Learning Globally Contracting Dynamics from Demonstrations

Alexander (Sasha) Davydov

Department of Mechanical Engineering, Center for Control, Dynamical Systems & Computation, University of California, Santa Barbara davydovalexander.github.io

Workshop on "Contraction Theory for Systems, Control, Optimization, and Learning" IEEE CDC, Milan, Italy, December 15, 2024

Motivation - Learning motion plans from demonstrations

- Collection of expert demonstrations $\mathcal{D} = \{(x_i, \dot{x}_i)\}_{i=1}^N$
- Learn dynamics $\dot{x} = F(x)$
- Use low-level controller to track

Challenges:

- Ensure trajectories converge
- Robustness to initial condition

Motivation - Learning motion plans from demonstrations

- Collection of expert demonstrations $\mathcal{D} = \{(x_i, \dot{x}_i)\}_{i=1}^N$
- Learn dynamics $\dot{x} = F(x)$
- Use low-level controller to track

Challenges:

- Ensure trajectories converge
- Robustness to initial condition

Enforce contraction globally!

Anonymous. Contractive dynamical imitation policies for efficient out-of-sample recovery. *International Conference on Learning Representations (ICLR)*, 2025. URL https://openreview.net/forum?id=IILEtkWOXD. Under review

Learning contracting dynamics

Parametrization of contracting dynamics. Consider

$$\dot{x} = F(x) = A(x, x^*)(x - x^*),$$
 (ELCD)

Learning contracting dynamics

Parametrization of contracting dynamics. Consider

$$\dot{x} = F(x) = A(x, x^{*})(x - x^{*}),$$
 (ELCD)

• parametrization:

$$A(x,x^{\star}) = -P_s(x,x^{\star})^{\top} P_s(x,x^{\star}) + P_a(x,x^{\star}) - P_a(x,x^{\star})^{\top} - cI_d$$

• P_s, P_a neural networks, x^* learnable equilibrium

Learning contracting dynamics

Parametrization of contracting dynamics. Consider

$$\dot{x} = F(x) = A(x, x^*)(x - x^*),$$
 (ELCD)

• parametrization:

$$A(x,x^{\star}) = -P_s(x,x^{\star})^{\top} P_s(x,x^{\star}) + P_a(x,x^{\star}) - P_a(x,x^{\star})^{\top} - cI_d$$

•
$$P_s, P_a$$
 neural networks, x^* learnable equilibrium

Then exp. convergence in ℓ_2 and contraction wrt Riemannian metric:

$$\|x(t) - x^{\star}\|_{2} \ \leq \ \mathrm{e}^{-ct} \|x(0) - x^{\star}\|_{2} \quad ext{ and } \quad \|x_{1}(t) - x_{2}(t)\|_{2} \leq \kappa \mathrm{e}^{-ct} \|x_{1}(0) - x_{2}(0)\|_{2}$$

S. Jaffe, A. Davydov, D. Lapsekili, A. K. Singh, and F. Bullo. Learning neural contracting dynamics: Extended linearization and global guarantees. In *Advances in Neural Information Processing Systems*, 2024.

Bijective layers for more expressive dynamics

Parametrization alone cannot express all contracting dynamics

Bijective layers for more expressive dynamics

Parametrization alone cannot express all contracting dynamics

Idea: use parametrization in latent space and learn a diffeomorphism to map to data space

$$\dot{x} = A(x, x^*)(x - x^*), \qquad z = g_{\theta}(x)$$

Contraction is preserved under diffeomorphism

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Density estimation using Real NVP. *International Conference on Learning Representations (ICLR)*, 2017. URL https://arxiv.org/pdf/1605.08803.pdf. arXiv preprint arXiv:1605.08803

Table: DTWD on LASA, Pendulum, and Rosenbrock datasets

	SDD	EFlow	NCDS	ELCD
LASA-2D	0.37 ± 0.32	1.05 ± 0.25	0.59 ± 0.61	0.12 ± 0.11
LASA-4D	2.49 ± 2.4	2.24 ± 0.12	2.19 ± 1.23	$\textbf{0.80} \pm \textbf{0.54}$
LASA-8D	5.26 ± 0.50	2.66 ± 0.63	5.04 ± 0.77	1.52 ± 0.61
Pendulum-4D	0.49 ± 0.11	0.17 ± 0.01	1.35 ± 2.26	$\textbf{0.03} \pm \textbf{0.01}$
Pendulum-8D	0.75 ± 0.08	0.33 ± 0.01	2.88 ± 0.69	$\textbf{0.14} \pm \textbf{0.03}$
Pendulum-16D	1.86 ± 0.14	0.45 ± 0.01	1.65 ± 0.31	$\textbf{0.44} \pm \textbf{0.09}$
Rosenbrock-8D	NaN	1.90 ± 0.16	2.74 ± 0.15	$\textbf{1.22} \pm \textbf{0.01}$
Rosenbrock-16D	NaN	3.57 ± 0.66	3.68 ± 0.12	$\textbf{2.57} \pm \textbf{0.09}$