhibition leads to winner-take-all:

when u; > uj + 26, then  (E; is high) and (every other neuron j is low)

where 6 := 1 — wgg + wgr > 0

Outline

& =—z+ Wz + Bul}
satisfying Dale's law with:

wEE<1/2
wig > 14+ wi

(monostability)
(functionality)

Tuleft urightT

competition amount E pathways leads to contrast enhancement:
take Uleft > Uright + 26,  for some small €

In(e/d)
ln(l/wEE — 1)
Uleft > Uright + 0, and full contrast enhancement

if (number of layers) £ > flhinary := 1 +

then, at layer £ > lpinary,

fE=:
e —e)

v
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§1. Chapter #1: Context and motivation for biologically-plausible neural circuits

§2. Chapter #2: Neural circuits for optimization
@ Proximal gradient descent
@ Case study #1: Sparse signal reconstruction
@ Case study #2: Policy composition via free energy

§3. Chapter #3: Neural circuits for multiplayer optimization
@ Proximal gradient play
@ Case study #3: Contrast enhancement via excitatory-inhibitory networks

§4. Conclusion and ongoing research
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Future work at intersection of dynamical neuroscience & ML References

O biologically plausible optimization

(1) system—theoretic pr0b|ems in neuroscience V. Centorrino, A. Gokhale, A. Davydov, G. Russo, and F. Bullo. Positive competitive networks for

. ; 1163 d
o biologically-plausible learning and control sparse reconstruction. Neural Computation, 36(6):1163-1197, 2024.

o stimulus-driven cognitive phenomena A. Gokhale, A. Davydov, and F. Bullo. Proximal gradient dynamics: Monotonicity, exponential con-
e computational paradigms: astrocytes, dendritic computation, Hebbian learning, equilibrium vergence, and applications. IEEE Control Systems Letters, 8:2853-2858, 2024. ¢

propagation V. Centorrino, F. Bullo, and G. Russo. Similarity matching networks: Hebbian learning and convergence
over multiple time scales. Neural Computation, June 2025. 4. To appear

F. Rossi, V. Centorrino, F. Bullo, and G. Russo. Neural policy composition from free energy minimiza-
tion. Technical report, 2025. 4 arXiv:2512.04745

@ connections with ML
e unsupervised representation learning
o self-attention dynamics and transformers
e structured state space sequence models

S. Betteti, W. Retnaraj, A. Davydov, J. Cortes, and F. Bullo. Competition, stability, and functionality
in excitatory-inhibitory neural circuits. Technical report, 2025c. &, arXiv:2512.05252

© connections with nonconventional and analog computing
e analog implementation of prox gradient descent
e analog implementation of proximal primal-dual gradient descent
e oscillator-based computing

@ stimulus-driven energy models for associative memory

S. Betteti, G. Baggio, F. Bullo, and S. Zampieri. Input-driven dynamics for robust memory retrieval
in Hopfield networks. Science Advances, 11(17), 2025a. d

S. Betteti, G. Baggio, F. Bullo, and S. Zampieri. Firing rate models as associative memory: Excitatory-
inhibitory balance for robust retrieval. Neural Computation, pages 1-32, 08 2025b. d
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