

Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 4 /

Lecture outline	Prototypical Dynamic Vehicle Routing Problem
 Acknowledgements Autonomy and Networking Technologies Prototypical DVR problem Literature review 	Given: • a group of vehicles, and • a set of service demands Objective: provide service in minimum time service = take a picture at location
 Contributions Comparison with alternative approaches Re-optimization Online algorithms 	Vehicle routing(All info known ahead of time, Dantzig '59)Determine a set of paths that allow vehicles to service the demandsDynamic vehicle routing(New info in real time, Psaraftis '88)
 Workshop Structure and Schedule FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 5 / 18 Prototypical Dynamic Vehicle Routing Problem 	 New demands arise in real-time Existing demands evolve over time FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 6 / 18 Prototypical Dynamic Vehicle Routing Problem
Given: • a group of vehicles, and • a set of service demands Objective: provide service in minimum time service = take a picture at location	 Given: a group of vehicles, and a set of service demands Objective: provide service in minimum time service = take a picture at location
Vehicle routing(All info known ahead of time, Dantzig '59)Determine a set of paths that allow vehicles to service the demands	Vehicle routing(All info known ahead of time, Dantzig '59)Determine a set of paths that allow vehicles to service the demands
Dynamic vehicle routing (New info in real time, Psaraftis '88) • New demands arise in real-time • Existing demands evolve over time	Dynamic vehicle routing (New info in real time, Psaraftis '88) • New demands arise in real-time • Existing demands evolve over time

Prototypical Dynamic Vehicle Routing Problem	Light and heavy load regimes
<section-header> Given: a group of vehicles, and a set of service demands Objective: provide service in minimum time service = take a picture at location Vehicle routing (All info known ahead of time, Dantzig '59) Determine a set of paths that allow vehicles to service the demands Dynamic vehicle routing New demands arise in real-time Existing demands evolve over time </section-header>	
ER EF MP KS SIS (IICSR MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore ACC 6 / 18	ER EF MP KS SIS (IICSR MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun 10 @ Raltimore ACC 7 / 18
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 6 / 18	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 7 / 18
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 6 / 18 Lecture outline	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 7 / 18 From coordination and static routing to Dynamic Vehicle Routing
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 6 / 18 Lecture outline 1 Acknowledgements	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 7 / 18 From coordination and static routing to Dynamic Vehicle Routing
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 6 / 18 Lecture outline Acknowledgements Autonomy and Networking Technologies	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 7 / 18 From coordination and static routing to Dynamic Vehicle Routing Dynamic Vehicle Routing Simple coordination problems arise in static environments
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 6 / 18 Lecture outline Acknowledgements Autonomy and Networking Technologies Prototypical DVR problem	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 7 / 18 From coordination and static routing to Dynamic Vehicle Routing Simple coordination problems arise in static environments Image: motion coordination: rendezvous, deployment, flocking Image: task allocation, target assignment
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 6 / 18 Lecture outline Acknowledgements Autonomy and Networking Technologies Prototypical DVR problem Literature review	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 7 / 18 From coordination and static routing to Dynamic Vehicle Routing Dynamic Vehicle Routing Simple coordination problems arise in static environments Image: Coordination rendezvous, deployment, flocking Image: task allocation, target assignment Image: Static vehicle routing (P. Toth and D. Vigo '01)
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 6 / 18 Lecture outline Acknowledgements Autonomy and Networking Technologies Prototypical DVR problem Literature review Contributions	 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 7 / 18 From coordination and static routing to Dynamic Vehicle Routing Dynamic Vehicle Routing Simple coordination problems arise in static environments motion coordination: rendezvous, deployment, flocking task allocation, target assignment static vehicle routing (P. Toth and D. Vigo '01) Routing policies vs planning algorithms

Literature on DVR and queueing for robotic networks Lecture outline • Shortest path through randomly-generated and worst-case points (Beardwood, Halton and Hammersly, 1959 - Steele, 1990) • Traveling salesman problem solvers (Lin, Kernighan, 1973) • DVR formulation on a graph (Psaraftis, 1988) • DVR on Euclidean plane (Bertsimas and Van Ryzin, 1990–1993) Unified receding-horizon policy (Papastavrou, 1996) Recent developments in DVR for robotic networks: 6 Contributions Adaptation and decentralization • Vehicles with dynamics, nonholonomic vehicles, Dubins UAVs Re-optimization • Pickup & delivery tasks Online algorithms Heterogeneous vehicles and team forming • Distinct-priority and impatient demands • Moving demands FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC Contributions of our recent works Bibliography on DVR and queueing for robotic networks 9 K. Savla, E. Frazzoli, and F. Bullo. Traveling Salesperson Problems for the Dubins vehicle. IEEE Transactions on Automatic Control, 53(6):1378-1391, 2008 9 K. Savla, F. Bullo, and E. Frazzoli. Traveling Salesperson Problems for a double integrator. IEEE Transactions on Automatic Control, Comprehensive framework for DVR in robotic systems 54(4):788-793, 2009 9 J. J. Enright, K. Savla, E. Frazzoli, and F. Bullo. Stochastic and dynamic routing problems for multiple UAVs. AIAA Journal of Guidance, adaptive DVR policies for single vehicles in light and heavy load Control, and Dynamics, 34(4):1152-1166, 2009 9 S. L. Smith and F. Bullo. The dynamic team forming problem: Throughput and delay for unbiased policies. Systems & Control Letters, 2 cooperative DVR policies via partitioning 58(10-11):709-715, 2009 9 M. Pavone, N. Bisnik, E. Frazzoli, and V. Isler. A stochastic and dynamic vehicle routing problem with time windows and customer impatience. ACM/Springer Journal of Mobile Networks and Applications, 14(3):350-364, 2009 Scalable distributed partitioning policies under a variety of O A. Arsie, K. Savla, and E. Frazzoli. Efficient routing algorithms for multiple vehicles with no explicit communications. IEEE Transactions communication/interaction scenarios on Automatic Control, 54(10):2302-2317, 2009 9 S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli. Dynamic vehicle routing with priority classes of stochastic demands. SIAM Journal on (models, algorithms and analysis of) service vehicles with dynamics Control and Optimization, 48(5):3224-3245, 2010 M. Pavone, K. Savla, and E. Frazzoli. Sharing the load. IEEE Robotics and Automation Magazine, 16(2):52-61, 2009 & stochastic and combinatorics of nonholonomic Dubins vehicles 9 M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo. Equitable partitioning policies for mobile robotic networks. IEEE Transactions on Automatic Control, 2010. (Submitted Dec 2008 and Aug 2009) to appear performing Traveling Salesman Problems and DVR tasks M. Pavone, E. Frazzoli, and F. Bullo. Distributed and adaptive algorithms for vehicle routing in a stochastic and dynamic environment IEEE Transactions on Automatic Control, May 2010. (Submitted, Apr 2009) to appear (models, algorithms and analysis of) service vehicles with time 9 S. D. Bopardikar, S. L. Smith, F. Bullo, and J. P. Hespanha. Dynamic vehicle routing for translating demands: Stability analysis and receding-horizon policies. IEEE Transactions on Automatic Control, 55(11), 2010. (Submitted, Mar 2009) to appear constraints and heterogeneous priorities @ S. D. Bopardikar, S. L. Smith, and F. Bullo. On vehicle placement to intercept moving targets. Automatica, March 2010. Submitted (models, algorithms and analysis of) demands requiring service by 9 F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith. Dynamic vehicle routing for robotic systems. Proceedings of the IEEE, May 2010 Submitted multiple heterogeneous vehicles simultaneously. 9 H. A. Waisanen, D. Shah, and M. A. Dahleh. A dynamic pickup and delivery problem in mobile networks under information constraints. IEEE Transactions on Automatic Control, 53(6):1419-1433, 2008 B. Szechtman, M. Kress, K. Lin, and D. Cfir, Models of sensor operations for border surveillance. Naval Research Logistics, 55(1):27-41. 2008 S. Itani. Dynamic Systems and Subadditive Functionals. PhD thesis, Massachusetts Institute of Technology, 2009

Lecture outline	Plain-vanilla re-optimization?
 Acknowledgements 	
2 Autonomy and Networking Technologies	Example: DVR on segment
3 Prototypical DVR problem	waiting time
Literature review	• Strategy: re-optimize at each event
5 Contributions	
 6 Comparison with alternative approaches • Re-optimization 	• For adversarial target generation, vehicle travels forever without ever servicing any request \implies unstable queue of outstanding requests
 Online algorithms 	② Even if queue remains bounded, what about performance? how far
Workshop Structure and Schedule	from the optimal?
ER EE MP KS SIS (IICSR MIT) Dynamic Vakida Routing (Lacture 1/8) 20iun10 @ Raltimore ACC 14 / 18	FR FF MP KS SIS (IICSR MIT) Dynamic Vahicla Routing (Lecture 1/8) 20jun10 @ Raltimore ACC 15 / 18
Plain-vanilla re-optimization?	Plain-vanilla re-ontimization?
Example: DVR on segment Objective: minimize average 	Example: DVR on segment
waiting time 0 0.5 1	waiting time 0 0.5 1
• Strategy: re-optimize at each event	• Strategy: re-optimize at each event
● For adversarial target generation, vehicle travels forever without ever servicing any request ⇒ unstable queue of outstanding requests	• For adversarial target generation, vehicle travels forever without ever servicing any request \implies unstable queue of outstanding requests
Even if queue remains bounded, what about performance? how far from the optimal?	Even if queue remains bounded, what about performance? how far from the optimal?

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 15 / 18 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 15 / 18

Plain-vanilla re-optimization?

Example: DVR on segment

waiting time

event

• Objective: minimize average

• Strategy: re-optimize at each

Plain-vanilla re-optimization?

Example: DVR on segment

- Objective: minimize average waiting time
- Strategy: re-optimize at each event

- For adversarial target generation, vehicle travels forever without ever servicing any request ⇒ unstable queue of outstanding requests
- 2 Even if queue remains bounded, what about performance? how far from the optimal?

Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC

Plain-vanilla re-optimization?

Example: DVR on segment

FB, EF, MP, KS, SLS (UCSB, MIT)

- Objective: minimize average waiting time
- Strategy: re-optimize at each event
- 0 0.5 1

Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC

0.5

- For adversarial target generation, vehicle travels forever without ever servicing any request ⇒ unstable queue of outstanding requests
- ② Even if queue remains bounded, what about performance? how far from the optimal?

Plain-vanilla re-optimization?

Example: DVR on segment

event

FB, EF, MP, KS, SLS (UCSB, MIT)

15 / 18

• Objective: minimize average waiting time

• Strategy: re-optimize at each

↓ ↓ ↓
0 0.5 1

- For adversarial target generation, vehicle travels forever without ever servicing any request ⇒ unstable queue of outstanding requests
- ② Even if queue remains bounded, what about performance? how far from the optimal?

Online algorithms?

Lecture outline

Workshop Structure and Schedule

8:00-8:30am	Coffee Break	
8:30-9:00am	Lecture $#1$:	Intro to dynamic vehicle routing
9:05-9:50am	Lecture #2:	Prelims: graphs, TSPs and queues
9:55-10:40am	Lecture #3:	The single-vehicle DVR problem
10:40-11:00am	Break	
11:00-11:45pm	Lecture $#4:$	The multi-vehicle DVR problem
11:45-1:10pm	Lunch Break	
1:10-2:10pm	Lecture $#5$:	Extensions to vehicle networks
2:15-3:00pm	Lecture $\#6$:	Extensions to different demand models
3:00-3:20pm	Coffee Break	
3:20-4:20pm	Lecture $\#7$:	Extensions to different vehicle models
4:25-4:40pm	Lecture $#8:$	Extensions to different task models
4:45-5:00pm		Final open-floor discussion

Graph Theory Review

Graph Theory Review

- An undirected graph G = (V, E).
- a path in G is a sequence $v_1, e_1, v_2, \ldots, v_k, e_k, v_{k+1}$, with
 - $e_i \neq e_j$ for $i \neq j$.
 - $v_i \neq v_i$ for all $i \neq j$.
- A circuit or cycle has $v_1 = v_{k+1}$.
- A Hamiltonian path is a path that contains all vertices.
- Similarly define a Hamiltonian cycle or tour.

- An undirected graph G = (V, E).
- a path in G is a sequence $v_1, e_1, v_2, \ldots, v_k, e_k, v_{k+1}$, with
 - $e_i \neq e_j$ for $i \neq j$.
 - $v_i \neq v_i$ for all $i \neq j$.
- A circuit or cycle has $v_1 = v_{k+1}$.
- A Hamiltonian path is a path that contains all vertices.
- Similarly define a Hamiltonian cycle or tour.

Graph Theory Review

- An undirected graph G = (V, E).
- a path in G is a sequence $v_1, e_1, v_2, \ldots, v_k, e_k, v_{k+1}$, with
 - $e_i \neq e_j$ for $i \neq j$.
 - $v_i \neq v_j$ for all $i \neq j$.
- A circuit or cycle has $v_1 = v_{k+1}$.
- A Hamiltonian path is a path that contains all vertices.
- Similarly define a Hamiltonian cycle or tour.

Weighted Graphs

A weighted graph G = (V, E, c) has edge weights c : E → ℝ_{>0}.
In a complete graph, E = V × V.

Special classes of complete weighted graphs:

• Metric if

$$c(\{v_1, v_2\}) + c(\{v_2, v_3\}) \ge c(\{v_1, v_3\})$$
 for all $v_1, v_2, v_3 \in V$.

• Euclidean if

FB, EF, MP, KS, SLS (UCSB, MIT)

$$V \subset \mathbb{R}^d$$
 and $c(\{v_i, v_j\}) = ||v_i - v_j||_2.$

Dynamic Vehicle Routing (Lecture 2/8)

Minimum Spanning Tree

Minimum Spanning Tree

FB FF MP KS SLS (UCSB MIT)

(1) is a tree

- A tree is a graph with no cycles
- A spanning tree of G is a subgraph that

29iun10 @ Baltimore, ACC

2 connects all vertices together

Minimum Spanning Tree Problem

Given: a weighted graph G - (V, E, c)Task: find a spanning tree $T = (E_T, V_T)$ such that $\sum_{e \in E_T} c(e)$ is minimum.

Dynamic Vehicle Routing (Lecture 2/8)

Can be solved in greedy fashion using Kruskal's algorithm:

- Recursively adds shortest edge that does not create a cycle
- Runs in $O(n^2)$ time (where |V| = n)

Minimum Spanning Tree

- A tree is a graph with no cycles
 A spanning tree of G is a subgraph
- that
 - is a tree
 - 2 connects all vertices together

Minimum Spanning Tree Problem

Given: a weighted graph G - (V, E, c)Task: find a spanning tree $T = (E_T, V_T)$ such that $\sum_{e \in E_T} c(e)$ is minimum.

Can be solved in greedy fashion using Kruskal's algorithm:

- Recursively adds shortest edge that does not create a cycle
- Runs in $O(n^2)$ time (where |V| = n)

FB, EF, MP, KS, SLS (UCSB, MIT)

29jun10 @ Baltimore, ACC

Hamiltonian Cycle Decision Problem	Outline
 Hamiltonian Cycle Given: An undirected graph G. Question: Does G contain a Hamiltonian cycle? Hamiltonian Cycle is NP-complete (One of Karp's 21 NP-complete problems) Recall, a problem is NP-complete if Every solution can be verified in polynomial time (NP). Every problem in NP can be reduced to it. 	 Graph Theory The Traveling Salesman Problem Approximation Algorithms Metric TSP Euclidean TSP Queueing Theory
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 8 / 29	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 9 / 29
Traveling Salesman Problem	Approximation Algorithms for the TSP
 Traveling Salesman Problem (TSP) Given: A complete graph G_n = (V_n, E_n) and weights c : E_n → ℝ_{>0}. Task: Find a Hamiltonian cycle with minimum weight. TSP is NP-hard To show NP-hard: Reduce Hamiltonian Cycle to TSP. Given an undirected graph G = (V, E) with V = n: Construct complete graph G_n with weight 1 for each edge in E and weight 2 for all other edges. Then G is Hamiltonian ⇔ optimum TSP tour has length n. 	 Theorem (Sahni and Gonzalez, 1976) Unless P = NP, there is no k-factor approx alg for the TSP for any k ≥ 1. Proof Idea: k-factor approx would imply poly time algorithm for Hamiltonian Cycle. In practice for metric and non-metric problems: Heuristic: Lin-Kernighan based solvers (Lin and Kernighan, 1973) Empirically ~ 5% of optimal in O(n^{2.2}) time. Exact: Concorde TSP Solver (Applegate, Bixby, Chvatal, Cook, 2007) Exact solution of Euclidean TSP on 85, 900 points!

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 10 / 29 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 11 / 29

Metric TSP

Metric TSP

Given: A complete metric graph $G_n = (V_n, E_n)$ Task: Find a Hamiltonian cycle with minimum weight.

Eulerian Graphs

- Eulerian graph: degree of each vertex is even
- Eulerian walk: Closed walk containing every edge.
- Graph has Eulerian walk \Leftrightarrow Eulerian.
- Eulerian walk can be computed in O(|V| + |E|) time.

Double-Tree Algorithm

Double-Tree Algorithm

Double-Tree Algorithm

- 1: Find a minimum spanning tree T of graph G_n .
- 2: \overline{G} := graph containing two copies of each edge in T.
- 3: Compute Eulerian walk in Eulerian graph \overline{G} .
- 4: Walk gives ordering, ignore all but first occurrence of vertex.

Theorem

Double-Tree Algorithm is a 2-approx algorithm for the Metric TSP. Its running time is $O(n^2)$.

- Deleting one edge from a tour gives a spanning tree.
- Thus minimum spanning tree is shorter than optimal tour.
- Each edge is doubled.
- Spanning tree can be computed in $O(n^2)$ time.
- Eulerian walk computed in O(n) time.

Christofides' Algorithm

Christofides' Algorithm

MP KS SLS (UCSB MIT)

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in T.
- 3: Find the minimum weight perfect matching M in subgraph generated by W.
- 4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in T.
- 3: Find the minimum weight perfect matching M in subgraph generated by W.

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC

4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in \mathcal{T} .
- 3: Find the minimum weight perfect matching M in subgraph generated by W.
- 4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in T.
- 3: Find the minimum weight perfect matching M in subgraph generated by W.
- 4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in T.
- 3: Find the minimum weight perfect matching M in subgraph generated by W.
- 4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in \mathcal{T} .
- 3: Find the minimum weight perfect matching M in subgraph generated by W.
- 4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm	Euclidean TSP
Theorem Christofides' Algorithm gives a 3/2-approx algorithm for the Metric TSP. Its running time is $O(n^3)$. • $L(Christofides) = L(MST) + L(M)$. • But, $L(MST) < L(TSP)$, and • $L(M) \le L(M') \le L(TSP)/2$. Where M' is the minimum perfect matching of W using edges that are part of TSP.	Theorem (Arora, 1998; Mitchell, 1999) For each fixed $\epsilon > 0$, a $(1 + \epsilon)$ -approximate solution can be found in $O(n^3(\log n)^c)$ time. Practical value limited to due c 's dependence on ϵ .
Best known approx algorithm for Metric TSP	
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 17 / 29	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 18 / 29
Length Bounds for Euclidean TSP	Worst-case TSP Length Upper Bound (Intuition)
	• Consider $Q_n := \{x_1, \ldots, x_n\}$ of <i>n</i> points in unit square. • There exists $c > 0$ such that
How long is the TSP tour through <i>n</i> points in unit square?	$\min\left\{\ x_i - x_j\ : x_i, x_j \in Q_n\right\} \le \frac{c}{\sqrt{n}}.$
Theorem (Few, 1955) For every set Q_n of n points in the unit square	• There exists $c > c$ such that $\min \{ x_i - x_j : x_i, x_j \in Q_n \} \le \frac{c}{\sqrt{n}}.$ • Let ℓ_n denote worst-case TSP length through n pts. • Then $\ell_n \le \ell_{n-1} + 2c/\sqrt{n}.$
Theorem (Few, 1955) For every set Q_n of n points in the unit square ETSP $(Q_n) \le \sqrt{2n} + 7/4$.	$\min \{ \ x_i - x_j\ : x_i, x_j \in Q_n \} \le \frac{c}{\sqrt{n}}.$ • Let ℓ_n denote worst-case TSP length through n pts. • Then $\ell_n \le \ell_{n-1} + 2c/\sqrt{n}.$ • Summing we get $\ell(n) \le C\sqrt{n}.$

TSP Length for Random Points

Summary of Traveling Salesman Problem

Theorem (Beardwood, Halton, and Hammersley, 1959)

Let Q_n be a set of n i.i.d. random variables with compact support in \mathbb{R}^d and distribution $\varphi(x)$. Then, with prob. 1

$$\lim_{n \to +\infty} \frac{\mathsf{ETSP}(Q_n)}{n^{(d-1)/d}} = \beta_{\mathsf{TSP},d} \int_{\mathbb{R}^d} \bar{\varphi}(x)^{(d-1)/d} dx,$$

where $\beta_{\text{TSP},d}$ is a constant independent of φ , and $\overline{\varphi}$ is absolutely continuous part of φ .

For uniform distribution in square of area A

FB, EF, MP, KS, SLS (UCSB, MIT)

3 Queueing Theory

Kendall's Notation

Little's Law and Load Factor

Outline

$$rac{\mathsf{ETSP}(Q_n)}{\sqrt{n}} o eta_{\mathsf{TSP},2} \sqrt{A} \quad ext{as} \ n o +\infty.$$

Best estimate of $\beta_{\text{TSP},2}$ is Percus and Martin, 1996

$$\beta_{\text{TSP},2} \simeq 0.7120.$$

Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC

- Solving TSP is *NP*-hard, and no approx algorithms exist.
- For metric TSP, still NP-hard but good approx algs exist.
- For Euclidean TSP, very good heuristics exist.
- Length of tour through *n* points in unit square:
 - Worst-case is $\Theta(\sqrt{n})$.
 - Uniform random is $\Theta(\sqrt{n})$.
 - For all density functions $O(\sqrt{n})$.

Basic Queueing Model

• Customers arrive, wait in a queue, and are then processed

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC

• Queue length builds up when arrival rate is larger than service rate

- Arrivals modeled as stochastic process with rate λ
- Service time of each customer is a r.v. with finite mean \overline{s} and second moment $\overline{s^2}$.
- Service rate is $1/\bar{s}$.

Queueing Notation	Little's Law and Load Factor	
 Kendall's Queueing notation A/B/C: A = the arrival process B = the service time distribution C = the number of servers 	Define: • average wait-time in queue as \overline{W} • average system as $\overline{T} := \overline{W} + \overline{s}$.	
 Main codes: D = Deterministic M = Markovian for arrivals: Poisson process for service times: Exponential distribution G (or GI) = General distribution (independent among customers) Example M/G/m queue: Poisson arrivals with rate λ General service times with mean s m servers 	Little's Law/Theorem For a stable queue $\overline{N} = \lambda \overline{W}$ • For <i>m</i> servers, define load factor as $\varrho := \frac{\lambda \overline{s}}{m}$ • Necessary condition for stable queue is $\varrho < 1$.	
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 25 / 29	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 26 / 29	
Wait-time examples	Lecture outline	
For $M/D/1$ queue: $\overline{W} = \frac{\varrho \overline{s}}{2(1-\varrho)}$ For $M/G/1$ queue: $\overline{W} = \frac{\lambda \overline{s^2}}{2(1-\varrho)}$	 Graph Theory Weighted Graphs Minimum Spanning Tree 2 The Traveling Salesman Problem Approximation Algorithms Metric TSP 	
For $G/G/1$ queue (Kingman, 1962): $\overline{W} \leq \frac{\lambda(\sigma_a^2 + \sigma_s^2)}{2(1-\varrho)}$	 Euclidean TSP Queueing Theory Kendall's Notation 	
For $G/G/1$ queue (Kingman, 1962): $\overline{W} \leq \frac{\lambda(\sigma_a^2 + \sigma_s^2)}{2(1-\varrho)}$ and the upper bound becomes exact as $\varrho \to 1^-$.	 Euclidean TSP Queueing Theory Kendall's Notation Little's Law and Load Factor 	

FB, EF, MP, KS, SLS (UCSB, MIT)

General queueing-theoretical model for DVR $1/2$	General queueing-theoretical model for DVR $2/2$
 Arrival process: spatio-temporal Poisson time intensity λ > 0 spatial density φ: ℙ[demand in S] = ∫_S φ(x) dx inter-arrival times and locations are i.i.d. Service model: <i>m</i> holonomic vehicles with maximum velocity <i>v</i> vehicles provide a random on-site service on-site service times are i.i.d. (equal on average to 3) demand removed from the system upon on-site service completion 	Performance measure: steady-state system time of demands \overline{T} Problem statement Solve optimization problem over all causal routing policies π : $\inf_{\pi} \overline{T}_{\pi}$
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC 4 / 25	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC 5 / 25
Relation to standard queueing systems	Relation to standard queueing systems
 DVR model close to M/G/m queue key difference: service times are not i.i.d. in general 	 DVR model close to M/G/m queue key difference: service times are not i.i.d. in general
 Service time correlations in DVR: service time = travel time + on-site service FCFS policy unconditional expected travel time between two consecutive demands ≈ 0.52. conditional expected travel time between two consecutive demands > 0.52. 	 Service time correlations in DVR: service time = travel time + on-site service FCFS policy unconditional expected travel time between two consecutive demands ≈ 0.52. conditional expected travel time between two consecutive demands > 0.52.
	M/G/m methodology is not applicable!

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC 6 / 25 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC 6 / 25

A first look at the problem: stability	Analysis approach
• $\lambda \cdot \mathbb{E}[\text{service time}]/m$ fraction of time each vehicle is busy Necessary condition for stability: System is stable if $\lambda \cdot \mathbb{E}[\text{service time}]/m < 1$. Since $\overline{s} \leq \mathbb{E}[\text{service time}]$, a weaker necessary condition is: $\varrho = \lambda \overline{s}/m < 1$ Sufficient condition for stability: Surprisingly, $\varrho < 1$ is also sufficient for stability \Longrightarrow stability condition is independent of the size and shape of Q	 Lack of i.i.d. property substantially complicates analysis General approach: lower bounds on performance, independent of algorithms, design of algorithms and upper bound on their performance, possibly in asymptotic regimes (i.e., ρ → 0⁺ and ρ → 1⁻)
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC 7 / 25	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC 8 / 25
Lecture outline	Light-load lower bound
 Queueing-theoretical model for DVR Lower bounds on performance (m=1) Control policies D. J. Bertsimas and G. J. van Ryzin. A stochastic and dynamic vehicle routing problem in the Euclidean plane. Operations Research, 39:601–615, 1991 D. J. Bertsimas and G. J. van Ryzin. Stochastic and dynamic vehicle routing with general interarrival and service time distributions. Advances in Applied Probability, 25:947–978, 1993 	Median • minimizer p^* of $p \mapsto \int_{\mathcal{Q}} x - p \varphi(x) dx = \mathbb{E}_{\varphi}[X - p]$ • best a priori location to reach next demand Lower bound (most useful when $\lambda \to 0^+$) For all policies π : $\overline{T}_{\pi} \ge \mathbb{E}_{\varphi}[X - p^*]/v + \overline{s}$ Proof sketch: • $\overline{T} = W_{\text{travel}} + \overline{W}_{\text{on-site}} + \overline{s}$. • $\overline{W}_{\text{travel}} \ge \mathbb{E}_{\varphi}[X - p^*]/v$

Light-load lower bound

Median

• minimizer p^* of

$$p\mapsto \int_{\mathcal{Q}} \|x-p\|\varphi(x)dx = \mathbb{E}_{\varphi}[\|X-p\|]$$

• best a priori location to reach next demand

Lower bound (most useful when $\lambda \rightarrow 0^+$)

For all policies
$$\pi$$
: $\overline{T}_{\pi} \geq \mathbb{E}_{\varphi}[\|X - p^*\|]/v + \overline{s}$

Proof sketch:

•
$$\overline{T} = \overline{W}_{\text{travel}} + \overline{W}_{\text{on-site}} + \overline{s}$$

• $W_{\text{travel}} \geq \mathbb{E}_{\omega}[\|X - p^*\|]/v$

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC

Light-load lower bound

Median

• minimizer p^* of

$$p\mapsto \int_{\mathcal{Q}} \|x-p\|\varphi(x)dx = \mathbb{E}_{\varphi}[\|X-p\|]$$

• best a priori location to reach next demand

Lower bound (most useful when $\lambda \rightarrow 0^+$)

For all policies π : $\overline{T}_{\pi} \geq \mathbb{E}_{\varphi}[\|X - p^*\|]/v + \overline{s}$

Proof sketch:

•
$$\overline{T} = \overline{W}_{\text{travel}} + \overline{W}_{\text{on-site}} + \overline{s}$$
.

• $\overline{W}_{\text{travel}} > \mathbb{E}_{\wp}[||X - p^*||]/v$

Light-load lower bound

Median

• minimizer p^* of

$$p\mapsto \int_{\mathcal{Q}}\|x-p\|arphi(x)dx=\mathbb{E}_{arphi}[\|X-p\|]$$

• best a priori location to reach next demand

Lower bound (most useful when $\lambda ightarrow 0^+$)

For all policies
$$\pi \colon \overline{\mathcal{T}}_\pi \geq \mathbb{E}_{arphi}[\| \mathsf{X} - \mathsf{p}^* \|]/\mathsf{v} + ar{\mathsf{s}}$$

Proof sketch:

• $\overline{T} = \overline{W}_{\text{travel}} + \overline{W}_{\text{on-site}} + \overline{s}$ • $\overline{W}_{\text{travel}} \geq \mathbb{E}_{\omega}[\|X - p^*\|]/v$

Light-load lower bound

Median

10 / 25

• minimizer p^* of

$$p\mapsto \int_{\mathcal{Q}} \|x-p\|\varphi(x)dx = \mathbb{E}_{\varphi}[\|X-p\|]$$

• best a priori location to reach next demand

Lower bound (most useful when $\lambda
ightarrow 0^+$)

For all policies π : $\overline{T}_{\pi} \geq \mathbb{E}_{\varphi}[||X - p^*||]/v + \overline{s}$

Proof sketch:

• $\overline{T} = \overline{W}_{\text{travel}} + \overline{W}_{\text{on-site}} + \overline{s}$. • $\overline{W}_{\text{travel}} \geq \mathbb{E}_{\omega}[\|X - p^*\|]/v$

10 / 25

Heavy-load lower bound

Definition (Spatially-biased and -unbiased policies)

- A policy π is said to be
- *spatially unbiased* if system time is independent of demand location
- **2** spatially biased if system time depends on demand location

Fleavy-load lower bound spatially-unbiased policies: $\overline{T}_{\pi} \geq \frac{\beta_{\text{TSP}}^2}{2} \frac{\lambda \left(\int_{\mathcal{Q}} \varphi^{1/2}(x) dx\right)^2}{v^2 (1-\varrho)^2} \text{ as } \varrho \to 1^$ spatially-biased policies: $\overline{T}_{\pi} \geq \frac{\beta_{\text{TSP}}^2}{2} \frac{\lambda \left(\int_{\mathcal{Q}} \varphi^{2/3}(x) dx\right)^3}{v^2 (1-\varrho)^2} \text{ as } \varrho \to 1^-$

Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC

Heavy-load lower bound

Definition (Spatially-biased and -unbiased policies)

A policy π is said to be

- spatially unbiased if system time is independent of demand location
- 2 spatially biased if system time depends on demand location

Heavy-load lower bound

spatially-unbiased policies:
$$\overline{T}_{\pi} \geq \frac{\beta_{\text{TSP}}^2}{2} \frac{\lambda \left(\int_{\mathcal{Q}} \varphi^{1/2}(x) dx\right)^2}{v^2 (1-\varrho)^2} \text{ as } \varrho \to 1^-$$

spatially-biased policies: $\overline{T}_{\pi} \geq \frac{\beta_{\text{TSP}}^2}{2} \frac{\lambda \left(\int_{\mathcal{Q}} \varphi^{2/3}(x) dx\right)^3}{v^2 (1-\varrho)^2} \text{ as } \varrho \to 1^-$

Dynamic Vehicle Routing (Lecture 3/8)

29jun10 @ Baltimore, ACC

11 / 25

Proof sketch (for unbiased policies)

Proof of the lower bound:

FB, EF, MP, KS, SLS (UCSB, MIT)

- the idea is to use **stability arguments** (which are independent of policies!)
- let \overline{D} be the travel inter-demand distance
- one can show that

$$\overline{D} \geq eta_{ ext{TSP}} \, rac{\int_{\mathcal{Q}} arphi^{1/2}(x) dx}{\sqrt{2\,\overline{N}}} \qquad ext{as } arrho o 1^-$$

with \overline{N} average number of waiting demands

• for stability:

$$ar{s} + rac{\overline{D}}{v} \leq rac{1}{\lambda} \implies ar{s} + eta_{ ext{TSP}} \, rac{\int_{\mathcal{Q}} arphi^{1/2}(x) dx}{v \sqrt{2 \, \overline{N}}} \leq 1/\lambda$$

• since $\overline{N} = \lambda \overline{W}$ and $\overline{T} = \overline{W} + \overline{s}$ one obtains:

Lecture outline

FB, EF, MP, KS, SLS (UCSB, MIT)

11 / 25

- Queueing-theoretical model for DVR
- 2 Lower bounds on performance (m=1)

3 Control policies

D. J. Bertsimas and G. J. van Ryzin. A stochastic and dynamic vehicle routing problem in the Euclidean plane. $Operations\ Research,\ 39:601-615,\ 1991$

D. J. Bertsimas and G. J. van Ryzin. Stochastic and dynamic vehicle routing with general interarrival and service time distributions. *Advances in Applied Probability*, 25:947–978, 1993

M. Pavone, E. Frazzoli, and F. Bullo. Distributed and adaptive algorithms for vehicle routing in a stochastic and dynamic environment. *IEEE Transactions on Automatic Control*, May 2010. (Submitted, Apr 2009) to appear

An optimal light load policy

Stochastic Queueing Median (SQM) Compute median p^* . Then:

- 1: service demands in FCFS order
- 2: return to p^* after each service is completed

Optimality of SQM policy

 $\lim_{\lambda \to 0^+} \overline{\mathcal{T}}_{\mathsf{SQM}} / \overline{\mathcal{T}}^* = 1$

Then:

- As $\lambda \to 0^+$, \mathbb{P} [demand generated when system is empty] $\to 1$
- \Rightarrow all demands generated with the vehicle at p^*
- $\Rightarrow \overline{T}_{SOM} = \mathbb{E}_{\omega}[||X p^*||]/v + \overline{s}$

An opti

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC

An optimal light load policy

Stochastic Queueing Median (SQM)

- Compute median p^* . Then:
- 1: service demands in FCFS order
- 2: return to p^* after each service is completed

Optimality of SQM policy

$$\lim_{\lambda
ightarrow 0^+} \overline{T}_{\mathsf{SQM}}/\overline{T}^* = 1$$

Proof sketch

- As $\lambda \to 0^+$, \mathbb{P} [demand generated when system is empty] $\to 1$
- \Rightarrow all demands generated with the vehicle at p^*

$$\mathbf{P} \Rightarrow \overline{T}_{\mathsf{SQM}} = \mathbb{E}_{\varphi}[\|X - p^*\|]/v + \overline{s}$$

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC 14 / 25 14 / 25

• standard results give upper bound on the wait in queue for a set

• then easy to find upper bound for individual demands

An optimal spatially-unbiased heavy-load policyProofUnbiased TSP (UTSP)Partition
$$Q$$
 into r subregions Q_k with $\int_{Q_k} \varphi(x) dx = 1/r$.Partition Q into r subregion form sets of size n/r • idea: reduction to GI/G/1 queue1: within each subregion form sets of size n/r • idea: reduction to GI/G/1 queue2: deposit sets in a queue• inter-arrival distribution is Erlang of order n 3: service sets FCFS by following a TSP tour• expected service time is $n\bar{s} + \beta_{\text{TSP}} \sqrt{n} \int_Q \varphi^{1/2}(x) dx/v$

Optimality of UTSP policy

$$\lim_{\varrho \to 1^{-}} \overline{T}_{\mathsf{UTSP}}(r) / \overline{T}_{\mathsf{U}}^* \leq 1 + 1/r$$

Comments

Relation with non-spatial queueing systems:

- wait time grows as $(1 \varrho)^{-2}$ instead of $(1 \varrho)^{-1}!$
- DVR problems are fundamentally different from traditional queueing systems (techniques, results, etc.)

Analysis techniques:

- for light load: locational optimization
- for heavy load: reduction to classic queueing systems or control-theoretical methods

Biased/unbiased:

FB, EF, MP, KS, SLS (UCSB, MIT)

 \bullet biased service provides strict reduction of optimal system time for any non-uniform φ

Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC

Adaptivity

SQM policy not adaptive:

- SQM unstable as $\varrho \to 1^-$
- \bullet intuition: average per-demand travel \overline{D} is fixed
- but stability condition implies $\overline{D} < (1 \varrho)/\lambda!$

UTSP and BTSP policies not adaptive:

• for stability of the queue of sets:

$$\frac{\lambda}{n} \Big(n \,\overline{s} + \beta_{\mathrm{TSP}} \sqrt{n} \, \int_{\mathcal{Q}} \varphi^{1/2}(x) dx / v \Big) < 1$$

• then one should a priori select:

$$n > \lambda^2 \beta_{\mathrm{TSP}}^2 \left[\int_{\mathcal{Q}} \varphi^{1/2}(x) \, dx \right]^2 / (v^2 \, (1-\varrho)^2)$$

 ⇒ wrong selection of n might lead to instability or unacceptable deterioration in performance

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC

Divide & Conquer policy

DC policy (with $r \to +\infty$)

Implementation:

• NP-hard computation, but effective heuristics

Adaptation: the policy does not require knowledge of

- **1** vehicle velocity v, environment Q
- **2** arrival rate λ
- **3** expected on-site service \overline{s}

Performance:

- In light load, delay is optimal
- In heavy load, delay is optimal
- Stable in any load condition

(UCSB. MIT)

optimal and adaptive very little known outside of asymptotic regimes

Proof (r=1)

Light load:

• $\tilde{p}^*
ightarrow p^*$ and recovers SQM

Heavy load:

- no well-defined notion of "*j*th customer"
- focus on dynamical system

$$\mathbb{E}[n_{i+1}] \leq \lambda \mathbb{E}\left[\sum_{q=1}^{n_i} s_q + \mathrm{TSP}(n_i)\right]$$
$$\leq \lambda \left(\bar{s} \mathbb{E}[n_i] + \beta_{\mathrm{TSP}} \int_{\mathcal{Q}} \varphi^{1/2}(x) dx \sqrt{\mathbb{E}[n_i]} / v\right]$$

• upper bound trajectories with the trajectories of virtual dynamical system

$$z_{i+1} = \varrho \, z_i + (\lambda/\nu) \, \beta_{\mathrm{TSP}} \int_{\mathcal{Q}} \varphi^{1/2}(x) dx \, \sqrt{z_i}$$

• $\overline{T}_{\mathsf{DC}} \leq \lim_{i \to +\infty} z_i / \lambda$

Receding-Horizon policy

Receding-Horizon (RH)

For $\eta \in (0,1]$, single agent performs:

- 1: while no customers, move to empirical median ${\widetilde{p}}^*$
- 2: while customers waiting
 - O compute TSP tour through current demands
 - 2 service $\eta\text{-}\mathrm{fraction}$ of path

RH policy	Lecture outline
 Implementation: NP-hard computation, but effective heuristics Adaptation: the policy does not require knowledge of vehicle velocity ν, environment Q arrival rate λ and spatial density function φ expected on-site service s 	1 Queueing-theoretical model for DVR
 Performance: in light load, delay is optimal in heavy load, delay is within a multiplicative factor from optimal multiplicative factor depends upon φ and is conjectured to equal 2 	 3 Control policies
adaptive to all parameters	

DESIGN of performance metrics

- I how to cover a region with n minimum-radius overlapping disks?
- I how to design a minimum-distortion (fixed-rate) vector quantizer?
- Where to place mailboxes in a city / cache servers on the internet?

ANALYSIS of cooperative distributed behaviors

how do animals share territory? how do they decide foraging ranges?

29jun10 @ Baltimore, ACC

how do they decide nest locations?

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8)

- What if each robot goes to "center" of own dominance region?
- What if each robot moves away from closest vehicle?

Optimal partitioning

The Voronoi partition $\{V_1, \ldots, V_n\}$ generated by points (p_1, \ldots, p_n)

$$V_i(p) = \{x \in \mathcal{Q} | ||x - p_i|| \le ||x - p_j||, \forall j \neq i\}$$

= $\mathcal{Q} \bigcap_j$ (half plane between *i* and *j*, containing *i*)

Descartes 1644. Dirichlet 1850. Voronoi 1908. Thiessen 1911. Fortune 1986 (sweepline algorithm $O(n \log(n))$)

Multi-center functions

Expected wait time (in light load)

$$\mathcal{H}(p, v) = \int_{V_1} \|x - p_1\| dx + \dots + \int_{V_n} \|x - p_n\| dx$$

• *n* robots at $p = \{p_1, ..., p_n\}$ • environment is partitioned into $v = \{v_1, \ldots, v_n\}$

$$\mathcal{H}(p, v) = \sum_{i=1}^{n} \int_{V_i} f(\|x - p_i\|)\varphi(x)dx$$

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8)

• $f : \mathbb{R}_{>0} \to \mathbb{R}$ penalty function

• $\varphi: \mathbb{R}^2 \to \mathbb{R}_{>0}$ density

F. Bullo, J. Cortés, and S. Martínez. Distributed Control of Robotic Networks. Applied Mathematics Series. Princeton University Press, 2009. Available at http://www.coordinationbook.info

Optimal centering (for region v with density φ)

online

Encyclopedia of

Triangle Centers

From

function of p

 $p \mapsto \int_{\mathcal{X}} \|x - p\|\varphi(x)dx$ $p\mapsto \int_{\mathcal{U}}\|x-p\|^2\varphi(x)dx$

 $p \mapsto \operatorname{area}(v \cap \operatorname{disk}(p, r))$

- $p \mapsto$ radius of largest disk centered incenter at p enclosed inside v
- $p \mapsto$ radius of smallest disk cen- circumcenter tered at p enclosing v

minimizer = center

median (or Fermat–Weber point)

29jun10 @ Baltimore, ACC

6 / 27

centroid (or center of mass)

r-area center

From optimality conditions to algorithms

For convex planar set $\mathcal Q$ with strictly positive density φ ,

$$\mathcal{H}_{\mathsf{FW}}(p) = \int_{\mathcal{Q}} \|p - x\|\varphi(x)dx$$

• \mathcal{H}_{FW} is strictly convex

FB, EF, MP, KS, SLS (UCSB, MIT)

- 2 the global minimum point is in ${\cal Q}$ and is called median of ${\cal Q}$
- S compute median via gradient flow with

$$\frac{d}{dp}\mathcal{H}_{\mathsf{FW}}(p) = \int_{\mathcal{Q}} \frac{p-x}{\|p-x\|} \varphi(x) dx$$

$$\mathcal{H}(p,v) = \sum_{i=1}^n \int_{v_i} f(\|x-p_i\|)\varphi(x)dx$$

Theorem (Alternating Algorithm, Lloyd '57)

- **1** at fixed positions, optimal partition is Voronoi
- **2** at fixed partition, optimal positions are "generalized centers"
- alternate v-p optimization

 \implies local optimum = center Voronoi partition

Gradient algorithm for multicenter function

Gradient algorithm for multicenter function

After assuming v is Voronoi partition,

$$\mathcal{H}(p) = \sum_{j=1}^n \int_{V_j(p)} f(\|x - p_j\|)\varphi(x)dx$$

Dynamic Vehicle Routing (Lecture 4/8)

29jun10 @ Baltimore, ACC

9 / 27

For f smooth, note simplifications for boundary terms

$$\frac{\partial \mathcal{H}}{\partial p_i}(p) = \int_{V_i(p)} \frac{\partial}{\partial p_i} f\left(\|x - p_i\| \right) \varphi(x) dx$$

After assuming v is Voronoi partition,

$$\mathcal{H}(p) = \sum_{j=1}^n \int_{V_j(p)} f(\|x - p_j\|)\varphi(x)dx$$

For f smooth, note simplifications for boundary terms

$$\begin{aligned} \frac{\partial \mathcal{H}}{\partial p_i}(p) &= \int_{V_i(p)} \frac{\partial}{\partial p_i} f\left(\|x - p_i\| \right) \varphi(x) dx \\ &+ \int_{\partial V_i(p)} f\left(\|x - p_i\| \right) \langle n_i(x), \frac{\partial x}{\partial p_i} \rangle \varphi(x) dx \end{aligned}$$

Gradient algorithm for multicenter function

Gradient algorithm for multicenter function

After assuming v is Voronoi partition,

$$\mathcal{H}(p) = \sum_{j=1}^n \int_{V_j(p)} f(\|x - p_j\|)\varphi(x)dx$$

For f smooth, note simplifications for boundary terms

$$\frac{\partial \mathcal{H}}{\partial p_{i}}(p) = \int_{V_{i}(p)} \frac{\partial}{\partial p_{i}} f\left(\|x - p_{i}\|\right) \varphi(x) dx$$

+
$$\int_{\partial V_{i}(p)} f\left(\|x - p_{i}\|\right) \langle n_{i}(x), \frac{\partial x}{\partial p_{i}} \rangle \varphi(x) dx$$

+
$$\sum_{j \text{ neigh } i} \int_{\partial V_{j}(p) \cap \partial V_{i}(p)} f\left(\|x - p_{j}\|\right) \langle n_{ji}(x), \frac{\partial x}{\partial p_{i}} \rangle \varphi(x) dx$$

After assuming v is Voronoi partition,

$$\mathcal{H}(p) = \sum_{j=1}^n \int_{V_j(p)} f(\|x - p_j\|)\varphi(x)dx$$

For f smooth, note simplifications for boundary terms

$$\begin{aligned} \frac{\partial \mathcal{H}}{\partial p_i}(p) &= \int_{V_i(p)} \frac{\partial}{\partial p_i} f\left(\|x - p_i\| \right) \varphi(x) dx \\ &+ \int_{\partial V_i(p)} f\left(\|x - p_i\| \right) \langle n_i(x), \frac{\partial x}{\partial p_i} \rangle \varphi(x) dx \\ &- \int_{\partial V_i(P)} f\left(\|x - p_i\| \right) \langle n_i(x), \frac{\partial x}{\partial p_i} \rangle \varphi(x) dx \end{aligned}$$

Multi-vehicle DVR problem

- results on single-vehicle DVR generalize easily to the multi-vehicle case
- previous methodology (locational optimization, queu theory, combinatorics) applicable to this case

Dynamic Vehicle Routing (Lecture 4/8)

29jun10

• main new idea: partitioning

FB, EF, MP, KS, SLS (UCSB, MIT)

Heavy-load lower bound

Heavy-load lower bound

Light-load lower bound

Multi - Median

• minimizer
$$p^* = \{p_1^*, ..., p_m^*\}$$
 of

$$p \mapsto \mathbb{E}_{\varphi}[\min_{i} ||X - p_{i}||] = \sum_{i=1}^{m} \int_{V_{i}} ||x - p_{i}||\varphi(x)dx|$$

$$\frac{1}{2} + \frac{1}{2} + \frac{1$$

• $\overline{N} = \lambda \overline{W}$ and $\overline{T} = \overline{W} + \overline{s} \implies \overline{T}^* \ge \frac{\beta_{\text{TSP}}^2}{2} \frac{\lambda (\overline{T})^2}{2}$

• for stability with *m* vehicles:

(UCSB. MIT)

An optimal light-load policy

An optimal light-load policy

Lecture outline

3 Multi-vehicle DVR policies based on partitioning

M. Pavone, E. Frazzoli, and F. Bullo. Distributed and adaptive algorithms for vehicle routing in a stochastic and dynamic environment. IEEE Transactions on Automatic Control, May 2010. (Submitted, Apr 2009) to appear

Dynamic Vehicle Routing (Lecture 4/8) 29jun10 @ Baltimore, ACC

Partitioning policies

Definition (π -partitioning policy)

Given *m* vehicles and single-vehicle policy π :

- **1** Workspace divided into *m* subregions
- One-to-one correspondence vehicles/subregions
- **3** Each agent executes the single-vehicle policy π within its own subregion

20 / 27

Motivation

FB, EF, MP, KS, SLS (UCSB, MIT)

Performance:

- light load: problem reduces to locational optimization
- heavy load:
 - **1** delay of optimal single vehicle policy scales as $\lambda |Q|$
 - 2 by (equitably) partitioning, delay reduces to $\frac{\lambda}{m} \frac{|Q|}{m} = \frac{\lambda |Q|}{m^2}$ 3 \Rightarrow delay scales as m^{-2} , as in the lower bound

- systematic approach to lift adaptive single-vehicle policies to
- coupled with distributed partitioning algorithms, provides distributed

Motivation

19 / 27

21 / 27

Performance:

- light load: problem reduces to locational optimization
- heavy load:
 - **1** delay of optimal single vehicle policy scales as $\lambda |Q|$
 - 2 by (equitably) partitioning, delay reduces to $\frac{\lambda}{m} \frac{|Q|}{m} = \frac{\lambda |Q|}{m^2}$ 3 \Rightarrow delay scales as m^{-2} , as in the lower bound

Implementation:

- systematic approach to lift adaptive single-vehicle policies to multi-vehicle policies
- coupled with distributed partitioning algorithms, provides distributed multi-vehicle policies

Motivation

Performance:

- light load: problem reduces to locational optimization
- heavy load:
 - **1** delay of optimal single vehicle policy scales as $\lambda |Q|$
 - 2 by (equitably) partitioning, delay reduces to $\frac{\lambda}{m} \frac{|\dot{Q}|}{m} = \frac{\lambda |Q|}{m^2}$ 3 \Rightarrow delay scales as m^{-2} , as in the lower bound

Implementation:

FB FF MP KS SLS (UCSB MIT)

- systematic approach to lift adaptive single-vehicle policies to multi-vehicle policies
- coupled with distributed partitioning algorithms, provides distributed multi-vehicle policies

distributed multi-vehicle policy = single-vehicle policy + optimal partitioning + distributed algorithm for partitioning

Dynamic Vehicle Routing (Lecture 4/8)

29jun10 @ Baltimore, ACC

Optimal partitioning in heavy load

Intuition

- per-vehicle workload is $\propto \lambda \int_{O_{\mu}} \varphi(x) dx$
- per-vehicle service capacity is $\propto \lambda \int_{\mathcal{O}_{L}} \varphi^{1/2}(x) dx$
- optimal partitioning = equalizing per-vehicle workload and service capacity

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29jun10 @ Baltimore, ACC

Optimal partitioning in heavy load

Intuition

- per-vehicle workload is $\propto \lambda \int_{O_L} \varphi(x) dx$
- per-vehicle service capacity is $\propto \lambda \int_{\mathcal{O}_{\nu}} \varphi^{1/2}(x) dx$
- optimal partitioning = equalizing per-vehicle workload and service capacity

Definition

- A partition $\{Q_k\}_{k=1}^m$ is:
 - equitable if $\int_{\mathcal{O}_{L}} \varphi(x) dx = \int_{\mathcal{O}} \varphi(x) dx/m$
 - simultaneously equitable if

Optimal partitioning in heavy load

Intuition

- per-vehicle workload is $\propto \lambda \int_{O_L} \varphi(x) dx$
- per-vehicle service capacity is $\propto \lambda \int_{\mathcal{Q}_{\nu}} \varphi^{1/2}(x) dx$
- optimal partitioning = equalizing per-vehicle workload and service capacity

Definition

- A partition $\{Q_k\}_{k=1}^m$ is:
 - equitable if $\int_{\mathcal{O}_{L}} \varphi(x) dx = \int_{\mathcal{O}} \varphi(x) dx/m$
 - simultaneously equitable if

Simultaneously equitable partitions exist for any Q and φ

(S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink, 2000)

Optimal partitioning in heavy load

Theorem

Given single-vehicle optimal policy π^* , a π^* -partitioning policy using a simultaneously equitable partition is an optimal unbiased policy

Proof sketch

FB, EF, MP, KS, SLS (UCSB, MIT)

Comments

- \mathbb{P} [demand arrives in \mathcal{Q}_k] = $\int_{\mathcal{Q}_k} \varphi(x) dx = 1/m$
- arrival rate in region k: $\lambda_k = \lambda/m$
- $\Rightarrow \varrho_k = \lambda_k \bar{s} = \lambda \bar{s}/m = \varrho < 1 \Rightarrow$ system is stable
- conditional density for region k: $\varphi(x)/\left(\int_{\mathcal{Q}_k} \varphi(x) \, dx\right) = m \, \varphi(x)$

•
$$\overline{T} = \sum_{k=1}^{m} \left(\int_{\mathcal{Q}_k} \varphi(x) \, dx \, \frac{\beta_{\text{TSP}}^2}{2} \, \frac{\lambda_k}{v^2 (1-\varrho_k)^2} \left[\int_{\mathcal{Q}_k} \sqrt{\frac{\varphi(x)}{\int_{\mathcal{Q}_k} \varphi(x) \, dx}} \, dx \right]^2 \right)$$

= $\sum_{k=1}^{m} \frac{1}{m} \, \overline{T}_{\pi^*} \, \frac{1}{m^2}$

Dynamic Vehicle Routing (Lecture 4/8) 29jun10 @ Baltimore, ACC

Comments

If $\{Q_k\}_{k=1}^m$ is only equitable wrt to $\varphi^{1/2}$...

- $\exists \bar{k}$ such that $\varrho_{\bar{k}} = \lambda \left(1/m + \varepsilon \right) \bar{s} = \varrho + \varepsilon \lambda \bar{s}$
- potentially, policy unstable for $\rho < 1!$

If $\{\mathcal{Q}_k\}_{k=1}^m$ is only equitable wrt to φ ...

• per-vehicle service capacity is unbalanced \Rightarrow policy stable but not optimal

Dynamic Vehicle Routing (Lecture 4/8)

29jun10 @ Baltimore, ACC

24 / 27

• guaranteed to be within *m* of optimal unbiased performance

Special cases

FB, EF, MP, KS, SLS (UCSB, MIT)

Case $\overline{s} = 0$:

23 / 2

• stability not an issue:

$$\underbrace{\lambda}_{\text{generation rate}} - \underbrace{m \cdot \frac{n}{\text{TSPlength}(n)}}_{\text{service rate}} = \text{demand growth rate}$$

- since TSPlength(n) $\propto \sqrt{n} \Rightarrow$ stability for all λ, m
- \bullet equitability only wrt to $\varphi^{1/2}$ provides optimal performance

Case φ = uniform:

- equitable wrt to $\varphi \Rightarrow$ equitable wrt to $\varphi^{1/2}$
- no need to use algorithms for simultaneous equitability

If $\{Q_k\}_{k=1}^m$ is only equitable wrt to $\varphi^{1/2}$...

- $\exists \bar{k}$ such that $\varrho_{\bar{k}} = \lambda \left(1/m + \varepsilon \right) \bar{s} = \varrho + \varepsilon \lambda \bar{s}$
- potentially, policy unstable for $\rho < 1!$

If $\{\mathcal{Q}_k\}_{k=1}^m$ is only equitable wrt to φ ...

- per-vehicle service capacity is unbalanced ⇒ policy stable but not optimal
- guaranteed to be within m of optimal unbiased performance

Special cases			Lecture outline
C = 0			
Case $s = 0$:			
 stability not 	an issue:		
$\underbrace{\lambda}_{\text{generation rate}} - m \cdot \frac{n}{\text{TSPlength}(n)} = \text{demand growth rate}$		$\frac{n}{\text{Plength}(n)} = \text{demand growth rate}$	Ierritory Partitioning
 since TSPlen 	service rate • since TSPlength(n) $\propto \sqrt{n} \Rightarrow$ stability for all λ . m		2 The multi-vehicle DVR problem
• equitability Case $\varphi = uniform$	only wrt to φ^1	^{/2} provides optimal performance	3 Multi-vehicle DVR policies based on partitioning
• equitable wrt to $\varphi \Rightarrow$ equitable wrt to $\varphi^{1/2}$		ble wrt to $\varphi^{1/2}$	
• no need to use algorithms for simultaneous equitability		sinultaneous equitability	
FB, EF, MP, KS, SLS (UCSE	3, MIT) Dynamic Vel	ticle Routing (Lecture 4/8) 29jun10 @ Baltimore, ACC 25 / 27	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29jun10 @ Baltimore, ACC 26 / 27
Workshop Sti	ructure and	Schedule	
8:00-8:30am	Coffee Break		
8:30-9:00am	Lecture #1:	Intro to dynamic vehicle routing	
9:05-9:50am	Lecture $#2$:	Prelims: graphs, ISPs and queues	
9:55-10:40am	Lecture $#3$:	The single-vehicle DVR problem	
10:40-11:00am	Break		
11:00-11:45pm	Lecture $#4$:	The multi-vehicle DVR problem	
11:45-1:10pm	Lunch Break		
1:10-2:10pm	Lecture #5:	Extensions to vehicle networks	
2:15-3:00pm	Lecture #6:	Extensions to different demand models	
3:00-3:20pm Coffee Break			

3:20-4:20pmLecture #7:Extensions to different vehicle models4:25-4:40pmLecture #8:Extensions to different task models4:45-5:00pmFinal open-floor discussion

DESIGN of performance metrics

Lecture outline

S. Martínez, F. Bullo, J. Cortés, and E. Frazzoli. On synchronous robotic networks - Part I: Models, tasks and complexity. IEEE Transactions on Automatic Control, 52(12):2199–2213, 2007

Objective

- meaningful + tractable model
- Information/control/communication tradeoffs

Distributed algorithm for a network of processors consists of

- **1** $W^{[i]}$, the processor state set
- (2) A, the communication alphabet
- **3** stf^[i] : $W^{[i]} \times \mathbb{A}^n \to W^{[i]}$, the state-transition map
- $msg^{[i]}: W^{[i]} \to \mathbb{A}$, the message-generation map

Robotic network

Communication models for robotic networks

Lecture outline

Spatially-distributed policies for DVR

tion. IEEE Control Systems Magazine, 27(4):75-88, 2007

Experimental Partitioning

Experimental Partitioning

Equitable and median Voronoi diagrams with synchronous proximity-graphs communication

"Ambitious" goal:

Voronoi Diagrams

Distributed algorithm to partition the workspace according to:

- median Voronoi diagram (relevant in light-load)
- equitable (relevant in heavy load)

29jun10 @ Baltimore, ACC

Voronoi partition $\{V_1, \ldots, V_m\}$ generated by points (p_1, \ldots, p_m) :

 $V_i = \{x \in \mathcal{Q} \mid ||x - p_i||^2 \leqslant ||x - p_j||^2, \forall j \neq i\}$

In general, an equitable Voronoi Diagram fails to exist.

Dynamic Vehicle Routing (Lecture 5/8)

Partitioning using Power Diagrams

Power distance

FR FF MP KS SIS (UCSB MIT)

- $p = (p_1, \ldots, p_m)$ collection of points in $\mathcal{Q} \subset \mathbb{R}^2$
- each p_i has assigned a weight $w_i \in \mathbb{R}$
- power distance function $d_{\rm P}(x, p_i; w_i) = ||x p_i||^2 w_i$

Power Diagrams

Equitable and median Voronoi diagrams with synchronous proximity-graphs communication

"Ambitious" goal:

Distributed algorithm to partition the workspace according to:

- Median Voronoi diagram (relevant in light-load)
- equitable (relevant in heavy load)

Voronoi Diagrams

Voronoi partition $\{V_1, \ldots, V_m\}$ generated by points (p_1, \ldots, p_m) :

$$V_i = \{x \in \mathcal{Q} \mid ||x - p_i||^2 \leqslant ||x - p_j||^2, \forall j \neq i\}$$

29jun10 @ Baltimore, ACC

In general, an equitable Voronoi Diagram fails to exist...

Existence theorem for Power diagrams

Existence theorem

FB, EF, MP, KS, SLS (UCSB, MIT)

Let $p = (p_1, \ldots, p_m)$ be the positions of $m \ge 1$ distinct points in Q. Then there exist weights (w_1, \ldots, w_m) such that the corresponding Power diagram is equitable with respect to φ

Dynamic Vehicle Routing (Lecture 5/8)

Existence theorem for Power diagrams

Existence theorem for Power diagrams

Existence theorem

Let $p = (p_1, \ldots, p_m)$ be the positions of $m \ge 1$ distinct points in Q. Then there exist weights (w_1, \ldots, w_m) such that the corresponding Power diagram is equitable with respect to φ

Existence theorem

Let $p = (p_1, \ldots, p_m)$ be the positions of $m \ge 1$ distinct points in Q. Then there exist weights (w_1, \ldots, w_m) such that the corresponding Power diagram is equitable with respect to φ

Existence theorem for Power diagrams

Existence theorem

FB. FF. MP. KS. SLS. (UCSB. MIT)

Let $p = (p_1, \ldots, p_m)$ be the positions of $m \ge 1$ distinct points in Q. Then there exist weights (w_1, \ldots, w_m) such that the corresponding Power diagram is equitable with respect to φ

Dynamic Vehicle Routing (Lecture 5/8)

29jun10 @ Baltimore, ACC

Existence theorem for Power diagrams

Existence theorem

FB, EF, MP, KS, SLS (UCSB, MIT)

Let $p = (p_1, \ldots, p_m)$ be the positions of $m \ge 1$ distinct points in Q. Then there exist weights (w_1, \ldots, w_m) such that the corresponding Power diagram is equitable with respect to φ

Dynamic Vehicle Routing (Lecture 5/8)

29jun10 @ Baltimore, ACC

- w_i locally controlled by vehicle i
- locational optimization function

$$\mathcal{H}(w) \doteq \sum_{i=1}^m \left(\int_{V_i(w)} \varphi(x) dx \right)^{-1} = \sum_{i=1}^m |V_i(w)|_{\varphi}^{-1}$$

• spatially-distributed gradient: $\frac{\partial \mathcal{H}}{\partial w_i} = \sum_{j \in N_i} \alpha_{ij}^{\varphi} \left(\frac{1}{|V_j|_{\varphi}^2} - \frac{1}{|V_i|_{\varphi}^2} \right)$

Gradient law for equitable partitioning

- At each comm round:
- 1: acquire neighbors' positions
- 2: compute own dominance region
- 3: $w_i \leftarrow w_i \gamma \frac{\partial \mathcal{H}}{\partial w_i}$

FB, EF, MP, KS, SLS (UCSB, MIT)

Convergence result

Theorem (Convergence)

FB, EF, MP, KS, SLS (UCSB, MIT)

Assume that the p_i 's are distinct. Then, the w_i 's converge asymptotically to a vector of weights that yields an equitable Power diagram

- guaranteed convergence for any set of *distinct* points
 ⇒ global convergence result
- distributed over the dual graph of the induced Power diagram
 ⇒ communication, on average, with six neighbors
- adjusting the weights sufficient to obtain an equitable diagram
 ⇒ move the p_i's to optimize secondary objectives

Dynamic Vehicle Routing (Lecture 5/8)

29jun10 @ Baltimore, ACC

Including the median Voronoi diagram property

Close to Voronoi:

- basic idea: keep the weights *close* to zero
- modify the gradient descent law as

$$\dot{w}_i = -\frac{\partial \mathcal{H}}{\partial w_i} - w_i, \qquad \frac{\partial \mathcal{H}}{\partial p_i} \cdot \dot{p}_i - \frac{\partial \mathcal{H}}{\partial w_i} w_i = 0$$

Dynamic Vehicle Routing (Lecture 5/8)

29iun10 @ Baltimore_ACC

Motion toward the median:

- basic idea: add a term that enforces computation of the median
- gradient term for computation of the median:

$$\frac{\partial \mathcal{H}_{\mathsf{FW}}}{\partial p_i} = \int_{V_i} \frac{p_i - x}{\|p_i - x\|} \varphi(x) dx$$

• modify the gradient descent law as

$$\dot{w}_i = -\frac{\partial \mathcal{H}}{\partial w_i}, \qquad \dot{p}_i = \frac{\partial \mathcal{H}_{\mathsf{FW}}}{\partial p_i} \ \psi\Big(\frac{\partial \mathcal{H}}{\partial p_i}, \frac{\partial \mathcal{H}_{\mathsf{FW}}}{\partial p_i}\Big)$$

22 / 44

Partitioning with gossip communication

Voronoi+centering law requires:

- synchronous communication
- communication along edges of dual graph

Ainimalist coordination	
is synchrony necessary?	

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29jun10 @ Baltimore, ACC

- is it sufficient to communicate peer-to-peer (gossip)?
- what are minimal requirements?

Gossip (asynchronous pair-wise) partitioning policy

Dynamic Vehicle Routing (Lecture 5/8)

29jun10 @ Baltimore, ACC

A Partitioning with gossip (asynchronous pair-wise) communication

- Random communication between two regions
- 2 Compute two centers

FB, EF, MP, KS, SLS (UCSB, MIT)

- Ompute bisector of centers
- Partition two regions by bisector

No explicit communication policyGame-theoretic interpretation

F. Bullo, R. Carli, and P. Frasca. Gossip coverage control for robotic networks: Dynamical systems on the the space of partitions. *SIAM Review*, January 2010. Submitted

Indoor example implementation

26 / 44

- Player/Stage platform
- realistic robot models in discretized environments
- integrated wireless network model & obstacle-avoidance planner

J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and coverage control with gossip communication. In *ASME Dynamic Systems and Control Conference*, Hollywood, CA, October 2009

Peer-to-peer convergence analysis (proof sketch 1/3)
I yapunov function for peer-to-peer territory partitioning

$$\mathcal{H}(v) = \sum_{i=1}^{n} \int_{v} f(||\operatorname{center}(v_i) - q||)\phi(q) dq$$
I state space is not finite-dimensional mon-convex disconnected polygons arbitrary number of vertices
peer to peer map is not deterministic. III defined and discontinuous two regions could have same centers
The rest state space of partitions (proof sketch 2/3)
Definition (Space of finitely-convex partitions)
Fix ℓ , the set v is collections of n subsets of $Q_{-}(v_1, \dots, v_h)$, such that
 0 vice regions could have same convex sets
Given sets A and B, symmetric distance is:
 $d_{\Delta}(A, B) = \operatorname{arec}((A \cup B) \setminus (A \cap B))$
Theorem (topological properties of the space of finitely-convex partitions)
Partition space with $(u, v) \to \sum_{i=1}^{n-1} d_{\Delta}(u_i, v_i)$ is metric and compact
There exists probability $p \in [0, 1]$ such that, for all indices $i \in I$ and time ℓ ($u \in V_i$) is metric and compact
Fix q_i the set u_i is collicions of the space of finitely-convex partitions)
Fix ℓ , the set v_i is collections of n subsets of $Q_{-}(v_1, \dots, v_h)$, such that
 0 vice v_i is union of ℓ convex sets
Given sets A and B, symmetric distance is:
 $d_{\Delta}(A, B) = \operatorname{arec}((A \cup B) \setminus (A \cap B))$
Theorem (topological properties of the space of finitely-convex partitions)
Partition space with $(u, v) \to \sum_{i=1}^{n-1} d_{\Delta}(v_i, v_i)$ is metric and compact
 $V_i = V_i$ (intersection of sets of fixed points of all $T_i \cap U^{-1}(c)$
 $V_i = V_i$ (intersection of sets of sized points of all $T_i \cap U^{-1}(c)$

Lecture outline

- Motivation and inspiration from biology
- Intro to comm models, multi-agent networks and distributed algorithms
- 3 Partitioning with synchronous proximity-graphs communication
- 4 Partitioning with gossip (asynchronous pair-wise) communication

5 Partitioning with no explicit inter-vehicle communication

- No explicit communication policy
- Game-theoretic interpretation

FB, EF, MP, KS, SLS (UCSB, MIT)

A. Arsie, K. Savla, and E. Frazzoli. Efficient routing algorithms for multiple vehicles with no explicit communications. *IEEE Transactions on Automatic Control*, 54(10):2302–2317, 2009

Dynamic Vehicle Routing (Lecture 5/8) 29jun10 @ Baltimore, ACC

Motivation

Gradient policy

• Cost function: $\mathcal{H}(p) = \sum_{j=1}^{n} \int_{V_{j}(p)} \|q - p_{j}\|\varphi(q)dq$

$$\dot{p}_{i} = -rac{\partial \mathcal{H}}{\partial p_{i}}(p) = -\int_{V_{i}(p)} rac{\partial}{\partial p_{i}} \|q - p_{i}\|\varphi(q)dq$$

- p(t) converges to a critical point of $\mathcal{H}(p)$
- Similar result using the gossip partitioning policy

Salient Features

- Explicit agent-to-agent communication
- Needs knowledge of φ

Dynamic Vehicle Routing (Lecture 5/8) 29jun10 @ Baltimore, ACC

Motivation	
Gradient policy	
• Cost function: $\mathcal{H}(p) = \sum_{j=1}^n \int_V$	$arphi_{j(p)} \ q - p_{j} \ arphi(q) dq$
• $\dot{p}_i = -\frac{\partial \mathcal{H}}{\partial p_i}(p) = -\int_{V_i(p)} \frac{\partial}{\partial p_i} \ q - \int_{V_i(p)} \frac{\partial}{\partial p_i}\ q$	- $p_i \ \varphi(q) dq$
• $p(t)$ converges to a critical point	It of $\mathcal{H}(p)$

• Similar result using the gossip partitioning policy

Inspiration: Distributed MacQueen algorithm

- Pick any m generator points $(p_1, \ldots, p_m) \in \mathcal{Q}^m$
- Iteratively sample points q_i according to probability density function φ

Partitioning with no explicit inter-vehicle communication

• At each iteration *j*:

FB, EF, MP, KS, SLS (UCSB, MIT)

32 / 44

- Assign the sampled point to the nearest generator $i^*(q_j) \in \{1, \ldots, m\}$
- update the position of generator i^* as

$$p_{i^*} = rac{(\# extsf{pts} extsf{ assigned in past}) p_{i^*} + q_j}{\# extsf{pts} extsf{ assigned in past} + 1}$$

 Explicit agent-to-agent communication

• Needs knowledge of φ

Salient Features

Algorithms

No sensor policy

For all time *t*, each vehicle moves towards:

- the nearest outstanding task; else,
- the (nearest) point minimizing the average distance to tasks *serviced in the past*

Sensor-based policy

For all time t, each vehicle moves towards

- the nearest among outstanding tasks that is closest to it than other vehicles; else,
- the (nearest) point minimizing the average distance to tasks *serviced in the past*

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8)

29jun10 @ Baltimore, ACC

35 /

Algorithms

No sensor policy

For all time *t*, each vehicle moves towards:

- the nearest outstanding task; else,
- the (nearest) point minimizing the average distance to tasks *serviced in the past*

Sensor-based policy

For all time *t*, each vehicle moves towards:

- the nearest among outstanding tasks that is closest to it than other vehicles; else,
- the (nearest) point minimizing the average distance to tasks *serviced in the past*

35 / 44

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29jun10 @ Baltimore, ACC

Differences with the MacQueen algorithm

• At each iteration, the no-communication algorithm computes the "Fermat-Weber (FW) point" with respect to the set of tasks serviced by a vehicle; MacQueen algorithm computes the mean

$$FW_{i} = \operatorname{argmin}_{p_{i} \in \mathcal{Q}} \sum_{q \in \text{past tasks}_{i}} \|q - p_{i}\|$$

$$Mean_{i} = \frac{1}{|\text{past tasks}_{i}|} \sum_{q \in \text{past tasks}_{i}} q$$

- No simple recursion like the MacQueen algorithm → need to store locations of all the tasks serviced in the past
- Sequence of FW points exhibit more complex behavior than the sequence of means.

Illustration

Analysis of the algorithm

- $p_i(t)$: loitering location of agent *i* at time *t*
- Sufficient to study convergence of $(p_1(t), \ldots, p_m(t))$

Convergence result

p(t) converges to a critical point of $\mathcal{H}(p)$ with probability one.

Key steps in the proof

- Convergence of the sequence of Fermat-Weber points:
 - $C_i(t) := \{y \in \mathcal{Q} \mid \|\sum_{q \in \text{past tasks}} \operatorname{vers}(y q)\| \le 1\}$
 - By the properties of the Fermat-Weber point, $p_i(t_j) \in C_i(t_j)$
 - Prove that $p_i(t_{j+1}) \in C_i(t_j)$
 - Prove that $\lim_{j\to\infty} \operatorname{diam}(C_i(t_j)) = 0$ with prob. 1; this implies $p_i(t_i) \to p_i^*$ with prob 1

Dynamic Vehicle Routing (Lecture 5/8)

29jun10 @ Baltimore, ACC

p^{*}_i is the median of its own Voronoi cell

Analysis of the algorithm

- $p_i(t)$: loitering location of agent *i* at time *t*
- Sufficient to study convergence of $(p_1(t), \ldots, p_m(t))$

Convergence result

p(t) converges to a critical point of $\mathcal{H}(p)$ with probability one.

Key steps in the proof

FB, EF, MP, KS, SLS (UCSB, MIT)

- Convergence of the sequence of Fermat-Weber points:
 - $C_i(t) := \{y \in \mathcal{Q} \mid \|\sum_{q \in \text{past tasks}_i} \operatorname{vers}(y q)\| \le 1\}$
 - By the properties of the Fermat-Weber point, $p_i(t_j) \in C_i(t_j)$
 - Prove that $p_i(t_{j+1}) \in C_i(t_j)$
 - Prove that $\lim_{j\to\infty} \operatorname{diam}(C_i(t_j)) = 0$ with prob. 1; this implies $p_i(t_j) \to p_i^*$ with prob 1

Dynamic Vehicle Routing (Lecture 5/8)

29jun10 @ Baltimore, ACC

• p_i^* is the median of its own Voronoi cell

Lecture outline

FB, EF, MP, KS, SLS (UCSB, MIT)

- 1 Motivation and inspiration from biology
- Intro to comm models, multi-agent networks and distributed algorithms
- 3 Partitioning with synchronous proximity-graphs communication
- Partitioning with gossip (asynchronous pair-wise) communication

5 Partitioning with no explicit inter-vehicle communication

- No explicit communication policy
- Game-theoretic interpretation

Coverage as a geometric game

Strategies

- $p = (p_1, \ldots, p_m) \in \mathcal{Q}^m$
- When a new task is generated, every vehicle move towards its location

Jtility Function

- Upon its generation, each task offers continuous reward at rate unity
- A task expires as soon as two vehicles are present at its location or after diam(Q) time, whichever occurs first.
- Utility function: expected time spent alone at the next task location

$$\mathcal{U}_i(p_i,p_{-i}) = \mathbb{E}_{arphi}[R_i(p,q)] = \mathbb{E}_{arphi}\left[\max\left\{0,\min_{j
eq i}\|p_j-q\|-\|p_i-q\|
ight\}
ight]$$

Coverage as a geometric game

Properties of the Game

Strategies

- $p = (p_1, \ldots, p_m) \in \mathcal{Q}^m$
- When a new task is generated, every vehicle move towards its location

Utility Function

- Upon its generation, each task offers continuous reward at rate unity
- A task expires as soon as two vehicles are present at its location or after diam(Q) time, whichever occurs first.
- Utility function: expected time spent alone at the next task location

$$\mathcal{U}_i(p_i,p_{-i}) = \mathbb{E}_{arphi}[R_i(p,q)] = \mathbb{E}_{arphi}\left[\max\left\{0,\min_{j
eq i}\|p_j-q\|-\|p_i-q\|
ight\}
ight]$$

Dynamic Vehicle Routing (Lecture 5/8) 29jun10 @ Baltimore, ACC

• Potential function: $\psi(p) = -\sum_{i=1}^{m} \int_{V_i(p)} \|p_i - q\|\varphi(q)dq$

- The coverage spatial game is a potential game $(\mathcal{U}_i(p) = \psi(p) \psi(p_{-i}))$
- $\bullet \ \mathcal{U}$ is a Wonderful Life utility function

Characterization of Equilibria

critical point of $\mathcal{H} \iff$ pure Nash equilibrium

Dynamic Vehicle Routing (Lecture 5/8)

29jun10 @ Baltimore, ACC

Properties of the Game

FB, EF, MP, KS, SLS (UCSB, MIT)

- Potential function: $\psi(p) = -\sum_{i=1}^{m} \int_{V_i(p)} \|p_i q\|\varphi(q)dq$
- The coverage spatial game is a potential game (U_i(p) = ψ(p) - ψ(p_{-i}))
- $\bullet \ \mathcal{U}$ is a Wonderful Life utility function

Characterization of Equilibria

critical point of $\mathcal{H} \Longleftrightarrow$ pure Nash equilibrium

No communication policy as a learning algorithm

Complete Information

FB, EF, MP, KS, SLS (UCSB, MIT)

$$\dot{p}_i = \frac{\partial}{\partial p_i} \mathcal{U}_i(p) = -\int_{V_i(p)} \frac{p_i - q}{\|p_i - q\|} \varphi(q) dq \implies$$
 gradient descent policy

imited information

- No knowledge of φ
- No inter-agent communication

Approximations

- Empirical Utility Maximization: $p_i(t) = \operatorname{argmax}_{x \in Q} \sum_{q \sim \varphi} R_i(x, p_{-i}, q)$
- *R̂_i*(x, p_{-i}, q) = diam(Q) − ||x − q|| if vehicle i reaches task located at q first, else *R̂_i*(x, p_{-i}, q) = 0.

No communication policy as a learning algorithm

Complete Information

 $\dot{p}_i = \frac{\partial}{\partial p_i} \mathcal{U}_i(p) = -\int_{V_i(p)} \frac{p_i - q}{\|p_i - q\|} \varphi(q) dq \implies$ gradient descent policy

Limited information

- No knowledge of φ
- No inter-agent communication

Approximations

- Empirical Utility Maximization: $p_i(t) = \operatorname{argmax}_{x \in \mathcal{Q}} \sum_{q \sim i_0} R_i(x, p_{-i})$
- R̂_i(x, p_{-i}, q) = diam(Q) − ||x − q|| if vehicle i reaches task located at q first, else R̂_i(x, p_{-i}, q) = 0.

Dynamic Vehicle Routing (Lecture 5/8)

29jun10 @ Baltimore, ACC

No communication policy as a learning algorithm

Complete Information

$$\dot{p}_i = rac{\partial}{\partial p_i} \mathcal{U}_i(p) = -\int_{V_i(p)} rac{p_i - q}{\|p_i - q\|} arphi(q) dq \implies ext{gradient descent policy}$$

Limited information

- No knowledge of φ
- No inter-agent communication

Approximations

FB, EF, MP, KS, SLS (UCSB, MIT)

- Empirical Utility Maximization: $p_i(t) = \operatorname{argmax}_{x \in Q} \sum_{q \sim \varphi} R_i(x, p_{-i}, q)$
- *R̂_i(x, p_{−i}, q)* = diam(Q) − ||x − q|| if vehicle *i* reaches task located at *q* first, else *R̂_i(x, p_{−i}, q)* = 0.

Dynamic Vehicle Routing (Lecture 5/8) 29jun10 @ Baltimore, ACC

42 / 44

Lecture outline

FB, EF, MP, KS, SLS (UCSB, MIT)

Workshop Structure and Schedule

- 1 Motivation and inspiration from biology
- Intro to comm models, multi-agent networks and distributed algorithms
- 3 Partitioning with synchronous proximity-graphs communication
- Partitioning with gossip (asynchronous pair-wise) communication
- 5 Partitioning with no explicit inter-vehicle communication
 - No explicit communication policy
 - Game-theoretic interpretation

8:00-8:30am	Coffee Break	
8:30-9:00am	Lecture $#1$:	Intro to dynamic vehicle routing
9:05-9:50am	Lecture #2:	Prelims: graphs, TSPs and queues
9:55-10:40am	Lecture #3:	The single-vehicle DVR problem
10:40-11:00am	Break	
11:00-11:45pm	Lecture $#4:$	The multi-vehicle DVR problem
11:45-1:10pm	Lunch Break	
1:10-2:10pm	Lecture $#5$:	Extensions to vehicle networks
2:15-3:00pm	Lecture $\#6$:	Extensions to different demand models
3:00-3:20pm	Coffee Break	
3:20-4:20pm	Lecture #7:	Extensions to different vehicle models
4:25-4:40pm	Lecture $#8:$	Extensions to different task models
4:45-5:00pm		Final open-floor discussion

	Wotivation: Time-Critical Tasks
Dynamic Vehicle Routing for Robotic Networks Lecture #6: Different Demand Models	Motivating Scenario
Francesco Bullo ¹ Emilio Frazzoli ² Marco Pavone ² Ketan Savla ² Stephen L. Smith ²	 Group of UAVs equipped with sensors, monitoring region Alerted of events that require close-range observation
<pre> ¹CCDC University of California, Santa Barbara bullo@engineering.ucsb.edu ²LIDS and CSAIL Massachusetts Institute of Technology {frazzoli,pavone,ksavla,slsmith}@mit.edu</pre>	Events with time constraints: • Each event must be observed within a time-window Events with priority levels:
Workshop at the 2010 American Control Conference Baltimore, Maryland, USA, June 29, 2010, 8:30am to 5:00pm FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8) 29jun10 @ Baltimore, ACC 1/23	Each event has associated level of importance (e.g. 1 to 10) FB. EF. MP. KS. SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8) 29jun10 @ Baltimore, ACC 2 / 23
Lecture outline	Lecture outline
 Stochastic Time Constraints Policy Independent Lower Bound Nearest Depot Assignment Policy Batch Policy Priority Classes of Demands Policy Independent Lower Bound Separate Queues Policy 	 Stochastic Time Constraints Policy Independent Lower Bound Nearest Depot Assignment Policy Batch Policy Priority Classes of Demands Policy Independent Lower Bound Policy Independent Lower Bound Separate Queues Policy M. Pavone and E. Frazzoli. Dynamic vehicle routing with stochastic time constraints. In <i>IEEE Int. Conf. on Robotics and Automation</i>, Anchorage, AK, May 2010 M. Pavone, N. Bisnik, E. Frazzoli, and V. Isler. A stochastic and dynamic vehicle routing problem with time windows and customer impatience. ACM/Springer Journal of Mobile Networks and

DVR with stochastic time constraints

Model:

- basic DVR model +
- demand *j* active for a random patience time G_i
- G_i 's i.i.d. sequence $\sim F_G$
- demand *j* expires if not serviced within G_i

Service constraint:

- $\lim_{i \to +\infty} \mathbb{P}_{\pi}[W_i < G_i]$: acceptance probability for policy π
- $\phi^{d} \in (0, 1)$: desired acceptance probability
- constraint: $\lim_{i \to +\infty} \mathbb{P}_{\pi} [W_i < G_i] \ge \phi^d$

Problem formulation

Problem statement

Solve problem *OPT*:

 $\min_{\pi} \quad |\pi|, \quad ext{subject to} \quad \lim_{i o \infty} \mathbb{P}_{\pi} \left[\mathcal{W}_{j} < \mathcal{G}_{j}
ight] \geq \phi^{ ext{d}}$

29jun10 @ Baltimore, ACC

Lower bound

- main idea: theory of regenerative processes
- regeneration points: times a new demand finds the system empty
- expected length of busy cycles is finite

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8)

Intuition for lower bound:

Problem formulation

FB, EF, MP, KS, SLS (UCSB, MIT)

Problem statement

Solve problem *OPT*:

```
\min_{\pi} \quad |\pi|, \quad \text{subject to} \quad \lim_{i \to \infty} \mathbb{P}_{\pi} \left[ W_j < G_j \right] \geq \phi^{\mathrm{d}}
```

Dynamic Vehicle Routing (Lecture 6/8)

Well-posedness

- Existence: $\lim_{i\to\infty} \mathbb{P}_{\pi} [W_i < G_i]$ exists for all π
- Ergodicity: $\lim_{i\to\infty} \mathbb{P}_{\pi} [W_i < G_i] = \lim_{t\to+\infty} N^s(t)/N(t)$ (a.s.)

Proof sketch:

- main idea: theory of regenerative processes
- regeneration points: times a new demand finds the system empty
- expected length of busy cycles is finite
- use classic limit theorems

 $\mathbb{P}\left[W_j < G_j\right] \leq \mathbb{P}\left[\min_{k \in \{1, \dots, m\}} \frac{\|X_j - X_k\|}{v} < G_j\right]$ $\leq \sup_{(p_1,\ldots,p_m)\in\mathcal{Q}^m} \underbrace{\mathbb{P}\left[\min_{k\in\{1,\ldots,m\}}\frac{\|X_j-p_k\|}{v} < G_j\right]}_{}$

s.t.
$$\sup_{(p_1,\ldots,p_m)\in\mathcal{Q}^m}\mathcal{H}(p_1,\ldots,p_m)\geq 0$$

29jun10 @ Baltimore, ACC

Lower bound

Intuition for lower bound:

$$\mathbb{P}\left[W_{j} < G_{j}\right] \leq \mathbb{P}\left[\min_{k \in \{1,...,m\}} \frac{\|X_{j} - X_{k}\|}{v} < G_{j}\right]$$
$$\leq \sup_{(p_{1},...,p_{m}) \in \mathcal{Q}^{m}} \underbrace{\mathbb{P}\left[\min_{k \in \{1,...,m\}} \frac{\|X_{j} - p_{k}\|}{v} < G_{j}\right]}_{\doteq \mathcal{H}(p_{1},...,p_{m})}$$

 \geq

 \geq

3: FCFS service

• as usual, as $\lambda \to 0^+$, the problem reduces to optimal pre-positioning

Lower bound

Intuition for lower bound:

$$\mathbb{P}[W_j < G_j] \leq \mathbb{P}\left[\min_{k \in \{1,...,m\}} \frac{\|X_j - X_k\|}{v} < G_j\right]$$
$$\leq \sup_{(p_1,...,p_m) \in \mathcal{Q}^m} \underbrace{\mathbb{P}\left[\min_{k \in \{1,...,m\}} \frac{\|X_j - p_k\|}{v} < G_j\right]}_{\doteq \mathcal{H}(p_1,...,p_m)}$$

29jun10 @ Baltimore, ACC

 \geq

≻

 \succ

 \succ

7 / 23

1

>

Devised algorithms to solve OPT

NDA policy (optimal as $\lambda \rightarrow 0$)

Nearest Depot Assignment (NDA) policy Compute maximum of \mathcal{H} : $(\bar{p}_1, \ldots, \bar{p}_m)$.

- 1: \bar{p}_k is depot of kth vehicle
- 2: nearest-depot assignment
- 3: FCFS service

Proof sketch:

• as usual, as $\lambda \to 0^+$, the problem reduces to optimal pre-positioning

8 / 23

NDA policy (optimal as $\lambda \rightarrow 0$)

Nearest Depot Assignment (NDA) policy

Compute maximum of \mathcal{H} : $(\bar{p}_1, \ldots, \bar{p}_m)$.

1: \bar{p}_k is depot of kth vehicle

2: nearest-depot assignment

Proof sketch:

3: FCFS service

Then:

• as usual, as $\lambda \to 0^+$, the problem reduces to optimal pre-positioning

Batch policy

Batch (B) policy

Partition Q into m simultaneously

equitable subregions and assign one

vehicle to each subregion. Then: 1: each vehicle services demands by

Dynamic Vehicle Routing (Lecture 6/8) Dynamic Vehicle Routing (Lecture 6/8) 29iun10 @ Baltimore. FB. EF. MP. KS. SLS (UCSB. MIT) 29jun10 @ Baltimore, ACC 10 / 23FB. EF. MP. KS. SLS (UCSB, MIT)

Demands with priority levels

• *m* vehicles

FB, EF, M

- *n* classes of demands
 - 1 =highest priority
 - *n* = lowest priority
- Poisson arrivals $\lambda_1, \ldots, \lambda_n$
- locations uniformly distributed can extend to non-uniform φ

Steady-state expected system-time $\overline{T}_1, \ldots, \overline{T}_n$

Demands with priority levels

- *m* vehicles
- *n* classes of demands • 1 = highest priority
 - *n* = lowest priority
- Poisson arrivals $\lambda_1, \ldots, \lambda_n$
- locations uniformly distributed can extend to non-uniform φ

Steady-state expected system-time $\overline{T}_1, \ldots, \overline{T}_n$

		Goal for vehicles		
Goal for vehicles		Minimize $c_1 \overline{T}_1 + \dots + c_n \overline{T}_n$ ($\uparrow c_i \Rightarrow \uparrow$ priority of class <i>i</i>)		
$\text{Minimize } c_1 \overline{T}_1 + \dots + c_n \overline{T}_n \qquad (\uparrow c_i \Rightarrow \uparrow \text{ pr}$	iority of class <i>i</i>)		,	
S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli. Dynamic vehicle routing with priority classes of stochastic demands. <i>SIAM Journal on Control and Optimization</i> , 48(5):3224–3245, 2010		S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli. Dynamic vehicle routing with priority classes of stochastic demands. <i>SIAM Journal on Control and Optimization</i> , 48(5):3224–3245, 2010		
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture	e 6/8) 29jun10 @ Baltimore, ACC 12 / 23	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Leo	cture 6/8) 29jun10 @ Baltimore, ACC 12 / 23	
Demands with priority levels		Demands with priority levels		
 <i>m</i> vehicles <i>n</i> classes of demands 1 = highest priority <i>n</i> = lowest priority Poisson arrivals λ₁,, λ_n locations uniformly distributed can extend to non-uniform φ 		 <i>m</i> vehicles <i>n</i> classes of demands 1 = highest priority <i>n</i> = lowest priority Poisson arrivals λ₁,, λ_n locations uniformly distributed can extend to non-uniform φ 		
Steady-state expected system-time $\overline{T}_1, \ldots,$	\overline{T}_n	Steady-state expected system-time $\overline{T}_{1,}$	\ldots, \overline{T}_n	
Goal for vehicles		Goal for vehicles		
$\text{Minimize } c_1 \overline{T}_1 + \dots + c_n \overline{T}_n \qquad (\uparrow c_i \Rightarrow \uparrow \text{ pr})$	iority of class <i>i</i>)	$\text{Minimize } c_1 \overline{T}_1 + \dots + c_n \overline{T}_n \qquad (\uparrow c_i \Rightarrow \uparrow$	priority of class <i>i</i>)	
S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli. Dynamic vehicle routing with priority classes of		S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli. Dynamic stochastic demands. <i>SIAM Journal on Control and Optimi</i> .	c vehicle routing with priority classes of zation, 48(5):3224–3245, 2010	

12 / 23

Classic Priority Queueing

L. Kleinrock. *Queueing Systems. Volume II: Computer Applications.* Wiley, New York, 1976

E. G. Coffman Jr. and I. Mitrani. A characterization of waiting time performance realizable by single-server queues. *Operations Research*, 28(3):810–821, 1980

Related Combinatorial Problems

A. Blum, P. Chalasani, D. Coppersmith, B. Pulleyblank, P. Raghavan, and M. Sudan. The minimum latency problem. In *ACM Symposium on the Theory of Computing*, pages 163–171, Montreal, Canada, 1994

M. Z. Spivey and W. B. Powell. The dynamic assignment problem. *Transportation Science*, 38(4):399–419, 2004

A. Blum, S. Chawla, D. R. Karger, T. Lane, A. Meyerson, and M. Minkoff. Approximation algorithms for orienteering and discounted-reward TSP. *SIAM Journal on Computing*, 37(2):653–670, 2007

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8) 29jun10 @ Baltimore, ACC

Load Factor and Stability

Stable: Queue remains bounded

Define load factor as

$$\varrho := \frac{\lambda_1 \bar{s}_1 + \dots + \lambda_n \bar{s}_n}{m}$$

- λ_i = arrival rate for class *i*
- \bar{s}_i = average on-site service time for class i

As before, necessary stability condition is $\rho < 1$

Two asymptotic regimes

- **1** Light load $\rho \rightarrow 0^+$
- 2 Heavy load $\varrho \rightarrow 1^-$

Lower Bound in Heavy Load

13 / 23

Let
$$\overline{T}_{c}^{*} = \text{optimal value of cost } c_{1}\overline{T}_{1} + \cdots + c_{n}\overline{T}_{n}$$

Lower bound for every policy

$$\overline{\mathcal{T}}_{c}^{*} \geq \frac{\beta_{\mathrm{TSP}}|Q|}{2m^{2}v^{2}(1-\varrho)^{2}}\sum_{\alpha=1}^{n}\left(c_{\alpha}+2\sum_{j=\alpha+1}^{n}c_{j}\right)\lambda_{\alpha}$$

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8) 29jun10 @ Baltimore, ACC

Problem parameters:

- arrival rates $\lambda_1, \ldots, \lambda_n$
- weights c_1, \ldots, c_n
- number of vehicles m

• environment area |Q|

14 / 23

• vehicle speed v

n·

- each location.
- Then:
- 1: service demands in FCFS order
- 2: return to median after each service is completed

Compute *m*-median locations and assign one vehicle to

In light load:

Light load

- Each vehicle can return to a median between arrivals
- Priority levels do not change behavior.

m Stochastic Queueing Median (*m*-SQM)

Optimal solution:

m vehicle SQM policy is optimal (or an adaptive policy)

Proof Idea of Lower Bound

- Allow remote service of some classes: $r_{\alpha} \in \{0,1\}$ for each class α
- travel distance is $r_{\alpha} \bar{d}_{\alpha}$

- For stability: $\sum_{i=1}^{n} \lambda_i \left(r_i \overline{d}_i / v + \overline{s}_i \right) < m$
- Can bound travel distance as

$$ar{d}_{lpha} \geq rac{eta_{ ext{TSP}}}{\sqrt{2}} \sqrt{rac{|Q|}{\sum_{i} r_{i} \overline{N}_{i}}}$$

Dynamic Vehicle Routing (Lecture 6/8) 29jun10 @ Baltimore, ACC

• n = number of classes

• independent of $\rho, c, \overline{s}, \lambda$

- generates a linear program with 2ⁿ 1 constraints, one for each combination {r₁,..., r_n}
- solution to LP is largest lower bound

Separate Queues Performance

 $\frac{\overline{T}_{c,\mathrm{SQ}}}{\overline{T}^*} \leq 2n^2$

Separate Queues Policy

Input: Probability distribution $\mathbf{p} = [p_1, \dots, p_n]$.

Separate Queues Policy

Partition environment into m equal area regions and assign one vehicle to each region. Then:

- 1: Select a class according to probability dist **p**
- 2: Service all demands of selected class following TSP

3: Repeat

FB, EF, MP, KS, SLS (UCSB, MIT)

Policy performance optimized over **p**.

Simulation of Separate Queues Policy

Simulation:

Dynamic Vehicle Routing (Lecture 6/8) 29jun10 @ Baltimore, ACC

18 / 23

Heuristic Improvements:

FB, EF, MP, KS, SLS (UCSB, MIT)

Heavy load performance

For the SQ policy,

as $\varrho \rightarrow 1^-$.

- **(**) Receding horizon: service only a fraction η of TSP
- **2** when following TSP, service newly arrived demands within ϵ of TSP.

 $\epsilon \sqrt{\frac{\mu |Q|}{\sum_{\alpha=1}^{n} \overline{N}_{\alpha}}}$

where μ is fractional in tour length (i.e., 0.1 for 10% increase)

Proof idea for upper bound

• In heavy-load, shortest path through N points:

 $=\beta_{\text{TSP}}\sqrt{|Q|N}$ with prob. 1 (BHH theorem)

• Study expected # of outstanding demands at each iteration

 $N_i(t+1) \leq f(N_1(t),\ldots,N_m(t),\mathbf{p},\lambda,\overline{s})$

- Function f has a linear part plus a sub-linear part
- Bound evolution by stable linear system for all $\rho < 1$

$$\mathcal{N}(t+1) = A(\mathbf{p}, \lambda, \overline{s})\mathcal{N}(t) + B(\mathbf{p}, \lambda, \overline{s})$$

Dynamic Vehicle Routing (Lecture 6/8)

29jun10 @ Baltimore, ACC

21 / 23

- Allows computation of $\limsup_{t \to +\infty} \mathcal{N}_i(t)$
- Apply Little's theorem $\overline{N}_i = \lambda_i \overline{T}_i$

FB, EF, MP, KS, SLS (UCSB, MIT)

Workshop Structure and Schedule

8:00-8:30am	Coffee Break	
8:30-9:00am	Lecture $#1$:	Intro to dynamic vehicle routing
9:05-9:50am	Lecture $#2$:	Prelims: graphs, TSPs and queues
9:55-10:40am	Lecture $#3$:	The single-vehicle DVR problem
10:40-11:00am	Break	
11:00-11:45pm	Lecture $#4:$	The multi-vehicle DVR problem
11:45-1:10pm	Lunch Break	
1:10-2:10pm	Lecture $\#5$:	Extensions to vehicle networks
2:15-3:00pm	Lecture $\#6$:	Extensions to different demand models
3:00-3:20pm	Coffee Break	
3:20-4:20pm	Lecture $\#7$:	Extensions to different vehicle models
4:25-4:40pm	Lecture $#8:$	Extensions to different task models
4:45-5:00pm		Final open-floor discussion

Lecture outline

Batch Policy

FB, EF, MP, KS, SLS (UCSB, MIT)

Stochastic Time Constraints

2 Priority Classes of Demands

• Separate Queues Policy

Policy Independent Lower Bound

• Nearest Depot Assignment Policy

Policy Independent Lower Bound

Dynamic Vehicle Routing (Lecture 6/8)

29jun10 @ Baltimore, ACC

22 / 23

Models of vehicles with differential constraints
2 Traveling salesperson problems
3 The heavy load case
The light load case
5 Phase transition in the light load
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29jun10 @ Baltimore, ACC 2 / 36
Models of vehicles with differential constraints

DTRP formulation

DTRP formulation

Traveling Salesperson Problem

 Models of vehicles with differential constraints Traveling salesperson problems 	Problem Statement Find the shortest closed curve feasible for the vehicle through a given finite set of points in the plane
 3 The heavy load case 4 The light load case 	 NP-hardness a consequence of the NP-hardness of the Euclidean TSP. Does the cost of this TSP increase SUBLINEARLY with n?
3 Phase transition in the light load	 Is there a polynomial-time algorithm that returns a tour of length o(n)?? What is the quality of the solution?
Traveling Salesperson Problem	Literature review
Problem Statement Find the shortest closed curve feasible for the vehicle through a given finite set of points in the plane	 K. Savla, E. Frazzoli, and F. Bullo. Traveling Salesperson Problems for the Dubins vehicle. <i>IEEE Transactions on Automatic Control</i>, 53(6):1378-1391, 2008 K. Savla, F. Bullo, and E. Frazzoli. Traveling Salesperson Problems for a double integrator. <i>IEEE Transactions on Automatic Control</i>, 54(4):788-793, 2009 J. J. Enright, K. Savla, E. Frazzoli, and F. Bullo. Stochastic and dynamic routing problems for multiple UAVs. <i>AIAA Journal of Guidance</i>, <i>Control, and Dynamics</i>, 34(4):1152-1166, 2009 J. J. Enright and E. Frazzoli. The stochastic Traveling Salesman Problem for the Reeds-Shepp car and the differential drive robot. In <i>IEEE Conf. on Decision and Control</i>, pages 3058-3064, San Diego, CA, December 2006 K. Savla and E. Frazzoli. On endogenous reconfiguration for mobile robotic networks. In <i>Workshop on Algorithmic Foundations of Robotics</i>, Guanijuato, Mexico, December 2008 M. Pavone, K. Savla, and E. Frazzoli. Sharing the load. <i>IEEE Robotics and Automation Magazine</i>, 16(2):52-61, 2009
• NP-hardness a consequence of the NP-hardness of the Euclidean TSP.	F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith. Dynamic vehicle routing for robotic systems. Proceedings of the IEEE, May 2010. Submitted
• Does the cost of this TSP increase SUBLINEARLY with <i>n</i> ?	 S. Rathinam, R. Sengupta, and S. Darbha. A resource allocation algorithm for multi-vehicle systems with non holonomic constraints. IEEE Transactions on Automation Sciences and Engineering, 4(1):98–104, 2007
 Is there a polynomial-time algorithm that returns a tour of length o(n)?? 	 J. Le Ny, E. Feron, and E. Frazzoli. On the curvature-constrained traveling salesman problem. <i>IEEE Transactions on Automatic Control</i>, 2009. to appear S. Itani. <i>Dynamic Systems and Subadditive Functionals</i>. PhD thesis, Massachusetts Institute of Technology, 2009
• What is the quality of the solution?	ER EE MR KS SIS (UCSR MIT) Dunamic Vahiele Pauting (Lesturg 7/8) 201m10 @ Paltimers ACC 0 (26

Stochastic TSP: A nearest-neighbor lower bound

Outline of the calculations

- Calculate (an upper bound on) expected distance from an arbitrary vehicle configuration to closest point, δ^*
 - Calculate (an upper bound on) the area of the set reachable with a path of length $\delta,\,\mathcal{R}_{\delta}.$
 - $\Pr(\delta^* \geq \delta) \geq \max\{0, 1 n|\mathcal{R}_{\delta}|/|\mathcal{Q}|\}$
- Expected length of the tour cannot be less than n times $\mathbb{E}[\delta^*]$

Stochastic TSP: A nearest-neighbor lower bound

Outline of the calculations

- \bullet Calculate (an upper bound on) expected distance from an arbitrary vehicle configuration to closest point, δ^*
 - Calculate (an upper bound on) the area of the set reachable with a path of length δ , \mathcal{R}_{δ} .
 - $\Pr(\delta^* \geq \delta) \geq \max\{0, 1 n|\mathcal{R}_{\delta}|/|\mathcal{Q}|\}$
- Expected length of the tour cannot be less than n times $\mathbb{E}[\delta^*]$

Towards an upper bound: tiling based algorithms

• The way the ETSP tours are constructed relies on the scaling properties of tours: the length of the tour scales as the coordinates of the points.

	_]
]

- No such scaling exists for the TSP for vehicles with differential constraints, e.g., the bound on the curvature for the Dubins vehicle does not scale with the coordinates of the points!
- Any tiling-based algorithm must account for a "preferential direction", e.g., by penalizing turning for Dubins vehicles

Towards an upper bound: tiling based algorithms

• The way the ETSP tours are constructed relies on the scaling properties of tours: the length of the tour scales as the coordinates of the points.

- No such scaling exists for the TSP for vehicles with differential constraints, e.g., the bound on the curvature for the Dubins vehicle does not scale with the coordinates of the points!
- Any tiling-based algorithm must account for a "preferential direction", e.g., by penalizing turning for Dubins vehicles

29iun10 @ Baltimore.

10 / 36

Bead construction Bead construction Bead properties Bead properties • Length $(p_-, q, p_+) \leq \ell + o(\ell^2)$ for all $q \in \mathcal{B}$ • Length $(p_-,q,p_+) \leq \ell + o(\ell^2)$ for all $q \in \mathcal{B}$ • Width: $w(\ell) = \frac{\ell^2}{8\rho} + o(\ell^3)$ • Width: $w(\ell) = \frac{\ell^2}{8\rho} + o(\ell^3)$ • The beads tile the plane • The beads tile the plane • Useful for Dubins vehicle, Reeds-Shepp car and double integrator • Useful for Dubins vehicle, Reeds-Shepp car and double integrator Diamond-like cell for differential drive Dynamic Vehicle Routing (Lecture 7/8) FB. EF. MP. KS. SLS (UCSB. MIT) Dynamic Vehicle Routing (Lecture 7/8) 29jun10 @ Baltimore, ACC 12 / FB, EF, MP, KS, SLS (UCSB, MIT) 29jun10 @ Baltimore, ACC 12 / 36 The single-sweep tiling algorithm The single-sweep tiling algorithm • Tile the region with beads • Tile the region with beads • Sweep the bead rows, while servicing all the targets in every bead as • Sweep the bead rows, while servicing all the targets in every bead as follows: follows: • Service every task q in \mathcal{B}_- using the " $p_- o q o p_-$ " protocol • Service every task q in \mathcal{B}_- using the " $p_- \rightarrow q \rightarrow p_-$ " protocol • Move from p_{-} to p_{+} Move from p₋ to p₊ • Service every task q in \mathcal{B}_+ using the " $p_+ \rightarrow q \rightarrow p_+$ " protocol • Service every task q in \mathcal{B}_+ using the " $p_+ \rightarrow q \rightarrow p_+$ " protocol

Phase 1

Phase 2

Phase 1

Phase 2

Phase 3

Analysis of the recursive algorithm

Analysis of the recursive algorithm

• Theorem: For a Dubins vehicle, with probability one,

$$\limsup_{n \to \infty} \frac{\mathsf{TSP}(n)}{n^{2/3}} \le 24\sqrt[3]{\rho|\mathcal{Q}|} \left(1 + \frac{7}{3}\pi \frac{\rho}{\sqrt{|\mathcal{Q}|}}\right)$$

Outline of the proof

• $Pr(\lim_{n\to\infty} \# \text{ tasks remaining after phase } i^* > 24 \log n) = 0$

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29jun10 @ Baltimore, ACC

- Path length calculations:
 - Phase 1 path length $O\left(rac{1}{\ell^2}
 ight) = O\left(n^{2/3}
 ight)$ (:: $\ell \sim n^{-1/3}$)
 - Subsequent phase path lengths are decreasing geometric series; path length for all i^{\ast} phases is $O\left(n^{2/3}\right)$
 - Path length by greedy heuristic is O(log n)

• Theorem: For a Dubins vehicle, with probability one,

$$\limsup_{n \to \infty} \frac{\mathsf{TSP}(n)}{n^{2/3}} \le 24\sqrt[3]{\rho|\mathcal{Q}|} \left(1 + \frac{7}{3}\pi \frac{\rho}{\sqrt{|\mathcal{Q}|}}\right)$$

Outline of the proof

- $Pr(\lim_{n\to\infty} \# \text{ tasks remaining after phase } i^* > 24 \log n) = 0$
- Path length calculations:
 - Phase 1 path length $O\left(\frac{1}{\ell^2}\right) = O\left(n^{2/3}\right)$ (:: $\ell \sim n^{-1/3}$)

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29jun10 @ Baltimore, ACC

- Subsequent phase path lengths are decreasing geometric series; path length for all i^* phases is $O(n^{2/3})$
- Path length by greedy heuristic is $O(\log n)$

Summary of TSPs

- Lower bound: $\mathbb{E}\left[\mathsf{TSP}(n)\right] \in \Omega(n^{2/3})$
- Upper bound: $\mathbb{E}[\mathsf{TSP}(n)] \in O(n^{2/3})$
- TSP(n) is of order $n^{2/3}$; constant factor approximation algorithms
- Computational complexity of the algorithms is of order *n*

Stabilizability of the DTRP

- λ $m \cdot \frac{n}{\mathsf{TSP}(n)} =$
- task se
- $\mathbb{E}[\mathsf{TSP}(n)] \in \Theta(n^{2/3}) \implies \text{trivial receding horizon TSP-base}$

Summary of TSPs

- Lower bound: $\mathbb{E}\left[\mathsf{TSP}(n)\right] \in \Omega(n^{2/3})$
- Upper bound: $\mathbb{E}[\mathsf{TSP}(n)] \in O(n^{2/3})$
- TSP(n) is of order $n^{2/3}$; constant factor approximation algorithms
- Computational complexity of the algorithms is of order n

Stabilizability of the DTRP

• λ task generation rate

- = task growth rate
- n: # outstanding tasks

Outline of the lecture	The heavy load case: nearest neighbor lower bound
 Models of vehicles with differential constraints Traveling salesperson problems The heavy load case The light load case 	 Outline of the calculations Let n_π be the number of outstanding tasks at steady-state under stable policy π Calculate (an upper bound on) expected distance from an arbitrary vehicle configuration to closest among n_π points, δ*(n_π) At steady-state: λ_m = 1/(8 = 1/8) Little's formula: λT_π = n_π
5 Phase transition in the light load	• $\mathbb{E}[\delta^*(n_{\pi})] = \frac{3}{4} \left(\frac{3\rho \mathcal{Q} }{n_{\pi}}\right)^{1/3}$ • Steady state+ Little's formula: $\frac{\lambda}{m} = \frac{4}{3} \left(\frac{\lambda T_{\pi}}{3\rho \mathcal{Q} }\right)^{1/3}$ • $\liminf_{\frac{\lambda}{m} \to +\infty} \overline{T}^* \frac{m^3}{\lambda^2} \ge \frac{81}{64}\rho \mathcal{Q} $
The heavy load case: nearest neighbor lower bound Outline of the calculations • Let n_{π} be the number of outstanding tasks at steady-state under stable policy π • Calculate (an upper bound on) expected distance from an arbitrary vehicle configuration to closest among n_{π} points, $\delta^*(n_{\pi})$ • At steady-state: $\frac{\lambda}{m} = \frac{1}{\mathbb{E}[\delta^*(n_{\pi})]}$ • Little's formula: $\lambda T_{\pi} = n_{\pi}$ Example: Dubins vehicle	<section-header> The single vehicle version Tile Q with beads of length l = c/λ Update outstanding task list Execute single sweep tiling algorithm Goto 2. </section-header>
• $\mathbb{E}[\delta^*(n_{\pi})] = \frac{3}{4} \left(\frac{3\rho \mathcal{Q} }{n_{\pi}}\right)^{1/3}$ • Steady state+ Little's formula: $\frac{\lambda}{m} = \frac{4}{3} \left(\frac{\lambda T_{\pi}}{3\rho \mathcal{Q} }\right)^{1/3}$ • $\liminf_{\frac{\lambda}{m} \to +\infty} \overline{T}^* \frac{m^3}{\lambda^2} \ge \frac{81}{64}\rho \mathcal{Q} $	 Divide Q into m equal "strips" Assign one vehicle to every strip Each vehicle executes the multiple sweep algorithm in its own strip

The multiple sweep tiling algorithm

The single vehicle version

 $\ell = c/\lambda$

algorithm

The multi-vehicle version

Goto 2.

1 Tile Q with beads of length

Opdate outstanding task list

Divide Q into m equal "strips"
Assign one vehicle to every strip

3 Execute single sweep tiling

Analysis of the multiple sweep algorithm

General <u>protocol</u>

• Each bead can be treated as a separate queue, with Poisson arrival process with intensity $\lambda_{\mathcal{B}} = \lambda \frac{|\mathcal{B}|}{|\mathcal{Q}|}$

Dynamic Vehicle Routing (Lecture 7/8)

22 / 36

• The vehicle visits each bead with at a rate no smaller than $\mu_{\mathcal{B}} \approx (\text{single sweep path length})^{-1}$

• The system time is no greater than the system time for the corresponding M/D/1 queue: $\overline{T}^* \leq \frac{1}{\mu_B} \left(1 + \frac{1}{2} \frac{\lambda_B}{\mu_B - \lambda_B} \right)$

• Optimize over ℓ

Example: Dubins vehicle

•
$$\lambda_{\mathcal{B}} = \frac{\ell^{3}\lambda}{16\rho|\mathcal{Q}|}; \ \mu_{\mathcal{B}} \ge \frac{\ell^{2}m}{16\rho|\mathcal{Q}|} \left(1 + \frac{7}{3}\pi\frac{\rho}{\sqrt{|\mathcal{Q}|}}\right)^{-1}$$

• $\limsup_{\frac{\lambda}{m} \to +\infty} \overline{T}^{*}\frac{m^{3}}{\lambda^{2}} \le 71\rho|\mathcal{Q}| \left(1 + \frac{7}{3}\pi\frac{\rho}{\sqrt{|\mathcal{Q}|}}\right)^{3}$

Analysis of the multiple sweep algorithm

General protocol

FB, EF, MP, KS, SLS (UCSB, MIT)

• Each bead can be treated as a separate queue, with Poisson arrival process with intensity $\lambda_{\mathcal{B}} = \lambda \frac{|\mathcal{B}|}{|\mathcal{O}|}$

• Each vehicle executes the multiple sweep algorithm in its own strip

Dynamic Vehicle Routing (Lecture 7/8)

29jun10 @ Baltimore, ACC

21 /

- The vehicle visits each bead with at a rate no smaller than $\mu_B \approx (\text{single sweep path length})^{-1}$
- The system time is no greater than the system time for the corresponding M/D/1 queue: $\overline{T}^* \leq \frac{1}{\mu_{\mathcal{B}}} \left(1 + \frac{1}{2} \frac{\lambda_{\mathcal{B}}}{\mu_{\mathcal{B}} \lambda_{\mathcal{B}}}\right)$
- \bullet Optimize over ℓ

Example: Dubins vehicle

•
$$\lambda_{\mathcal{B}} = \frac{\ell^3 \lambda}{16\rho|\mathcal{Q}|}; \ \mu_{\mathcal{B}} \ge \frac{\ell^2 m}{16\rho|\mathcal{Q}|} \left(1 + \frac{7}{3}\pi \frac{\rho}{\sqrt{|\mathcal{Q}|}}\right)$$

•
$$\limsup_{\frac{\lambda}{m} \to +\infty} \overline{T}^* \frac{m^3}{\lambda^2} \le 71 \rho |\mathcal{Q}| \left(1 + \frac{7}{3} \pi \frac{\rho}{\sqrt{|\mathcal{Q}|}}\right)$$

Outline of the lecture

FB. EF. MP. KS. SLS (UCSB. MIT)

- Models of vehicles with differential constraints
- 2 Traveling salesperson problems
- The heavy load case
- 4 The light load case
- 5) Phase transition in the light load

-1

The light load case

- The light load case
- The target generation rate is very small: $\lambda/m \rightarrow 0^+$ • The target generation rate is very small: $\lambda/m \rightarrow 0^+$ In such case: In such case: • Almost surely all vehicles will have enough time to return to some • Almost surely all vehicles will have enough time to return to some "loitering station" between task completion/generation times "loitering station" between task completion/generation times • The problem is reduced to the choice of the loitering stations that • The problem is reduced to the choice of the loitering stations that minimizes the system time minimizes the system time Introducing differential constraints • Novel challenges: • Vehicles possibly cannot stop (e.g., Dubins vehicle, Reeds-Shepp car) Strategies are more complex than defining a loitering "point" • How many of the results from the Euclidean case carry over to this case? Dynamic Vehicle Routing (Lecture 7/8) Dynamic Vehicle Routing (Lecture 7/8) 29jun10 @ Baltimore, ACC FB, EF, MP, KS, SLS (UCSB, MIT) FB, EF, MP, KS, SLS (UCSB, MIT) 29jun10 @ Baltimore, ACC 24 / 36 The Median Circling (MC) Policy A simple lower bound Assign "virtual" generators to each agent. All agents do the following, in • The length of shortest feasible path from a vehicle positioned at parallel (possibly asynchronously): $p \in \mathbb{R}^2$ to an arbitrary point $q \in \mathcal{Q}$ is lower bounded by ||q - p||• Update the generator position according to a gradient descent law. • Service targets in own region, returning to a "loitering circle" of • A simple lower bound on \overline{T}^* is obtained by relaxing differential radius 2.91ρ centered on their generator position when done constraints • $\overline{T}^* \geq \mathcal{H}_m^*(\mathcal{Q})$ • $\mathcal{H}_m^*(\mathcal{Q}) = \Theta\left(\frac{1}{\sqrt{m}}\right)$ ¥~ $\left(\begin{array}{c} \\ \end{array} \right)$

The Median Circling (MC) Policy

Illustration of the MC policy

Assign "virtual" generators to each agent. All agents do the following, in parallel (possibly asynchronously):

- Update the generator position according to a gradient descent law.
- Service targets in own region, returning to a "loitering circle" of radius 2.91ρ centered on their generator position when done
- We have
 - $\lim_{\lambda/m\to 0^+} T_{\mathrm{MC}} \leq \mathcal{H}_m^*(\mathcal{Q}) + 3.76\rho$
- Furthermore,

FB, EF, MP, KS, SLS (UCSB, MIT)

 $\lim_{\mathcal{H}_m^* \to +\infty, \lambda/m \to 0^+} \frac{T_{\mathrm{MC}}}{\overline{\tau}^*} = 1.$

Tighter lower bound using differential constraints

Dynamic Vehicle Routing (Lecture 7/8)

General protocol

- Consider a "frozen moment in time"
- Consider the "modified Voronoi" diagram of the vehicles.
- Relaxation: approximate vehicle Voronoi region by their reachable sets
- Optimize over the vehicle configurations

•

<u>_</u> مر

__)**⊼**

29iun10 @ Baltimore, ACC

Tighter lower bound using differential constraints

General protocol

• Consider a "frozen moment in time"

D-

- Consider the "modified Voronoi" diagram of the vehicles.
- Relaxation: approximate vehicle Voronoi region by their reachable sets
- Optimize over the vehicle configurations

27 / 36

The Strip Loitering (SL) policy

FB, EF, MP, KS, SLS (UCSB, MIT)

G

C

 \bigotimes

Illustration of the SL policy

The Strip Loitering (SL) policy

- Divide the environment Q into strips of width min $\left\{\frac{k_2(Q,\rho)}{m^{2/3}}, 2\rho\right\}$
- Design a closed loitering path that bisects the strips. All vehicles move along this path, equally spaced, with dynamic regions of responsibility.
- Each vehicle services targets in own region, returning to the "nominal" position on the loitering path.

 $\lim_{m\to+\infty} T_{\mathrm{SL}} m^{1/3} \leq k_3(\mathcal{Q},\rho), \quad \text{and} \quad \lim_{m\to+\infty} \frac{T_{\mathrm{SL}}}{\overline{\tau}^*} \leq k_4(\mathcal{Q},\rho).$

Dynamic Vehicle Routing (Lecture 7/8)

29jun10 @ Baltimore, ACC

29 / 36

- Divide the environment Q into strips of width min $\left\{\frac{k_2(Q,\rho)}{m^{2/3}}, 2\rho\right\}$
- Design a closed loitering path that bisects the strips. All vehicles move along this path, equally spaced, with dynamic regions of responsibility.
- Each vehicle services targets in own region, returning to the "nominal" position on the loitering path.

 $\lim_{m\to+\infty} T_{\mathrm{SL}} m^{1/3} \leq k_3(\mathcal{Q},\rho), \quad \text{and} \quad \lim_{m\to+\infty} \frac{T_{\mathrm{SL}}}{\overline{\tau}^*} \leq k_4(\mathcal{Q},\rho).$

Dynamic Vehicle Routing (Lecture 7/8)

29jun10 @ Baltimore, ACC

29 / 36

Outline of the lecture

FB, EF, MP, KS, SLS (UCSB, MIT)

Models of vehicles with differential constraints

- 2 Traveling salesperson problems
- 3 The heavy load case
- 4) The light load case

5 Phase transition in the light load
Phase transition in the light load

Phase transition in the light load

- We have two policies: Median Circling (MC), and Strip Loitering (SL). Which is better?
- Define the non-holonomic density $d_{\rho} = \frac{\rho^2 m}{|Q|}$.
 - MC is optimal when $d_
 ho
 ightarrow 0$,
 - SL is within a constant factor of the optimal as $d_
 ho
 ightarrow +\infty.$
- phase transition: the optimal organization changes from territorial (MC) to gregarious (SL) depending on the non-holonomic density of the agents.

- We have two policies: Median Circling (MC), and Strip Loitering (SL). Which is better?
- Define the non-holonomic density $d_{\rho} = \frac{\rho^2 m}{|Q|}$.
 - MC is optimal when $d_
 ho
 ightarrow 0$,
 - SL is within a constant factor of the optimal as $d_
 ho
 ightarrow +\infty.$
- phase transition: the optimal organization changes from territorial (MC) to gregarious (SL) depending on the non-holonomic density of the agents.

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29jun10 @ Baltimore, ACC 32 / 36	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29jun10 @ Baltimore, ACC 32 / 36
Estimate of the critical density	Estimate of the critical density
 Ignoring boundary conditions (e.g., consider the unbounded plane), we can compare the coverage cost for the two policies analytically: 	 Ignoring boundary conditions (e.g., consider the unbounded plane), we can compare the coverage cost for the two policies analytically:
$T_{ m SL} < T_{ m MC}$ \Leftrightarrow $d_ ho > 0.0587$	$T_{ m SL} < T_{ m MC} \qquad \Leftrightarrow \qquad d_ ho > 0.0587$
(i.e., transition occurs when the area of the dominance region is about 4-5 times the area of the minimum turning radius circle).	(i.e., transition occurs when the area of the dominance region is about 4-5 times the area of the minimum turning radius circle).
• Simulation results yield $d_{\rho}^{\text{crit}} \approx 0.0759$ (within a factor 1.3 of the analytical result).	• Simulation results yield $d_{\rho}^{\text{crit}} \approx 0.0759$ (within a factor 1.3 of the analytical result).

Dynamic Vehicle Routing Summary

	Euclidean	Dubins vehicle, Reeds-Shepp car
	vehicle	Double integrator, Differential drive
$\mathbb{E}[TSP Length]$	$\Theta(n^{\frac{1}{2}})$	$\Theta(n^{\frac{2}{3}})$
$(n ightarrow \infty)$		
\overline{T}^*	$\Theta(\frac{\lambda}{m^2})$	$\Theta(\frac{\lambda^2}{m^3})$
$\left(\frac{\lambda}{m} \to \infty\right)$		
\overline{T}^*	$\Theta(m^{-\frac{1}{2}})$	$\Theta(m^{-\frac{1}{2}})$
$\left(\frac{\lambda}{m} \to 0, \frac{m}{ \mathcal{Q} } \to 0\right)$		
\overline{T}^*	$\Theta(m^{-\frac{1}{2}})$	$\Theta(m^{-\frac{1}{3}})$
$\left(\frac{\lambda}{m} \to 0, \frac{m}{ \mathcal{Q} } \to \infty\right)$		

Dynamic Vehicle Routing (Lecture 7/8) 29jun10 @ Baltimore, ACC

Lecture outline

- 1 Models of vehicles with differential constraints
- 2 Traveling salesperson problems
- 3 The heavy load case
- 4 The light load case

34 / 36

(5) Phase transition in the light load

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8)

29jun10 @ Baltimore, ACC

35 / 36

Workshop Structure and Schedule

FB, EF, MP, KS, SLS (UCSB, MIT)

G
α.
6
eues
m
n
l models
models
odels
∍u m n m od

0
• Group of vehicles monitoring a region
 Several different sensing modalities: electro-optical, infra-red, synthetic aperture radar, foliage penetrating radar, etc. Each event requires a subset of sensing modalities Equip each vehicle with a single sensing modality Form appropriate team to properly assess each event How do we create teams in real-time to observe each event (service each request)?
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 8/8) 29jun10 @ Baltimore, ACC 2 / 24
Literature Review
 Scaling laws in Robotic Networks V. Sharma, M. Savchenko, E. Frazzoli, and P. Voulgaris. Transfer time complexity of conflict-free vehicle routing with no communications. International Journal of Robotics Research, 26(3):255–272, 2007 S. L. Smith and F. Bullo. Monotonic target assignment for robotic networks. IEEE Transactions on Automatic Control, 54(9):2042–2057, 2009

Mativation for Toons Forming

Lecture outline	Dynamic Team Forming
 Dynamic Team Forming Three Policies Analysis of Policies 	Set of services $\{r_1, \ldots, r_k\}$. Vehicle properties: • k different vehicle types. • Vehicle type $j \in \{1, \ldots, k\}$, can provide only service r_j . Task (demand) model: • Poisson and Uniform arrivals • Each task requires a subset of services in $\{r_1, \ldots, r_k\}$. • \mathcal{K} different types of tasks • Tasks of type α arrive at rate λ_{α} • Task completed when required vehicles simultaneously spend on-site service time at location.
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 8/8) 29jun10 @ Baltimore, ACC 5 / 24 Load Factor and Stability	S. L. Smith and F. Bullo. The dynamic team forming problem: Throughput and delay for unbiased policies. <i>Systems & Control Letters</i> , 58(10-11):709–715, 2009 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 8/8) 29jun10 @ Baltimore, ACC 6 / 24 Example of Team Forming
Evaluation and Stability • $R_{\alpha} \in \{0, 1\}^{k}$ is zero-one column vector recording services required for task-type α . • on-site service for task-type α is \bar{s}_{α} • m_{j} vehicles provide service r_{j} . Necessary stability condition: $[R_{1} \cdots R_{\mathcal{K}}] \begin{bmatrix} \lambda_{1} \bar{s}_{1} \\ \vdots \\ \lambda_{\mathcal{K}} \bar{s}_{\mathcal{K}} \end{bmatrix} < \begin{bmatrix} m_{1} \\ \vdots \\ m_{k} \end{bmatrix}$ Load factor is now a vector	• $k = 4$ different services, $\{r_1, r_2, r_3, r_4\}$. • $m = 8$ vehicles, two of each type: $m_j = 2$ for $j \in \{1, 2, 3, 4\}$. • $\mathcal{K} = 6$ task types, $\{r_1\}, \{r_2\}, \{r_3\}, \{r_4\}, \{r_1, r_3\}, \{r_2, r_4\}$. $\begin{cases} r_1, r_3 \\ \bullet \\ \bullet \\ \hline \\ \hline$

Lecture outline	Task-Type Unbiased Policies
 Dynamic Team Forming Three Policies Complete Team Task-Specific Team Policy Scheduled Task-Specific Team Policy Analysis of Policies 	For a policy π : • System time of each task-type $\overline{T}_{\pi,1}, \ldots, \overline{T}_{\pi,\mathcal{K}}$ • Feasible set of system times are subset of $\mathbb{R}^{\mathcal{K}}$ • Optimization space similar to priority queues, but with teaming To simplify, consider task-type unbiased policies $\overline{T}_{\pi,1} = \overline{T}_{\pi,2} = \cdots = \overline{T}_{\pi,\mathcal{K}} =: \overline{T}_{\pi}$ and the optimization: $\inf_{\pi} \overline{T}_{\pi}$.
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 8/8) 29jun10 @ Baltimore, ACC 9 / 24 Policy 1: Complete Team Policy	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 8/8) 29jun10 @ Baltimore, ACC 10 / 24 Policy 1: Complete Team Policy
<pre>Complete Team Policy 1: Form min{m₁,m_k} teams of k vehicles, each team contains one vehicle of each type. 2: Have each team meet and move as a single entity. 3: In each region run UTSP policy (from Lecture 3). Can also use Divide & Conquer policy for each team</pre>	 Two services y, b 3 task-types y, b, {y, b}. 4 vehicles 2 yellow 2 blue
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 8/8) 29jun10 @ Baltimore, ACC 11 / 24	• •

Policy 2: Task-specific Team Policy

Policy 2: Task-Specific Team Policy

- *m_j* vehicles provide service *r_j*.
- r_j appears in $e_j^{\top}[R_1 \cdots R_{\mathcal{K}}]\mathbf{1}_{\mathcal{K}}$ task types.
- If $m_j \ge e_j^{\top}[R_1 \cdots R_{\mathcal{K}}]\mathbf{1}_{\mathcal{K}} \Rightarrow$ enough vehicles of type j to create dedicated team for each task type.
- Create $m_{\rm TST}$ teams, where:

$$m_{\text{TST}} := \left[\min_{j} \left\{ \frac{m_j}{e_j^T R \mathbf{1}_{\mathcal{K}}} \right\} \right]$$

Task-Specific Team Policy

- 1: For each of the ${\cal K}$ task types, create $m_{\rm TST}$ teams of vehicles.
- 2: Service each task by one of its $m_{\rm TST}$ corresponding teams, according to the UTSP policy.

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 8/8) 29jun10 @ Baltimore, ACC

Policy 3: Preliminary Result

Definition (Service schedule)

A partition of task types into L time slots, such that:

- each type appears in exactly one time slot, and
- task types in each time slot are pairwise disjoint.

Policy 3: Scheduled Task-Specific Team Policy

Scheduled Task-specific team policy

Partition Q into min_i $\{m_i\}$ regions and assign one robot of each type to each region.

- 1: In each region form a queue for each task type.
- 2: For each time slot in the schedule:
 - Divide robots into teams to form required task types.
 - ② For each team, service corresponding queue with TSP tour.

Throughput vs System Time Profile

System Time for each Policy

4.0 ⁴			\overline{T}_{\min}	\overline{T}_{ord}	$B_{\rm crit}$	
	Lo	wer bound (\overline{T}^*)	\sqrt{k}	k	$\frac{1}{pk\overline{s}}$	
10 ³	Co	mplete Team	\sqrt{k}	k	$\frac{1}{k\overline{s}}$	
	Та	sk-Specific	$\sqrt{pk\mathcal{K}}$	pkK	$\frac{1}{pk\overline{s}}$	
T T T T T T T T T T T T T T T T T T T	Sc	heduled Task-Specif	fic $L\sqrt{k}$	Lk	$\frac{\mathcal{K}}{s_{\max}Lk}$	
		where	$L \in [p\mathcal{K}, \mathcal{K}]$		indx	
\overline{T}_{\min}	Best policies f	or different scenar	rios:			
	If through	out is low, then use	complete tea	am		
10 0.2 0.4 0.6 0.8 $B_{\rm crit}$	• If <i>p</i> is close	e to 1 then use com	nplete team			
Throughput B_m	 If p is close 	$rac{1}{k}$ then for be	est capacity	use		
	• Task-S	pecific if enough vehi	cles	450		
	 Schedu 	led Task-Specific oth	erwise			
B, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 8/8) 29jun10 @ Baltimore, ACC 21 / 24	FB, EF, MP, KS, SLS (U	CSB, MIT) Dynamic Vehicle	e Routing (Lecture 8	/8) 29ju	n10 @ Baltimo	re, ACC 22 / 24
Lecture outline	Workshop S	tructure and Sc	chedule			
Lecture outline	Workshop S	tructure and So	chedule			
Lecture outline	Workshop S	tructure and So	chedule			
Lecture outline	Workshop S 8:00-8:30am	tructure and So Coffee Break	chedule			
Dynamic Team Forming	Workshop S 8:00-8:30am 8:30-9:00am	Coffee Break	chedule ntro to dyna	mic veł	nicle rout	ing
Dynamic Team Forming	Workshop S 8:00-8:30am 8:30-9:00am 9:05-9:50am	Coffee Break Lecture #1: Lecture #2:	chedule ntro to dyna ² relims: grap	imic vel ohs, TS	nicle rout Ps and q	ing ueues
Dynamic Team Forming	Workshop S 8:00-8:30am 8:30-9:00am 9:05-9:50am 9:55-10:40am	Coffee Break Lecture #1: Lecture #2: Lecture #3:	chedule ntro to dyna ^D relims: grap The single-ve	imic vel ohs, TS chicle D	nicle rout Ps and q VR probl	ing ueues lem
 Dynamic Team Forming Three Policies Complete Team 	Workshop S 8:00-8:30am 8:30-9:00am 9:05-9:50am 9:55-10:40am 10:40-11:00am	Coffee Break Lecture #1: Lecture #2: Lecture #3: The Break	chedule ntro to dyna ^P relims: grag The single-ve	imic veł ohs, TS chicle D	nicle rout Ps and q VR probl	ing ueues lem
 Dynamic Team Forming Three Policies Complete Team Task-Specific Team Policy 	Workshop S 8:00-8:30am 8:30-9:00am 9:05-9:50am 9:55-10:40am 10:40-11:00an 11:00-11:45pn	Coffee Break Image: Coffee Break Lecture #1: Image: Coffee Break Lecture #2: Image: Coffee Break Lecture #3: Image: Coffee Break Break Image: Coffee Break Lecture #4: Image: Coffee Break	chedule ntro to dyna ^P relims: grap The single-ve The multi-ve	imic vel bhs, TS chicle D hicle D	nicle rout Ps and q VR probl VR probl	ing ueues lem em
 Dynamic Team Forming Three Policies Complete Team Task-Specific Team Policy Scheduled Task-Specific Team Policy 	Workshop S 8:00-8:30am 8:30-9:00am 9:05-9:50am 9:55-10:40am 10:40-11:00an 11:00-11:45pn 11:45-1:10pm	Coffee Break Lecture #1: Lecture #2: Lecture #3: Break Lecture #4: Lunch Break	chedule ntro to dyna ^P relims: grap The single-ve The multi-ve	mic vel ohs, TS chicle D hicle D	nicle rout Ps and q VR probl VR probl	ing ueues lem em
 Dynamic Team Forming Three Policies Complete Team Task-Specific Team Policy Scheduled Task-Specific Team Policy 	Workshop S 8:00-8:30am 8:30-9:00am 9:05-9:50am 9:55-10:40am 10:40-11:00an 11:00-11:45pn 11:45-1:10pm 1:10-2:10pm	Coffee Break Lecture #1: Lecture #2: F Lecture #3: Break Lecture #4: Lecture #5:	chedule ntro to dyna Prelims: grap The single-ve The multi-ve Extensions to	mic vel ohs, TS chicle D hicle D	nicle rout Ps and q VR probl VR proble e network	ing ueues lem em
 Dynamic Team Forming Three Policies Complete Team Task-Specific Team Policy Scheduled Task-Specific Team Policy 	Workshop S 8:00-8:30am 8:30-9:00am 9:05-9:50am 9:55-10:40am 10:40-11:00an 11:00-11:45pn 11:45-1:10pm 1:10-2:10pm 2:15-3:00pm	Coffee Break Lecture #1: Lecture #2: F Lecture #3: D Break Lecture #4: Lecture #5: Lecture #6:	ntro to dyna Prelims: grap The single-ve The multi-ve Extensions to	mic vel ohs, TS chicle D hicle D' o vehicle o differe	nicle rout Ps and q VR probl VR probl e network	ing ueues lem em ks nd models
 Dynamic Team Forming Three Policies Complete Team Task-Specific Team Policy Scheduled Task-Specific Team Policy Analysis of Policies 	Workshop S 8:00-8:30am 8:30-9:00am 9:05-9:50am 9:55-10:40am 10:40-11:00an 11:00-11:45pn 11:45-1:10pm 1:10-2:10pm 2:15-3:00pm 3:00-3:20pm	Coffee Break Lecture #1: Lecture #2: Lecture #3: Description Break Lecture #4: Lecture #5: Lecture #6: Coffee Break	chedule ntro to dyna Prelims: grap The single-ve The multi-ve Extensions to	mic veh ohs, TS chicle D hicle D o vehicle o differe	nicle rout Ps and q VR probl VR probl e network nt deman	ing ueues lem em ks nd models
 Dynamic Team Forming Three Policies Complete Team Task-Specific Team Policy Scheduled Task-Specific Team Policy Analysis of Policies Throughput vs System Time Complete Team 	Workshop S 8:00-8:30am 8:30-9:00am 9:05-9:50am 9:55-10:40am 10:40-11:00an 11:00-11:45pn 11:45-1:10pm 1:10-2:10pm 2:15-3:00pm 3:00-3:20pm 3:20-4:20pm	Coffee Break Lecture #1: Lecture #2: F Lecture #3: Break Lecture #4: Lecture #5: Lecture #6: Coffee Break Lecture #7:	chedule ntro to dyna Prelims: grap The single-ve The multi-ve Extensions to Extensions to	mic vel ohs, TS chicle D hicle D' o vehicle o differe	nicle rout Ps and q VR probl VR probl e network ent demai ent vehicl	ing ueues lem em ks nd models e models
 Lecture outline Dynamic Team Forming Three Policies Complete Team Task-Specific Team Policy Scheduled Task-Specific Team Policy Analysis of Policies Throughput vs System Time Comparison of Results 	Workshop S 8:00-8:30am 8:30-9:00am 9:05-9:50am 9:55-10:40am 10:40-11:00an 11:00-11:45pn 11:45-1:10pm 2:15-3:00pm 3:00-3:20pm 3:20-4:20pm 4:25-4:40pm	Coffee BreakLecture #1:Lecture #2:Lecture #3:BreakLecture #4:Lecture #4:Lecture #4:Lecture #5:Lecture #6:Lecture #6:Lecture #7:Lecture #8:	chedule ntro to dyna Prelims: grap The single-ve The multi-ve Extensions to Extensions to Extensions to	mic vel ohs, TS chicle D hicle D o vehicle o differe o differe	nicle rout Ps and q VR probl VR probl e network nt deman nt deman nt vehicl nt task r	ing ueues lem em «s nd models e models nodels
 Dynamic Team Forming Three Policies Complete Team Task-Specific Team Policy Scheduled Task-Specific Team Policy Analysis of Policies Throughput vs System Time Comparison of Results 	Workshop S 8:00-8:30am 8:30-9:00am 9:05-9:50am 9:55-10:40am 10:40-11:00an 11:00-11:45pn 11:45-1:10pm 2:15-3:00pm 3:00-3:20pm 3:20-4:20pm 4:45-5:00pm	Coffee Break Lecture #1: Lecture #2: Lecture #3: Decture #3: Lecture #4: Lecture #4: Lecture #4: Lecture #5: Lecture #6: Lecture #7: Lecture #8:	chedule ntro to dyna Prelims: grap The single-ve The multi-ve Extensions to Extensions to Extensions to Extensions to Extensions to	mic vel ohs, TS chicle D hicle D o vehicle o differe o differe o differe	nicle rout Ps and q VR proble NR proble nt vehicl nt vehicl nt task r	ing ueues lem em ks nd models e models nodels