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Autonomy and Networking Technologies

Individual members in the group can

sense its immediate environment

communicate with others

process the information gathered

take a local action in response
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Prototypical Dynamic Vehicle Routing Problem

Given:

a group of vehicles, and

a set of service demands

Objective:
provide service in minimum time
service = take a picture at location

Vehicle routing (All info known ahead of time, Dantzig ’59)

Determine a set of paths that allow vehicles to service the demands

Dynamic vehicle routing (New info in real time, Psaraftis ’88)

New demands arise in real-time

Existing demands evolve over time
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Light and heavy load regimes
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From coordination and static routing to
Dynamic Vehicle Routing

Simple coordination problems arise in static environments

1 motion coordination: rendezvous, deployment, flocking

2 task allocation, target assignment
3 static vehicle routing (P. Toth and D. Vigo ’01)

Routing policies vs planning algorithms

dynamic, stochastic and adversarial events take place

1 design policies (in contrast to pre-planned routes or motion planning
algorithms) to specify how to react to events

2 dynamic demands add queueing phenomena to the combinatorial
nature of vehicle routing
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Literature on DVR and queueing for robotic networks

Shortest path through randomly-generated and worst-case points
(Beardwood, Halton and Hammersly, 1959 — Steele, 1990)

Traveling salesman problem solvers (Lin, Kernighan, 1973)

DVR formulation on a graph (Psaraftis, 1988)

DVR on Euclidean plane (Bertsimas and Van Ryzin, 1990–1993)

Unified receding-horizon policy (Papastavrou, 1996)

Recent developments in DVR for robotic networks:

Adaptation and decentralization

Vehicles with dynamics, nonholonomic vehicles, Dubins UAVs

Pickup & delivery tasks

Heterogeneous vehicles and team forming

Distinct-priority and impatient demands

Moving demands
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Contributions of our recent works

Comprehensive framework for DVR in robotic systems

1 adaptive DVR policies for single vehicles in light and heavy load

2 cooperative DVR policies via partitioning

3 scalable distributed partitioning policies under a variety of
communication/interaction scenarios

4 (models, algorithms and analysis of) service vehicles with dynamics
& stochastic and combinatorics of nonholonomic Dubins vehicles
performing Traveling Salesman Problems and DVR tasks

5 (models, algorithms and analysis of) service vehicles with time
constraints and heterogeneous priorities

6 (models, algorithms and analysis of) demands requiring service by
multiple heterogeneous vehicles simultaneously.
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Plain-vanilla re-optimization?

Example: DVR on segment

Objective: minimize average
waiting time

Strategy: re-optimize at each
event

10 0.5

1 For adversarial target generation, vehicle travels forever without ever
servicing any request =⇒ unstable queue of outstanding requests

2 Even if queue remains bounded, what about performance? how far
from the optimal?
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Online algorithms?

Online algorithms (Jaillet and M. R. Wagner ’06)

online algorithm operates based on input information up to the
current time

online algorithm is (worst-case) r -competitive if

Costonline(I ) ≤ rCostoptimal offline(I ), ∀ problem instances I .

Disadvantages

1 cumulative cost

2 worst-case analysis

3 not possible to include a-priori information (e.g., arrival rate)

4 not as clear what competitive ratio means

5 so far, only few simple DVR problems admit online algorithms
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Workshop Structure and Schedule

8:00-8:30am Coffee Break
8:30-9:00am Lecture #1: Intro to dynamic vehicle routing
9:05-9:50am Lecture #2: Prelims: graphs, TSPs and queues
9:55-10:40am Lecture #3: The single-vehicle DVR problem
10:40-11:00am Break
11:00-11:45pm Lecture #4: The multi-vehicle DVR problem
11:45-1:10pm Lunch Break
1:10-2:10pm Lecture #5: Extensions to vehicle networks
2:15-3:00pm Lecture #6: Extensions to different demand models
3:00-3:20pm Coffee Break
3:20-4:20pm Lecture #7: Extensions to different vehicle models
4:25-4:40pm Lecture #8: Extensions to different task models
4:45-5:00pm Final open-floor discussion
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Key references for this lecture

Graph Theory Basics:
R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer,
2 edition, 2000

Combinatorial Optimization:
B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms, vol-
ume 21 of Algorithmics and Combinatorics. Springer, 4 edition, 2007

Stochastic TSP:
J. M. Steele. Probability Theory and Combinatorial Optimization. SIAM, 1987

Basic Queueing Theory:
L. Kleinrock. Queueing Systems. Volume I: Theory. Wiley, 1975
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Outline

1 Graph Theory
Weighted Graphs
Minimum Spanning Tree

2 The Traveling Salesman Problem

3 Queueing Theory
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Graph Theory Review

An undirected graph G = (V ,E ).

a path in G is a sequence v1, e1, v2, . . . , vk , ek , vk+1, with
ei != ej for i != j .
vi != vj for all i != j .

A circuit or cycle has v1 = vk+1.

A Hamiltonian path is a path that contains all vertices.

Similarly define a Hamiltonian cycle or tour.
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Weighted Graphs

A weighted graph G = (V ,E , c) has edge weights c : E → R>0.

In a complete graph, E = V × V .

Special classes of complete weighted graphs:

Metric if

c({v1, v2}) + c({v2, v3}) ≥ c({v1, v3}) for all v1, v2, v3 ∈ V .

Euclidean if

V ⊂ Rd and c({vi , vj}) = ‖vi − vj‖2.
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Minimum Spanning Tree

A tree is a graph with no cycles

A spanning tree of G is a subgraph
that

1 is a tree
2 connects all vertices together

Minimum Spanning Tree Problem

Given: a weighted graph G − (V ,E , c)
Task: find a spanning tree T = (ET ,VT ) such that

∑
e∈ET

c(e) is
minimum.

Can be solved in greedy fashion using Kruskal’s algorithm:

Recursively adds shortest edge that does not create a cycle

Runs in O(n2) time (where |V | = n)
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Hamiltonian Cycle Decision Problem

Hamiltonian Cycle

Given: An undirected graph G .

Question: Does G contain a Hamiltonian cycle?

Hamiltonian Cycle is NP-complete
(One of Karp’s 21 NP-complete problems)

Recall, a problem is NP-complete if

Every solution can be verified in polynomial time (NP).

Every problem in NP can be reduced to it.
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Traveling Salesman Problem

Traveling Salesman Problem (TSP)

Given: A complete graph Gn = (Vn,En) and weights c : En → R>0.

Task: Find a Hamiltonian cycle with minimum weight.

TSP is NP-hard

To show NP-hard: Reduce Hamiltonian Cycle to TSP.

Given an undirected graph G = (V ,E ) with |V | = n:

1 Construct complete graph Gn with weight 1 for each edge in E and
weight 2 for all other edges.

2 Then G is Hamiltonian ⇔ optimum TSP tour has length n.
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Approximation Algorithms for the TSP

Theorem (Sahni and Gonzalez, 1976)

Unless P = NP, there is no k-factor approx alg for the TSP for any k ≥ 1.

Proof Idea: k-factor approx would imply poly time algorithm for
Hamiltonian Cycle.

In practice for metric and non-metric problems:

Heuristic: Lin-Kernighan based solvers (Lin and Kernighan, 1973)

Empirically ∼ 5% of optimal in O(n2.2) time.

Exact: Concorde TSP Solver (Applegate, Bixby, Chvatal, Cook, 2007)

Exact solution of Euclidean TSP on 85, 900 points!
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Metric TSP

Metric TSP

Given: A complete metric graph Gn = (Vn,En)
Task: Find a Hamiltonian cycle with minimum weight.

The Metric TSP is NP-hard.

There exist approximation algorithms!
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Eulerian Graphs

Eulerian graph: degree of each vertex is even

Eulerian walk: Closed walk containing every edge.

Graph has Eulerian walk ⇔ Eulerian.

Eulerian walk can be computed in O(|V | + |E |) time.
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Double-Tree Algorithm

Double-Tree Algorithm

1: Find a minimum spanning tree T of graph Gn.
2: G := graph containing two copies of each edge in T.
3: Compute Eulerian walk in Eulerian graph G.
4: Walk gives ordering, ignore all but first occurrence

of vertex.
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Double-Tree Algorithm

Theorem

Double-Tree Algorithm is a 2-approx algorithm for the Metric TSP. Its
running time is O(n2).

Deleting one edge from a tour gives a spanning tree.

Thus minimum spanning tree is shorter than optimal tour.

Each edge is doubled.

Spanning tree can be computed in O(n2) time.

Eulerian walk computed in O(n) time.
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Christofides’ Algorithm

Christofides’ Algorithm

1: Find a minimum spanning tree T of G.
2: Let W be the set of vertices with odd degree in T.
3: Find the minimum weight perfect matching M in

subgraph generated by W .
4: Find an Eulerian path in G := (Vn,E (T ) ∪ M), (skip

vertices already seen).
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vertices already seen).
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Christofides’ Algorithm

Theorem

Christofides’ Algorithm gives a 3/2-approx algorithm for the Metric TSP.
Its running time is O(n3).

L(Christofides) = L(MST) + L(M).

But, L(MST) < L(TSP), and

L(M) ≤ L(M ′) ≤ L(TSP)/2.
Where M ′ is the minimum perfect matching of W using edges that
are part of TSP.

Best known approx algorithm for Metric TSP
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Euclidean TSP

Theorem (Arora, 1998; Mitchell, 1999)

For each fixed ε > 0, a (1 + ε)-approximate solution can be found in
O

(
n3(log n)c

)
time.

Practical value limited to due c’s dependence on ε.
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Length Bounds for Euclidean TSP

How long is the TSP tour through n points in unit square?

Theorem (Few, 1955)

For every set Qn of n points in the unit square

ETSP(Qn) ≤
√

2n + 7/4.

Worst-case lower bound matches:

Equally space n points on a grid

Then ETSP(Qn) = C
√

n.

So, worst-case length ≥ C
√

n.
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Worst-case TSP Length Upper Bound (Intuition)

Consider Qn := {x1, . . . , xn} of n points in unit square.
There exists c > 0 such that

min
{
‖xi − xj‖ : xi , xj ∈ Qn

}
≤ c√

n
.

Let "n denote worst-case TSP length through n pts.
Then "n ≤ "n−1 + 2c/

√
n.

Summing we get "(n) ≤ C
√

n.
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TSP Length for Random Points

Theorem (Beardwood, Halton, and Hammersley, 1959)

Let Qn be a set of n i.i.d. random variables with compact support in Rd

and distribution ϕ(x). Then, with prob. 1

lim
n→+∞

ETSP(Qn)

n(d−1)/d
= βTSP,d

∫

Rd
ϕ̄(x)(d−1)/ddx ,

where βTSP,d is a constant independent of ϕ, and ϕ̄ is absolutely
continuous part of ϕ.

For uniform distribution in square of area A

ETSP(Qn)√
n

→ βTSP,2

√
A as n → +∞.

Best estimate of βTSP,2 is Percus and Martin, 1996

βTSP,2 / 0.7120.
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Summary of Traveling Salesman Problem

Solving TSP is NP-hard, and no approx algorithms exist.

For metric TSP, still NP-hard but good approx algs exist.

For Euclidean TSP, very good heuristics exist.

Length of tour through n points in unit square:

Worst-case is Θ(
√

n).

Uniform random is Θ(
√

n).

For all density functions O(
√

n).
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Outline

1 Graph Theory

2 The Traveling Salesman Problem

3 Queueing Theory
Kendall’s Notation
Little’s Law and Load Factor
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Basic Queueing Model

Customers arrive, wait in a queue, and are then processed

Queue length builds up when arrival rate is larger than service rate

λ
incoming customers outgoing customers

queue length

server
s̄

N

Arrivals modeled as stochastic process with rate λ

Service time of each customer is a r.v. with finite mean s̄ and
second moment s̄2.

Service rate is 1/s̄.
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Queueing Notation

Kendall’s Queueing notation A/B/C :

A = the arrival process

B = the service time distribution

C = the number of servers

Main codes:

D = Deterministic
M = Markovian

for arrivals: Poisson process
for service times: Exponential distribution

G (or GI ) = General distribution (independent among customers)

Example M/G/m queue:

Poisson arrivals with rate λ

General service times with mean s̄

m servers
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Little’s Law and Load Factor

Define:

average wait-time in queue as W

average system as T := W + s̄.

Little’s Law/Theorem

For a stable queue N = λW

For m servers, define load factor as

& :=
λs̄

m

Necessary condition for stable queue is & < 1.
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Wait-time examples

For M/D/1 queue:

W =
&s̄

2(1− &)

For M/G/1 queue:

W =
λs̄2

2(1− &)

For G/G/1 queue (Kingman, 1962):

W ≤ λ(σ2
a + σ2

s )

2(1− &)

and the upper bound becomes exact as &→ 1−.
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Lecture outline

1 Graph Theory
Weighted Graphs
Minimum Spanning Tree

2 The Traveling Salesman Problem
Approximation Algorithms
Metric TSP
Euclidean TSP

3 Queueing Theory
Kendall’s Notation
Little’s Law and Load Factor
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Lecture outline

1 Queueing-theoretical model for DVR

2 Lower bounds on performance (m=1)

3 Control policies

D. J. Bertsimas and G. J. van Ryzin. A stochastic and dynamic vehicle routing problem in the
Euclidean plane. Operations Research, 39:601–615, 1991
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The problem

DVR - distinct features

service demands vary over time

information about future is
stochastic

real-time routing policies

queueing phenomena

DVR is fundamentally a queueing problem:

1 arrival process

2 service model

3 performance measure
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General queueing-theoretical model for DVR 1/2

Arrival process: spatio-temporal Poisson

1 time intensity λ > 0

2 spatial density ϕ: P [demand in S] =
∫
S ϕ(x) dx

3 inter-arrival times and locations are i.i.d.

Service model:

1 m holonomic vehicles with maximum velocity v

2 vehicles provide a random on-site service

3 on-site service times are i.i.d. (equal on average to s̄)

4 demand removed from the system upon on-site service completion
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General queueing-theoretical model for DVR 2/2

Performance measure: steady-state system time of demands T

Problem statement

Solve optimization problem over all causal routing policies π:

inf
π

Tπ

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC 5 / 25

Relation to standard queueing systems

DVR model close to M/G/m queue

key difference: service times are not i.i.d. in general

Service time correlations in DVR:

service time = travel time + on-site service

FCFS policy

unconditional expected travel time
between two consecutive demands ≈ 0.52.

conditional expected travel time between
two consecutive demands > 0.52.

Average 
distance ≈ 0.52

A

M/G/m methodology is not applicable!
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A first look at the problem: stability

λ · E[service time]/m fraction of time each vehicle is busy

Necessary condition for stability:
System is stable if λ · E[service time]/m < 1.
Since s̄ ≤ E[service time], a weaker necessary condition is:

$ = λs̄/m < 1

Sufficient condition for stability:
Surprisingly, $ < 1 is also sufficient for stability =⇒ stability condition is
independent of the size and shape of Q
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Analysis approach

Lack of i.i.d. property substantially complicates analysis

General approach:
1 lower bounds on performance, independent of algorithms,
2 design of algorithms and upper bound on their performance, possibly in

asymptotic regimes (i.e., $→ 0+ and $→ 1−)
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Lecture outline

1 Queueing-theoretical model for DVR

2 Lower bounds on performance (m=1)

3 Control policies

D. J. Bertsimas and G. J. van Ryzin. A stochastic and dynamic vehicle routing problem in the
Euclidean plane. Operations Research, 39:601–615, 1991

D. J. Bertsimas and G. J. van Ryzin. Stochastic and dynamic vehicle routing with general interar-
rival and service time distributions. Advances in Applied Probability, 25:947–978, 1993
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Light-load lower bound

Median

minimizer p∗ of

p %→
∫

Q
‖x − p‖ϕ(x)dx = Eϕ[‖X − p‖]

best a priori location to reach next demand

p∗

Lower bound (most useful when λ→ 0+)

For all policies π: Tπ ≥ Eϕ[‖X − p∗‖]/v + s̄

Proof sketch:
T = W travel + W on-site + s̄.

W travel ≥ Eϕ[‖X − p∗‖]/v

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC 10 / 25



Light-load lower bound

Median

minimizer p∗ of

p %→
∫

Q
‖x − p‖ϕ(x)dx = Eϕ[‖X − p‖]

best a priori location to reach next demand

p∗

Lower bound (most useful when λ→ 0+)

For all policies π: Tπ ≥ Eϕ[‖X − p∗‖]/v + s̄

Proof sketch:

T = W travel + W on-site + s̄.

W travel ≥ Eϕ[‖X − p∗‖]/v
p∗

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC 10 / 25

Light-load lower bound

Median

minimizer p∗ of

p %→
∫

Q
‖x − p‖ϕ(x)dx = Eϕ[‖X − p‖]

best a priori location to reach next demand

p∗

Lower bound (most useful when λ→ 0+)

For all policies π: Tπ ≥ Eϕ[‖X − p∗‖]/v + s̄

Proof sketch:

T = W travel + W on-site + s̄.

W travel ≥ Eϕ[‖X − p∗‖]/v
p∗

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC 10 / 25

Light-load lower bound

Median

minimizer p∗ of

p %→
∫

Q
‖x − p‖ϕ(x)dx = Eϕ[‖X − p‖]

best a priori location to reach next demand

p∗

Lower bound (most useful when λ→ 0+)

For all policies π: Tπ ≥ Eϕ[‖X − p∗‖]/v + s̄

Proof sketch:

T = W travel + W on-site + s̄.

W travel ≥ Eϕ[‖X − p∗‖]/v
p∗

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC 10 / 25

Light-load lower bound

Median

minimizer p∗ of

p %→
∫

Q
‖x − p‖ϕ(x)dx = Eϕ[‖X − p‖]

best a priori location to reach next demand

p∗

Lower bound (most useful when λ→ 0+)

For all policies π: Tπ ≥ Eϕ[‖X − p∗‖]/v + s̄

Proof sketch:

T = W travel + W on-site + s̄.

W travel ≥ Eϕ[‖X − p∗‖]/v
p∗

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC 10 / 25



Heavy-load lower bound

Definition (Spatially-biased and -unbiased policies)

A policy π is said to be

1 spatially unbiased if system time is independent of demand location

2 spatially biased if system time depends on demand location

Heavy-load lower bound

spatially-unbiased policies: Tπ ≥
β2

TSP

2

λ
(∫

Q ϕ1/2(x)dx
)2

v2 (1− $)2
as $→ 1−

spatially-biased policies: Tπ ≥
β2

TSP

2

λ
(∫

Q ϕ2/3(x)dx
)3

v2 (1− $)2
as $→ 1−
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Proof sketch (for unbiased policies)

Proof of the lower bound:
the idea is to use stability arguments (which are independent of
policies!)
let D be the travel inter-demand distance
one can show that

D ≥ βTSP

∫
Q ϕ1/2(x)dx
√

2 N
as $→ 1−,

with N average number of waiting demands
for stability:

s̄ +
D

v
≤ 1

λ
=⇒ s̄ + βTSP

∫
Q ϕ1/2(x)dx

v
√

2 N
≤ 1/λ

since N = λW and T = W + s̄ one obtains:

T
∗ ≥ β2

TSP

2

λ
(∫

Q ϕ1/2(x)dx
)2

v2 (1− $)2
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Lecture outline

1 Queueing-theoretical model for DVR

2 Lower bounds on performance (m=1)

3 Control policies

D. J. Bertsimas and G. J. van Ryzin. A stochastic and dynamic vehicle routing problem in the
Euclidean plane. Operations Research, 39:601–615, 1991

D. J. Bertsimas and G. J. van Ryzin. Stochastic and dynamic vehicle routing with general interar-
rival and service time distributions. Advances in Applied Probability, 25:947–978, 1993

M. Pavone, E. Frazzoli, and F. Bullo. Distributed and adaptive algorithms for vehicle routing
in a stochastic and dynamic environment. IEEE Transactions on Automatic Control, May 2010.
(Submitted, Apr 2009) to appear
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An optimal light load policy

Stochastic Queueing Median (SQM)

Compute median p∗. Then:

1: service demands in FCFS order
2: return to p∗ after each service is

completed

Optimality of SQM policy

lim
λ→0+

T SQM/T
∗

= 1

Proof sketch

As λ→ 0+, P [demand generated when system is empty]→ 1

⇒ all demands generated with the vehicle at p∗

⇒ T SQM = Eϕ[‖X − p∗‖]/v + s̄
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An optimal spatially-unbiased heavy-load policy

Unbiased TSP (UTSP)

Partition Q into r subregions Qk with
∫
Qk

ϕ(x)dx = 1/r.
Then:

1: within each subregion form sets of size n/r
2: deposit sets in a queue
3: service sets FCFS by following a TSP tour

Optimize over n.

Optimality of UTSP policy

lim
$→1−

TUTSP(r)/T
∗
U ≤ 1 + 1/r
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Proof

Proof (r = 1)

idea: reduction to GI/G/1 queue

jth set viewed as jth customer: arrival and service times are i.i.d.!

inter-arrival distribution is Erlang of order n

expected service time is n s̄ + βTSP
√

n
∫
Q ϕ1/2(x)dx/v

standard results give upper bound on the wait in queue for a set

then easy to find upper bound for individual demands

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC 16 / 25



Comments

Relation with non-spatial queueing systems:

wait time grows as (1− $)−2 instead of (1− $)−1!

DVR problems are fundamentally different from traditional queueing
systems (techniques, results, etc.)

Analysis techniques:

for light load: locational optimization

for heavy load: reduction to classic queueing systems or
control-theoretical methods

Biased/unbiased:

biased service provides strict reduction of optimal system time for any
non-uniform ϕ
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Adaptivity

SQM policy not adaptive:

SQM unstable as $→ 1−

intuition: average per-demand travel D is fixed

but stability condition implies D < (1− $)/λ!

UTSP and BTSP policies not adaptive:

for stability of the queue of sets:

λ

n

(
n s̄ + βTSP

√
n

∫

Q
ϕ1/2(x)dx/v

)
< 1

then one should a priori select:

n > λ2β2
TSP

[∫

Q
ϕ1/2(x) dx

]2

/(v2 (1− $)2)

⇒ wrong selection of n might lead to instability or unacceptable
deterioration in performance
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Divide & Conquer policy

Divide & Conquer (DC)

Partition Q into r subregions
Qk with

∫
Qk

ϕ(x)dx = 1/r.
Then:

1: while no customers, move
to empirical median p̃∗

2: while customers waiting

1 move to subregion Qk

2 service all demands in
Qk by following a TSP
tour

3 k ← k + 1 (modulo r)
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DC policy (with r → +∞)

Implementation:

NP-hard computation, but effective heuristics

Adaptation: the policy does not require knowledge of

1 vehicle velocity v , environment Q
2 arrival rate λ

3 expected on-site service s̄

Performance:

1 in light load, delay is optimal

2 in heavy load, delay is optimal

3 stable in any load condition

optimal and adaptive
very little known outside of asymptotic regimes
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Proof (r=1)

Light load:

p̃∗ → p∗ and recovers SQM

Heavy load:

no well-defined notion of “jth customer”

focus on dynamical system

E[ni+1] ≤ λ E
[ ni∑

q=1

sq + TSP(ni )
]

≤ λ
(
s̄ E[ni ] + βTSP

∫

Q
ϕ1/2(x)dx

√
E[ni ]/v

)

upper bound trajectories with the trajectories of virtual dynamical
system

zi+1 = $ zi + (λ/v) βTSP

∫

Q
ϕ1/2(x)dx

√
zi

TDC ≤ limi→+∞ zi/λ
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Receding-Horizon policy

Receding-Horizon (RH)

For η ∈ (0, 1], single agent performs:

1: while no customers, move to empirical median p̃∗

2: while customers waiting

1 compute TSP tour through current demands

2 service η-fraction of path
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RH policy

Implementation:

NP-hard computation, but effective heuristics

Adaptation: the policy does not require knowledge of

1 vehicle velocity v , environment Q
2 arrival rate λ and spatial density function ϕ

3 expected on-site service s̄

Performance:

1 in light load, delay is optimal

2 in heavy load, delay is within a multiplicative factor from optimal

3 multiplicative factor depends upon ϕ and is conjectured to equal 2

adaptive to all parameters
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Lecture outline

1 Queueing-theoretical model for DVR

2 Lower bounds on performance (m=1)

3 Control policies
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Load balancing in DVR via territory partitioning

1 Resource allocation in DVR is transcribed into partitioning!

2 Focus of this lecture is mutivehicle DVR via optimal partitioning
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Lecture outline

1 Territory Partitioning

2 The multi-vehicle DVR problem

3 Multi-vehicle DVR policies based on partitioning
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Territory partitioning is ... art

Ocean Park Paintings, by Richard Diebenkorn (1922-1993)
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Territory partitioning: optimality and behaviors

DESIGN of performance metrics

1 how to cover a region with n minimum-radius overlapping disks?

2 how to design a minimum-distortion (fixed-rate) vector quantizer?

3 where to place mailboxes in a city / cache servers on the internet?

ANALYSIS of cooperative distributed behaviors

how do animals share territory?
how do they decide foraging
ranges?
how do they decide nest locations?

4 what if each robot goes to “center” of own dominance region?

5 what if each robot moves away from closest vehicle?
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Multi-center functions

Expected wait time (in light load)

H(p, v) =

∫

v1

‖x − p1‖dx + · · · +
∫

vn

‖x − pn‖dx

n robots at p = {p1, . . . , pn}
environment is partitioned into v = {v1, . . . , vn}

H(p, v) =
n∑

i=1

∫

vi

f (‖x − pi‖)ϕ(x)dx

ϕ : R2 → R≥0 density

f : R≥0 → R penalty function

F. Bullo, J. Cortés, and S. Mart́ınez. Distributed Control of Robotic Networks. Applied Mathematics
Series. Princeton University Press, 2009. Available at http://www.coordinationbook.info
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Optimal partitioning

The Voronoi partition {V1, . . . ,Vn} generated by points (p1, . . . , pn)

Vi (p) = {x ∈ Q| ‖x − pi‖ ≤ ‖x − pj‖ , ∀j '= i}

= Q
⋂

j

(half plane between i and j , containing i)

Descartes 1644, Dirichlet 1850, Voronoi 1908, Thiessen 1911,
Fortune 1986 (sweepline algorithm O(n log(n)))
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Optimal centering (for region v with density ϕ)

function of p minimizer = center

p (→
∫

v
‖x − p‖ϕ(x)dx median (or Fermat–Weber point)

p (→
∫

v
‖x − p‖2ϕ(x)dx centroid (or center of mass)

p (→ area(v ∩ disk(p, r)) r-area center

p (→ radius of largest disk centered
at p enclosed inside v

incenter

p (→ radius of smallest disk cen-
tered at p enclosing v

circumcenter

From online
Encyclopedia of
Triangle Centers
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How to compute the median of a convex set

For convex planar set Q with strictly positive density ϕ,

HFW(p) =

∫

Q
‖p − x‖ϕ(x)dx

1 HFW is strictly convex

2 the global minimum point is in Q and is called median of Q
3 compute median via gradient flow with

d

dp
HFW(p) =

∫

Q

p − x

‖p − x‖ϕ(x)dx
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From optimality conditions to algorithms

H(p, v) =
n∑

i=1

∫

vi

f (‖x − pi‖)ϕ(x)dx

Theorem (Alternating Algorithm, Lloyd ’57)

1 at fixed positions, optimal partition is Voronoi

2 at fixed partition, optimal positions are “generalized centers”

3 alternate v-p optimization
=⇒ local optimum = center Voronoi partition
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Gradient algorithm for multicenter function

After assuming v is Voronoi partition,

H(p) =
n∑

j=1

∫

Vj (p)
f (‖x − pj‖)ϕ(x)dx

For f smooth, note simplifications for boundary terms

∂H
∂pi

(p) =

∫

Vi (p)

∂

∂pi
f (‖x − pi‖) ϕ(x)dx
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f (‖x − pi‖) 〈ni (x),

∂x

∂pi
〉ϕ(x)dx

+
∑

j neigh i

∫
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︸ ︷︷ ︸
contrib from neighbors
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Example optimal partition
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Lecture outline

1 Territory Partitioning

2 The multi-vehicle DVR problem

3 Multi-vehicle DVR policies based on partitioning

D. J. Bertsimas and G. J. van Ryzin. Stochastic and dynamic vehicle routing with general interar-
rival and service time distributions. Advances in Applied Probability, 25:947–978, 1993
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Multi-vehicle DVR problem

results on single-vehicle DVR generalize easily to the multi-vehicle
case

previous methodology (locational optimization, queueing and control
theory, combinatorics) applicable to this case

main new idea: partitioning
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Light-load lower bound

Multi - Median

minimizer p∗ = {p∗1 , . . . , p∗m} of

p (→ Eϕ[min
i
‖X − pi‖] =

m∑

i=1

∫

Vi

‖x − pi‖ϕ(x)dx

Lower bound (most useful when λ → 0+)

For all policies π: Tπ ≥ Eϕ[mini ‖X − p∗i ‖]/v + s̄

Proof sketch:

multi-median: best a priori location
to reach a newly arrived demand

p∗1

p∗2
p∗3
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Heavy-load lower bound

Heavy-load lower bound

spatially-unbiased policies: Tπ ≥
β2

TSP

2

λ
(∫

Q ϕ1/2(x)dx
)2

m2 v2 (1− &)2
as & → 1−

spatially-biased policies: Tπ ≥
β2

TSP

2

λ
(∫

Q ϕ2/3(x)dx
)3

m2 v2 (1− &)2
as & → 1−

Proof sketch (for unbiased policies):

Recall inter-demand distance D ≥ βTSP

R
Q ϕ1/2(x)dx√

2 N
, as & → 1−

for stability with m vehicles:

s̄ +
D

v
≤ m

λ
=⇒ s̄ + βTSP

∫
Q ϕ1/2(x)dx

v
√

2 N
≤ m/λ

N = λW and T = W + s̄ =⇒ T
∗ ≥ β2

TSP
2

λ (
R
Q ϕ1/2(x)dx)2

m2 v2 (1−&)2
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An optimal light-load policy

m Stochastic Queueing Median
(mSQM)

Compute multi-median p∗ and
assign one vehicle at each
median point. Then:

1: Assign demand that falls
in Vi to vehicle i

2: each vehicles service
demands in FCFS order

3: each vehicle returns to
p∗k after each service is
completed

Proof sketch of optimality

As λ → 0+, P [demand generated when system is empty] → 1

⇒ all demands are generated with the vehicles at p∗
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An optimal spatially-unbiased heavy-load policy

Unbiased TSP (UTSP)

Partition Q into r subregions Qk with
∫
Qk

ϕ(x)dx = 1/r.
Then:

1: within each subregion form sets of size n/r
2: deposit sets in a queue
3: service sets FCFS with the first available vehicle by

following a TSP tour

Optimize over n.

Optimality of UTSP policy

lim
&→1−

TUTSP(r)/T
∗
U ≤ 1 + 1/r

Proof sketch of optimality (r=1)

reduction to GI/G/m
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Lecture outline

1 Territory Partitioning

2 The multi-vehicle DVR problem

3 Multi-vehicle DVR policies based on partitioning

M. Pavone, E. Frazzoli, and F. Bullo. Distributed and adaptive algorithms for vehicle routing
in a stochastic and dynamic environment. IEEE Transactions on Automatic Control, May 2010.
(Submitted, Apr 2009) to appear
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Partitioning policies

Definition (π-partitioning policy)

Given m vehicles and single-vehicle policy π:

1 Workspace divided into m subregions

2 One-to-one correspondence vehicles/subregions

3 Each agent executes the single-vehicle policy π within its own
subregion
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Motivation

Performance:

light load: problem reduces to locational optimization

heavy load:
1 delay of optimal single vehicle policy scales as λ |Q|
2 by (equitably) partitioning, delay reduces to λ

m
|Q|
m = λ|Q|

m2

3 ⇒ delay scales as m−2, as in the lower bound

Implementation:

systematic approach to lift adaptive single-vehicle policies to
multi-vehicle policies

coupled with distributed partitioning algorithms, provides distributed
multi-vehicle policies

distributed multi-vehicle policy = single-vehicle policy + optimal
partitioning + distributed algorithm for partitioning
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Optimal partitioning in heavy load

Intuition

per-vehicle workload is ∝ λ
∫
Qk

ϕ(x)dx

per-vehicle service capacity is ∝ λ
∫
Qk

ϕ1/2(x)dx

optimal partitioning = equalizing per-vehicle workload and service
capacity

Definition

A partition {Qk}m
k=1 is:

equitable if
∫
Qk

ϕ(x)dx =
∫
Q ϕ(x)dx/m

simultaneously equitable if
1

∫
Qk

ϕ(x)dx =
∫
Q ϕ(x)dx/m, and

2
∫
Qk

ϕ1/2(x)dx =
∫
Q ϕ1/2(x)dx/m

Simultaneously equitable partitions exist for any Q and ϕ
(S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink, 2000)
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Optimal partitioning in heavy load

Theorem

Given single-vehicle optimal policy π∗, a π∗-partitioning policy using a
simultaneously equitable partition is an optimal unbiased policy

Proof sketch

P [demand arrives in Qk ] =
∫
Qk

ϕ(x) dx = 1/m

arrival rate in region k: λk = λ/m

⇒ &k = λk s̄ = λs̄/m = & < 1 ⇒ system is stable

conditional density for region k: ϕ(x)/
(∫

Qk
ϕ(x) dx

)
= m ϕ(x)

T =
∑m

k=1

(
∫
Qk

ϕ(x) dx
β2
TSP
2

λk
v2 (1−&k )2

[∫
Qk

√
ϕ(x)R

Qk
ϕ(x) dx

dx

]2
)

=
∑m

k=1
1
m Tπ∗

1
m2
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Comments

If {Qk}m
k=1 is only equitable wrt to ϕ1/2...

∃ k̄ such that &k̄ = λ (1/m + ε) s̄ = & + ελs̄

potentially, policy unstable for & < 1!

If {Qk}m
k=1 is only equitable wrt to ϕ...

per-vehicle service capacity is unbalanced ⇒ policy stable but not
optimal

guaranteed to be within m of optimal unbiased performance
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Special cases

Case s̄ = 0:

stability not an issue:

λ︸︷︷︸
generation rate

− m · n

TSPlength(n)︸ ︷︷ ︸
service rate

= demand growth rate

since TSPlength(n) ∝
√

n ⇒ stability for all λ, m

equitability only wrt to ϕ1/2 provides optimal performance

Case ϕ = uniform:

equitable wrt to ϕ ⇒ equitable wrt to ϕ1/2

no need to use algorithms for simultaneous equitability
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Lecture outline

1 Territory Partitioning

2 The multi-vehicle DVR problem

3 Multi-vehicle DVR policies based on partitioning
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Workshop Structure and Schedule

8:00-8:30am Coffee Break
8:30-9:00am Lecture #1: Intro to dynamic vehicle routing
9:05-9:50am Lecture #2: Prelims: graphs, TSPs and queues
9:55-10:40am Lecture #3: The single-vehicle DVR problem
10:40-11:00am Break
11:00-11:45pm Lecture #4: The multi-vehicle DVR problem
11:45-1:10pm Lunch Break
1:10-2:10pm Lecture #5: Extensions to vehicle networks
2:15-3:00pm Lecture #6: Extensions to different demand models
3:00-3:20pm Coffee Break
3:20-4:20pm Lecture #7: Extensions to different vehicle models
4:25-4:40pm Lecture #8: Extensions to different task models
4:45-5:00pm Final open-floor discussion
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Dynamic Vehicle Routing for Robotic Networks
Lecture #5: Extensions to vehicle networks and

distributed algorithms

Francesco Bullo1 Emilio Frazzoli2 Marco Pavone2

Ketan Savla2 Stephen L. Smith2

1CCDC
University of California, Santa Barbara
bullo@engineering.ucsb.edu

2LIDS and CSAIL
Massachusetts Institute of Technology
{frazzoli,pavone,ksavla,slsmith}@mit.edu

Workshop at the 2010 American Control Conference
Baltimore, Maryland, USA, June 29, 2010, 8:30am to 5:00pm
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Lecture outline

1 Motivation and inspiration from biology

2 Intro to comm models, multi-agent networks and distributed algorithms

3 Partitioning with synchronous proximity-graphs communication

4 Partitioning with gossip (asynchronous pair-wise) communication

5 Partitioning with no explicit inter-vehicle communication
No explicit communication policy
Game-theoretic interpretation
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Territory partitioning via centralized space planning

UCSB Campus Development Plan, 2008
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Territory partitioning akin to animal territory dynamics

Tilapia mossambica, “Hexagonal

Territories,” Barlow et al, ’74

Red harvester ants, “Optimization, Conflict, and

Nonoverlapping Foraging Ranges,” Adler et al, ’03

Sage sparrows, “Territory dynamics in a sage sparrows

population,” Petersen et al ’87
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Territory partitioning: behaviors and optimality

DESIGN of performance metrics

1 how to cover a region with n minimum-radius overlapping disks?

2 how to design a minimum-distortion (fixed-rate) vector quantizer?

3 where to place mailboxes in a city / cache servers on the internet?

ANALYSIS of cooperative distributed behaviors

how do animals share territory?
how do they decide foraging
ranges?
how do they decide nest locations?

4 what if each robot goes to “center” of own dominance region?

5 what if each robot moves away from closest vehicle?
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Lecture outline

1 Motivation and inspiration from biology

2 Intro to comm models, multi-agent networks and distributed algorithms

3 Partitioning with synchronous proximity-graphs communication

4 Partitioning with gossip (asynchronous pair-wise) communication

5 Partitioning with no explicit inter-vehicle communication
No explicit communication policy
Game-theoretic interpretation
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Intro to communication models, multi-agent networks and
distributed algorithms

References

1 I. Suzuki and M. Yamashita. Distributed anonymous mobile robots:
Formation of geometric patterns. SIAM Journal on Computing,
28(4):1347–1363, 1999

2 N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1997

3 D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997

4 S. Mart́ınez, F. Bullo, J. Cortés, and E. Frazzoli. On synchronous robotic
networks – Part I: Models, tasks and complexity. IEEE Transactions on
Automatic Control, 52(12):2199–2213, 2007

Objective

1 meaningful + tractable model

2 information/control/communication tradeoffs
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Preliminary: Processor network and distributed algorithm

Processor network: group of processors capable to exchange messages
along edges and perform local computations

Transmit
and
receive

Update
processor
state

Distributed algorithm for a network of processors consists of

1 W [i ], the processor state set

2 A, the communication alphabet

3 stf[i ] : W [i ] × An → W [i ], the state-transition map

4 msg[i ] : W [i ] → A, the message-generation map
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Robotic network

A robotic network is

1 set of robots moving in space Q
2 interaction graph

Disk, visibility and Delauney graphs
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Communication models for robotic networks

Delaunay graph r-disk graph r-Delaunay graph

r-limited Delaunay graph Gabriel graph EMST graph

Relevant graphs

1 fixed, directed, balanced

2 switching

3 proximity/geometric or
state-dependent

4 random, random geometric
(packet losses)

Message model

1 message

2 packet/bits

Sensing model

1 absolute coords other robots

2 absolute coords environment
boundary
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Synchronous control and communication

1 communication schedule T = {t!}!∈N0 ⊂ R≥0

2 communication alphabet A
3 set of values for processor vars W

4 message-generation function msg : T×Q× W → A
5 state-transition functions stf : T×W × AN → W
6 control function ctrl : R≥0 ×Q× W × AN → U

Transmit
and
receive

Update
processor
state

Update physical state
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Lecture outline

1 Motivation and inspiration from biology

2 Intro to comm models, multi-agent networks and distributed algorithms

3 Partitioning with synchronous proximity-graphs communication

4 Partitioning with gossip (asynchronous pair-wise) communication

5 Partitioning with no explicit inter-vehicle communication
No explicit communication policy
Game-theoretic interpretation

M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo. Equitable partitioning policies for mobile robotic
networks. IEEE Transactions on Automatic Control, 2010. (Submitted Dec 2008 and Aug 2009)
to appear
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Spatially-distributed policies for DVR

Key idea

Distributed multi-vehicle policy = single-vehicle policy + optimal
partitioning + distributed algorithm for partitioning

Light load

Optimal pre-positioning
⇒ median Voronoi diagrams

Heavy load

Workload balance
⇒ equitable partitions
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Median Voronoi diagrams (and beyond) with synchronous
proximity-graphs communication

Voronoi+centering law

At each comm round:

1: acquire neighbors’ positions
2: compute own dominance region
3: move towards center of own

dominance region

Area-center Incenter Circumcenter

S. Mart́ınez, J. Cortés, and F. Bullo. Motion coordination with distributed informa-
tion. IEEE Control Systems Magazine, 27(4):75–88, 2007
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Experimental Partitioning

Takahide Goto, Takeshi Hatanaka, Masayuki Fujita
Tokyo Institute of Technology
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Experimental Partitioning

Mac Schwager, Brian Julian, Daniela Rus
Distributed Robots Laboratory, MIT
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Hardware-in-the-loop Partitioning and DVR for UAVs

(15x real time)

John J. Enright, Chung Hsieh, Emilio Frazzoli
ARES Group, MIT and UCLA
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Equitable and median Voronoi diagrams with synchronous
proximity-graphs communication

“Ambitious” goal:

Distributed algorithm to partition the workspace according to:

1 median Voronoi diagram (relevant in light-load)

2 equitable (relevant in heavy load)

Voronoi Diagrams

Voronoi partition {V1, . . . ,Vm} generated by
points (p1, . . . , pm):

Vi = {x ∈ Q | ‖x − pi‖2 ! ‖x − pj‖2,∀j )= i}
In general, an equitable Voronoi Diagram fails to exist...
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Partitioning using Power Diagrams

Power distance

p = (p1, . . . , pm) collection of points in Q ⊂ R2

each pi has assigned a weight wi ∈ R
power distance function dP(x , pi ; wi )=‖x − pi‖2 − wi

Power Diagrams

Power diagram {V1, . . . ,Vm} generated by

weighted points
(
(p1,w1), . . . , (pm,wm)

)
:

Vi = {x ∈ Q|‖x − pi‖2 − wi !
‖x − pj‖2 − wj ,∀j )= i}

p2

p1
(3,4)

(3,5
)

(5,6)(1
,5
)

(1,4)

(4,6
)

(3,
6)

(1,3)

p4

p3

p6
p5
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Existence theorem for Power diagrams

Existence theorem

Let p = (p1, . . . , pm) be the positions of m ≥ 1 distinct points in Q. Then
there exist weights (w1, . . . ,wm) such that the corresponding Power
diagram is equitable with respect to ϕ

v5

v3

v1

v6

v0 = (-D,-D,-D)

v2

V4

α v7 u2 =  φε1
=0,φε2

=1,φε3
=0[ ]

u3

e 3 
:  

  φ
ε 3

=0
{

}

u1

[φε1
=1,φε2

=0,φε3
=0]

= e2 :    φε2
=0{ }

p0

e
1 :    φ

ε
1 =0

{
}

f

=

  φε1
=0,φε2

=0,φε3
=1][
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Gradient descent law for equitable partitioning

wi locally controlled by vehicle i

locational optimization function

H(w)
.
=

m∑

i=1

(∫

Vi (w)
ϕ(x)dx

)−1
=

m∑

i=1

|Vi (w)|−1
ϕ

spatially-distributed gradient: ∂H
∂ wi

=
∑

j∈Ni
αϕ

ij

(
1

|Vj |2ϕ
− 1

|Vi |2ϕ

)

Gradient law for equitable partitioning

At each comm round:

1: acquire neighbors’ positions
2: compute own dominance region
3: wi ← wi − γ ∂H

∂wi
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Convergence result

Theorem (Convergence)

Assume that the pi ’s are distinct. Then, the wi ’s converge asymptotically
to a vector of weights that yields an equitable Power diagram

guaranteed convergence for any set of distinct points
⇒ global convergence result

distributed over the dual graph of the induced Power diagram
⇒ communication, on average, with six neighbors

adjusting the weights sufficient to obtain an equitable diagram
⇒ move the pi ’s to optimize secondary objectives
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Including the median Voronoi diagram property

Close to Voronoi:

basic idea: keep the weights close to zero

modify the gradient descent law as

ẇi = − ∂H
∂wi

− wi ,
∂H
∂pi

· ṗi −
∂H
∂wi

wi = 0

Motion toward the median:

basic idea: add a term that enforces computation of the median

gradient term for computation of the median:

∂HFW

∂pi
=

∫

Vi

pi − x

‖pi − x‖ϕ(x)dx

modify the gradient descent law as

ẇi = − ∂H
∂wi

, ṗi =
∂HFW

∂pi
ψ

(∂H
∂pi

,
∂HFW

∂pi

)
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Simulation
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Lecture outline

1 Motivation and inspiration from biology

2 Intro to comm models, multi-agent networks and distributed algorithms

3 Partitioning with synchronous proximity-graphs communication

4 Partitioning with gossip (asynchronous pair-wise) communication

5 Partitioning with no explicit inter-vehicle communication
No explicit communication policy
Game-theoretic interpretation
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Partitioning with gossip communication

Voronoi+centering law requires:
1 synchronous communication
2 communication along edges of dual graph

G1

Minimalist coordination

is synchrony necessary?

is it sufficient to communicate peer-to-peer (gossip)?

what are minimal requirements?
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Gossip (asynchronous pair-wise) partitioning policy

1 Random communication between two regions
2 Compute two centers
3 Compute bisector of centers
4 Partition two regions by bisector

F. Bullo, R. Carli, and P. Frasca. Gossip coverage control for robotic networks: Dynam-
ical systems on the the space of partitions. SIAM Review, January 2010. Submitted
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Indoor example implementation

Player/Stage platform

realistic robot models in discretized environments

integrated wireless network model & obstacle-avoidance planner

J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and cover-
age control with gossip communication. In ASME Dynamic Systems and Control
Conference, Hollywood, CA, October 2009
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Peer-to-peer convergence analysis (proof sketch 1/3)

Lyapunov function for peer-to-peer territory partitioning

H(v) =
n∑

i=1

∫

vi

f (‖ center(vi )− q‖)φ(q)dq

1 state space is not finite-dimensional

non-convex disconnected polygons

arbitrary number of vertices

2 peer-to-peer map is not deterministic, ill-defined and discontinuous

two regions could have same centers
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The space of partitions (proof sketch 2/3)

Definition (Space of finitely-convex partitions)

Fix ', the set v is collections of n subsets of Q, {v1, . . . , vn}, such that

1 v1 ∪ · · · ∪ vn = Q,

2 interior(vi ) ∩ interior(vj) = ∅ if i )= j , and

3 each vi is union of ' convex sets

Given sets A and B, symmetric distance is:

d∆(A,B) = area
(
(A∪B) \ (A∩B)

)

Theorem (topological properties of the space of finitely-convex partitions)

Partition space with (u, v) /→
∑n

i=1 d∆(ui , vi ) is metric and compact
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Convergence with persistent switches (proof sketch 3/3)

X is metric space

finite collection of maps Ti : X → X for i ∈ I

consider sequences {x!}!≥0 ⊂ X with

x!+1 = Ti(!)(x!)

Assume:

1 W ⊂ X compact and positively invariant for each Ti

2 U : W → R decreasing along each Ti

3 U and Ti are continuous on W

4 there exists probability p ∈ ]0, 1[ such that, for all indices i ∈ I and
times ', we have Prob

[
x!+1 = Ti (x!) | past

]
≥ p

If x0 ∈ W , then almost surely

x! → (intersection of sets of fixed points of all Ti ) ∩ U−1(c)
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Lecture outline

1 Motivation and inspiration from biology

2 Intro to comm models, multi-agent networks and distributed algorithms

3 Partitioning with synchronous proximity-graphs communication

4 Partitioning with gossip (asynchronous pair-wise) communication

5 Partitioning with no explicit inter-vehicle communication
No explicit communication policy
Game-theoretic interpretation

A. Arsie, K. Savla, and E. Frazzoli. Efficient routing algorithms for multiple vehicles with no explicit
communications. IEEE Transactions on Automatic Control, 54(10):2302–2317, 2009
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Motivation

Gradient policy

Cost function: H(p) =
∑n

j=1

∫
Vj (p) ‖q − pj‖ϕ(q)dq

ṗi = −∂H
∂pi

(p) = −
∫
Vi (p)

∂
∂pi
‖q − pi‖ϕ(q)dq

p(t) converges to a critical point of H(p)

Similar result using the gossip partitioning policy

Salient Features

Explicit agent-to-agent
communication

Needs knowledge of ϕ
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Partitioning with no explicit inter-vehicle communication

Inspiration: Distributed MacQueen algorithm

Pick any m generator points (p1, . . . , pm) ∈ Qm

Iteratively sample points qj according to probability density function ϕ

At each iteration j :
Assign the sampled point to the nearest generator i∗(qj) ∈ {1, . . . ,m}
update the position of generator i∗ as

pi∗ =
(#pts assigned in past) pi∗ + qj

#pts assigned in past + 1
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Algorithms

No sensor policy

For all time t, each vehicle moves towards:

the nearest outstanding task; else,

the (nearest) point minimizing the average
distance to tasks serviced in the past

Sensor-based policy

For all time t, each vehicle moves towards:

the nearest among outstanding tasks that
is closest to it than other vehicles; else,

the (nearest) point minimizing the average
distance to tasks serviced in the past

3

On the other hand, an agent executing a control policy of
the form (3) can sense the current position of other agents,
but still has information only on the targets itself visited in
the past. We call these sensor-based (sb) policies, to signify
the fact that only factual information is exchanged between
agents—as opposed to information related to intent and past
history. Note that both the families of coordination policies
rely, in principle, on the knowledge of the locations of all
outstanding targets. However only local target sensing will
be necessary in practice. This last claim is difficult to justify
from a theoretical point of view, and it is better understood in
terms of simulations. For a more complete treatment of this
issue, in particular the effect of limiting sensing radius for
target sensing and its effect on the system performance, see
the review [16].

A policy π = (π1, π2, . . . ,πm) is said to be stabilizing if,
under its effect, the expected number of outstanding targets
does not diverge over time, i.e., if

nπ :=

= lim
t→+∞

E[n(t)|ṗi(t) = πi(p(t),Bi(t),D(t)), i ∈ {1, . . . ,m}]

is finite. Intuitively, a policy is stabilizing if the mobile agents
are able to visit targets at a rate that is—on average—at least
as fast as the rate at which new service requests are generated.

Let Tj be the time elapsed between the issuance of the j-
th service request, and the time it is fulfilled. If the system
is stable, then the following balance equation (also known as
Little’s formula [17]) holds:

nπ = λTπ, (4)

where Tπ := limj→∞ E[Tj ] is the system time under policy
π, i.e., the expected time a service request must wait before
being fulfilled, given that the mobile agents follow the strategy
defined by π. Note that the system time Tπ can be thought
of as a measure of the quality of service, as perceived by the
“user” issuing the service requests.

At this point we can finally state our problem: we wish to
devise a policy that is (i) stabilizing, and (ii) yields a quality
of service (i.e., system time) achieving, or approximating, the
theoretical optimal performance given by

T opt = inf
π stabilizing

Tπ (5)

Centralized and decentralized strategies are known that op-
timize or approximate (5) in a variety of cases of interest [11],
[12], [18], [19]. However, all such strategies rely either on a
central authority with the ability to communicate to all agents,
or on the exchange of certain information about each agent’s
strategy with other neighboring agents. In addition, these
policies require the knowledge of the spatial distribution ϕ;
decentralized versions of these implement versions of Lloyd’s
algorithm for vector quantization [20].

In the remainder of this paper, we will investigate how
the additional constraints posed on the exchange of informa-
tion between agents by the models (2) and (3) impact the
achievable performance and quality of service. Remarkably,
the policies we will present do not rely on the knowledge

of the spatial distribution ϕ, and are a generalized version of
MacQueen’s clustering algorithm [21].

III. CONTROL POLICY DESCRIPTION

In this section, we introduce two control policies of the
forms, respectively, (2) and (3). An illustration of the two
policies is given in Figure 1.

Fig. 1. An illustration of the two control policies proposed in Section III.
While no targets are outstanding, vehicles wait at the point that minimizes
the average distance to targets they have visited in the past; such points are
depicted as squares, while targets are circles and vehicles triangles. In the no-
communication policy, at the appearance of a new target, all vehicles pursue
it (left). In the sensor-based policy, only the vehicle that is closest to the target
will pursue it (right).

A. A control policy requiring no explicit communication
Let us begin with an informal description of a policy πnc

requiring no explicit information exchange between agents. At
any given time t, each agent computes its own control input
according to the following rule:

1) If D(t) is not empty, move towards the nearest outstand-
ing target.

2) If D(t) is empty, move towards the point minimizing
the average distance to targets serviced in the past by
each agent. If there is no unique minimizer, then move
to the nearest one.

In other words, we set

πnc(pi(t),Bi(t),D(t)) = vers(Fnc(pi(t),Bi(t),D(t))−pi(t)),
(6)

where

Fnc(pi,Bi,D) =






arg min
q∈D

‖pi − q‖, if D $= ∅,

arg min
q∈Ω

∑

e∈Bi

‖e− q‖, otherwise,

(7)
‖ ·‖ is the Euclidean norm, and

vers(v) =
{

v/‖v‖, if v $= 0,
0 otherwise.

The convex function W : q &→
∑

e∈B ‖q− e‖, often called the
(discrete) Weber function in the facility location literature [22],
[23] (modulo normalization by card(B)), is not strictly convex
only when the point set B is empty—in which case we set
W (·) = 0 by convention— or contains an even number of
collinear points. In such cases, the minimizer nearest to pi in
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Illustration
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Differences with the MacQueen algorithm

At each iteration, the no-communication algorithm computes the
”Fermat-Weber (FW) point” with respect to the set of tasks serviced
by a vehicle; MacQueen algorithm computes the mean

FWi = argminpi∈Q
∑

q∈past tasksi

‖q − pi‖

Meani =
1

|past tasksi |
∑

q∈past tasksi

q

The Fermat-Torricelli point

If n = 2, then any point on the segment joining q1 and q2 is a F-T point.
If n = 3, and q1, q2, q3 form a triangle with no internal angle greater than 120 degrees,
then the point can be found as the intersection of lines from the vertices of the triangle
with the far vertex of an equilateral triangle drawn externally on the opposite side. If
there is an internal angle of at least 120 degrees, that is the F-T point.
If n = 4, the F-T point coincides with the intersection of the diagonals.
If n ≥ 5, the F-T point is not an algebraic point (in general).
A mechanical contraption, called the Varignon frame, illustrates another method to find
the F-T point.

E. Frazzoli (MIT) Lecture 04: Dynamic Vehicle Routing I June 6, 2008 18 / 38

No simple recursion like the MacQueen algorithm → need to store
locations of all the tasks serviced in the past

Sequence of FW points exhibit more complex behavior than the
sequence of means.
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Analysis of the algorithm

pi (t): loitering location of agent i at time t

Sufficient to study convergence of (p1(t), . . . , pm(t))

Convergence result

p(t) converges to a critical point of H(p) with probability one.

Key steps in the proof

Convergence of the sequence of Fermat-Weber points:
Ci (t) := {y ∈ Q | ‖

∑
q∈past tasksi

vers(y − q)‖ ≤ 1}
By the properties of the Fermat-Weber point, pi (tj) ∈ Ci (tj)
Prove that pi (tj+1) ∈ Ci (tj)
Prove that limj→∞ diam(Ci (tj)) = 0 with prob. 1; this implies
pi (tj) → p∗i with prob 1

p∗i is the median of its own Voronoi cell
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Lecture outline

1 Motivation and inspiration from biology

2 Intro to comm models, multi-agent networks and distributed algorithms

3 Partitioning with synchronous proximity-graphs communication

4 Partitioning with gossip (asynchronous pair-wise) communication

5 Partitioning with no explicit inter-vehicle communication
No explicit communication policy
Game-theoretic interpretation
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Coverage as a geometric game

Strategies

p = (p1, . . . , pm) ∈ Qm

When a new task is generated, every vehicle move towards its location

Utility Function

Upon its generation, each task offers continuous reward at rate unity

A task expires as soon as two vehicles are present at its location or
after diam(Q) time, whichever occurs first.

Utility function: expected time spent alone at the next task location

Ui (pi , p−i ) = Eϕ[Ri (p, q)] = Eϕ

[
max

{
0,min

j %=i
‖pj − q‖ − ‖pi − q‖

}]
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Properties of the Game

Potential function: ψ(p) = −
∑m

i=1

∫
Vi (p) ‖pi − q‖ϕ(q)dq

The coverage spatial game is a potential game
(Ui (p) = ψ(p)− ψ(p−i ))

U is a Wonderful Life utility function

Characterization of Equilibria

critical point of H ⇐⇒ pure Nash equilibrium
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No communication policy as a learning algorithm

Complete Information

ṗi = ∂
∂pi

Ui (p) = −
∫
Vi (p)

pi−q
‖pi−q‖ϕ(q)dq =⇒ gradient descent policy

Limited information

No knowledge of ϕ

No inter-agent communication

Approximations

Empirical Utility Maximization:
pi (t) = argmaxx∈Q

∑
q∼ϕ Ri (x , p−i , q)

R̂i (x , p−i , q) = diam(Q)− ‖x − q‖ if vehicle i reaches task located at
q first, else R̂i (x , p−i , q) = 0.

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29jun10 @ Baltimore, ACC 42 / 44



No communication policy as a learning algorithm

Complete Information
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Workshop Structure and Schedule

8:00-8:30am Coffee Break
8:30-9:00am Lecture #1: Intro to dynamic vehicle routing
9:05-9:50am Lecture #2: Prelims: graphs, TSPs and queues
9:55-10:40am Lecture #3: The single-vehicle DVR problem
10:40-11:00am Break
11:00-11:45pm Lecture #4: The multi-vehicle DVR problem
11:45-1:10pm Lunch Break
1:10-2:10pm Lecture #5: Extensions to vehicle networks
2:15-3:00pm Lecture #6: Extensions to different demand models
3:00-3:20pm Coffee Break
3:20-4:20pm Lecture #7: Extensions to different vehicle models
4:25-4:40pm Lecture #8: Extensions to different task models
4:45-5:00pm Final open-floor discussion
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Motivation: Time-Critical Tasks

Motivating Scenario

Group of UAVs equipped with sensors, monitoring region

Alerted of events that require close-range observation

Events with time constraints:

Each event must be observed within a time-window

Events with priority levels:

Each event has associated level of importance (e.g. 1 to 10)
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Lecture outline

1 Stochastic Time Constraints
Policy Independent Lower Bound
Nearest Depot Assignment Policy
Batch Policy

2 Priority Classes of Demands
Policy Independent Lower Bound
Separate Queues Policy
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Lecture outline

1 Stochastic Time Constraints
Policy Independent Lower Bound
Nearest Depot Assignment Policy
Batch Policy

2 Priority Classes of Demands
Policy Independent Lower Bound
Separate Queues Policy

M. Pavone and E. Frazzoli. Dynamic vehicle routing with stochastic time constraints. In IEEE Int.
Conf. on Robotics and Automation, Anchorage, AK, May 2010

M. Pavone, N. Bisnik, E. Frazzoli, and V. Isler. A stochastic and dynamic vehicle routing problem
with time windows and customer impatience. ACM/Springer Journal of Mobile Networks and
Applications, 14(3):350–364, 2009
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DVR with stochastic time constraints

Model:

basic DVR model +

demand j active for a random patience
time Gj

Gj ’s i.i.d. sequence ∼ FG

demand j expires if not serviced within Gj

Service constraint:

limj→+∞ Pπ [Wj < Gj ]: acceptance probability for policy π

φd ∈ (0, 1): desired acceptance probability

constraint: limj→+∞ Pπ [Wj < Gj ] ≥ φd

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8) 29jun10 @ Baltimore, ACC 5 / 23

Problem formulation

Problem statement

Solve problem OPT :

min
π

|π|, subject to lim
j→∞

Pπ [Wj < Gj ] ≥ φd

Well-posedness

Existence: limj→∞ Pπ [Wj < Gj ] exists for all π

Ergodicity: limj→∞ Pπ [Wj < Gj ] = limt→+∞ Ns(t)/N(t) (a.s.)

Proof sketch:

main idea: theory of regenerative processes

regeneration points: times a new demand finds the system empty

expected length of busy cycles is finite

use classic limit theorems
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Lower bound

Intuition for lower bound:

P [Wj < Gj ] ≤ P
[
mink∈{1,...,m}

‖Xj−Xk‖
v < Gj

]

≤ sup
(p1,...,pm)∈Qm

P
[
mink∈{1,...,m}

‖Xj−pk‖
v < Gj

]

︸ ︷︷ ︸
.
=H(p1,...,pm)

Lower bound

OPT is lower bounded by:

OPT : min
m∈N>0

m

s.t. sup
(p1,...,pm)∈Qm

H(p1, . . . , pm) ≥ φd

Devised algorithms to solve OPT
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NDA policy (optimal as λ→ 0)

Nearest Depot Assignment (NDA) policy

Compute maximum of H: (p̄1, . . . , p̄m).
Then:

1: p̄k is depot of kth vehicle
2: nearest-depot assignment
3: FCFS service

Proof sketch:
as usual, as λ→ 0+, the problem reduces to optimal pre-positioning
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Batch policy

Batch (B) policy

Partition Q into m simultaneously
equitable subregions and assign one
vehicle to each subregion. Then:

1: each vehicle services demands by
forming TSP tours

Performance of batch policy

if s=0: mB =min
{

m
∣∣∣ supθ∈R>0

(1−FG (θ))(1− λ·const
θm2 )≥φd

}

with time windows: mB/m∗ ≤ 3.78, when λ large and φd → 1−
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Characterization of batch policy

Proof sketch (m=1):

upper bound expected length of TSP tour with const · λ/m2, via
control-theoretical methods

use Markov’s ineq to lower bound:

P [W < G ] ≥ P [W < G |2 TSP < θ]P [2 TSP < θ]

≥ (1− FG (θ))(1− E[2 TSP]/θ)
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Lecture outline

1 Stochastic Time Constraints
Policy Independent Lower Bound
Nearest Depot Assignment Policy
Batch Policy

2 Priority Classes of Demands
Policy Independent Lower Bound
Separate Queues Policy
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Demands with priority levels

m vehicles

n classes of demands
1 = highest priority
n = lowest priority

Poisson arrivals λ1, . . . , λn

locations uniformly distributed
can extend to non-uniform ϕ

Steady-state expected system-time T 1, . . . ,T n

Goal for vehicles

Minimize c1T 1 + · · ·+ cnT n (↑ ci ⇒↑ priority of class i)

S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli. Dynamic vehicle routing with priority classes of
stochastic demands. SIAM Journal on Control and Optimization, 48(5):3224–3245, 2010
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Literature Review

Classic Priority Queueing
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Load Factor and Stability

Stable: Queue remains bounded

Define load factor as

& :=
λ1s̄1 + · · ·+ λn s̄n

m

λi = arrival rate for class i

s̄i = average on-site service time for class i

As before, necessary stability condition is & < 1

Two asymptotic regimes

1 Light load &→ 0+

2 Heavy load &→ 1−
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Light load

In light load:

Each vehicle can return to a median between arrivals

Priority levels do not change behavior.

Optimal solution:

m vehicle SQM policy is optimal (or an adaptive policy)

m Stochastic Queueing Median (m-SQM)

Compute m-median locations and assign one vehicle to
each location.
Then:

1: service demands in FCFS order
2: return to median after each service is completed
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Lower Bound in Heavy Load

Let T
∗
c = optimal value of cost c1T 1 + · · ·+ cnT n.

Lower bound for every policy

T
∗
c ≥

βTSP|Q|
2m2v2(1− &)2

n∑

α=1



cα + 2
n∑

j=α+1

cj



 λα

Problem parameters:

arrival rates λ1, . . . , λn

weights c1, . . . , cn

number of vehicles m

Problem parameters:

environment area |Q|
vehicle speed v
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Proof Idea of Lower Bound

Allow remote service of some classes: rα ∈ {0, 1} for each class α

travel distance is rαd̄α

s̄i

d̄i/v

demand served prior
i

For stability:
∑n

i=1 λi
(
ri d̄i/v + s̄i

)
< m

Can bound travel distance as

d̄α ≥
βTSP√

2

√
|Q|

∑
i riN i

generates a linear program with 2n − 1 constraints, one for each
combination {r1, . . . , rn}
solution to LP is largest lower bound
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Separate Queues Policy

Input: Probability distribution p = [p1, . . . , pn].

Separate Queues Policy

Partition environment into m equal area regions and
assign one vehicle to each region.
Then:

1: Select a class according to probability dist p
2: Service all demands of selected class following TSP
3: Repeat

Policy performance optimized over p.
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Separate Queues Performance

Heavy load performance

For the SQ policy,

T c,SQ

T
∗
c

≤ 2n2

as &→ 1−.

n = number of classes

independent of &, c , s̄, λ

Heuristic Improvements:
1 Receding horizon: service only a fraction η of TSP
2 when following TSP, service newly arrived demands within ε of TSP.

ε

√
µ|Q|

∑n
α=1 Nα

,

where µ is fractional in tour length (i.e., 0.1 for 10% increase)
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Simulation of Separate Queues Policy

c = 0.80
p = 0.82

Simulation:

class 1 = yellow

class 2 = grey

c1 = 0.8 and c2 = 0.2

p = [0.82, 0.18]
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Proof idea for upper bound

In heavy-load, shortest path through N points:

= βTSP

√
|Q|N with prob. 1 (BHH theorem)

Study expected # of outstanding demands at each iteration

Ni (t + 1) ≤ f
(
N1(t), . . . ,Nm(t),p, λ, s̄

)

Function f has a linear part plus a sub-linear part

Bound evolution by stable linear system for all & < 1

N (t + 1) = A(p, λ, s̄)N (t) + B(p, λ, s̄)

Allows computation of lim supt→+∞Ni (t)

Apply Little’s theorem N i = λiT i
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Lecture outline

1 Stochastic Time Constraints
Policy Independent Lower Bound
Nearest Depot Assignment Policy
Batch Policy

2 Priority Classes of Demands
Policy Independent Lower Bound
Separate Queues Policy

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8) 29jun10 @ Baltimore, ACC 22 / 23

Workshop Structure and Schedule

8:00-8:30am Coffee Break
8:30-9:00am Lecture #1: Intro to dynamic vehicle routing
9:05-9:50am Lecture #2: Prelims: graphs, TSPs and queues
9:55-10:40am Lecture #3: The single-vehicle DVR problem
10:40-11:00am Break
11:00-11:45pm Lecture #4: The multi-vehicle DVR problem
11:45-1:10pm Lunch Break
1:10-2:10pm Lecture #5: Extensions to vehicle networks
2:15-3:00pm Lecture #6: Extensions to different demand models
3:00-3:20pm Coffee Break
3:20-4:20pm Lecture #7: Extensions to different vehicle models
4:25-4:40pm Lecture #8: Extensions to different task models
4:45-5:00pm Final open-floor discussion
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Dynamic Vehicle Routing for Robotic Networks
Lecture #7: Vehicle Models
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Outline of the lecture

1 Models of vehicles with differential constraints

2 Traveling salesperson problems

3 The heavy load case

4 The light load case

5 Phase transition in the light load
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Vehicle routing with differential constraints

What happens if the vehicles are subject to non-integrable differential
constraints on their motion?

Minimum turn radius, constant speed (UAVs, Dubins cars)
Minimum turn radius, able to reverse (Reeds-Shepps cars)
Differential drive robots (e.g., tanks).
Bounded acceleration vehicles (e.g., helicopters, spacecraft).

Fundamentally different problems, combining combinatorial task
specifications with differential geometry and optimal control.

Decompose the problem, study the asymptotic cases:
Heavy load: Traveling salesperson problems.
Light load: optimal loitering ”stations”.
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Models of vehicles with differential constraints

Dubins vehicle

ẋ = cos θ
ẏ = sin θ
θ̇ = ω
|ω| ≤ 1/ρ

Reeds-Shepp car

ẋ = v cos θ
ẏ = v sin θ
θ̇ = ω

v ∈ {−1, 1}
|ω| ≤ 1/ρ

Differential drive

ẋ = 1
2 (ωl + ωr ) cos θ

ẏ = 1
2 (ωl + ωr ) sin θ

θ̇ = 1
ρ (ωr − ωl)

|ωl | ≤ 1; |ωr | ≤ 1

Double integrator

ẍ = u
‖ẋ‖ ≤ 1
‖u‖ ≤ 1
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DTRP formulation

Problem setup

m identical vehicles in Q
Spatio-temporal Poisson
process: rate λ and uniform
spatial density

On-site service time s = 0

Dynamic Routing of Multiple UAVs

Kinematics of Dubins Vehicle

ẋ = cos θ,
ẏ = sin θ,
θ̇ = ω, |ω| ≤ 1/ρ.

Q

Physical component

m Dubins vehicles in Q
Spatio-temporal Poisson process: rate λ and uniform spatial density

Computation component

Control policy u = {task assignment, scheduling, loitering}
Tu := lim supi→∞ E[wait time of task i]; Topt(λ, m) = infu Tu

Ketan Savla (LIDS, MIT) Cooperation Strategies for CPS April 8 2009 14 / 37

Objective

Control policy π = {task assignment, scheduling, loitering}
Tπ := lim supi→∞ E[wait time of task i ]; T

∗
= infπ Tπ

Design π for which Tπ is equal to or within a constant factor of T
∗
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Stabilizability

λ︸︷︷︸
task generation rate

− m · n

TSPlength(n)︸ ︷︷ ︸
task service rate

= task growth rate

n: # outstanding tasks

TSPlength(n) strictly sub-linear =⇒ stability ∀λ, m

Euclidean TSPlength(n) = Θ(n1/2) (Beardwood et. al. ’59)

Euclidean TSP based path planning heuristic =⇒ O(n)

Traveling salesperson problems for differential vehicles.
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Outline of the lecture

1 Models of vehicles with differential constraints

2 Traveling salesperson problems

3 The heavy load case

4 The light load case

5 Phase transition in the light load
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Traveling Salesperson Problem

Problem Statement

Find the shortest closed curve
feasible for the vehicle through a
given finite set of points in the plane

NP-hardness a consequence of the NP-hardness of the Euclidean TSP.

Does the cost of this TSP increase SUBLINEARLY with n?

Is there a polynomial-time algorithm that returns a tour of length
o(n)??

What is the quality of the solution?
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Stochastic TSP: A nearest-neighbor lower bound

Outline of the calculations

Calculate (an upper bound on) expected distance from an arbitrary vehicle
configuration to closest point, δ∗

Calculate (an upper bound on) the area of the set reachable with a path of
length δ, Rδ.
Pr(δ∗ ≥ δ) ≥ max{0, 1− n|Rδ|/|Q|}

Expected length of the tour cannot be less than n times E[δ∗]

Example: Dubins vehicle

|Rδ| = δ3

3ρ

E[δ∗] = 3
4

(
3ρ|Q|

n

)1/3
.

limn→∞
E[TSP(n)]

n2/3 ≥ 3
4(3ρ|Q|)1/3.

A nearest-neighbor lower bound

The area of the set of points reachable with
a path of length δ by a Dubins’ car with
minimum turning radius equal to ρ is

Area[Rδ] =
δ3

3ρ

The expected distance to the nearest target,
out of n uniformly-distributed targets, is

E [δ∗] =
3

4

(
3ρ

n

)1/3

.

ength of the tour cannot be less than n
times such a distance, hence:

E [DTSPρ(n)] ≥ 3

4
(3ρn2)1/3.
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Towards an upper bound: tiling based algorithms

The way the ETSP tours are constructed relies on the scaling
properties of tours: the length of the tour scales as the coordinates of
the points.

Towards an upper bound

Aerospace Robotics and Embedded Systems Laboratory

Towards an upper bound

• The way the ETSP tours are constructed relies on the scaling 
properties of tours:  the length of the tour scales as the 
coordinates of the points.

• No such scaling exists for the DTSP: the bound on the curvature 
does not scale with the coordinates of the points!

- Any partition-based algorithm must account for a “preferential direction” 
for Dubins’ paths, penalizing turning. 
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No such scaling exists for the TSP for vehicles with differential
constraints, e.g., the bound on the curvature for the Dubins vehicle
does not scale with the coordinates of the points!

Any tiling-based algorithm must account for a ”preferential
direction”, e.g., by penalizing turning for Dubins vehicles
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No such scaling exists for the TSP for vehicles with differential
constraints, e.g., the bound on the curvature for the Dubins vehicle
does not scale with the coordinates of the points!

Any tiling-based algorithm must account for a ”preferential
direction”, e.g., by penalizing turning for Dubins vehicles
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Bead construction

!

ρ

p− p+B

Ketan Savla (LIDS, MIT) Short title Date 2 / 2

Bead properties

Length(p−, q, p+) ≤ ' + o('2) for all q ∈ B
Width: w(') = $2

8ρ + o('3)

The beads tile the plane

Useful for Dubins vehicle, Reeds-Shepp car and double integrator

Diamond-like cell for differential drive
Bp− p+

!

Ketan Savla (LIDS, MIT) Short title Date 3 / 3
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The single-sweep tiling algorithm

!

p− p+

B− B+

Ketan Savla (LIDS, MIT) Short title Date 2 / 2

Tile the region with beads

Sweep the bead rows, while servicing all the targets in every bead as
follows:

Service every task q in B− using the ”p− → q → p−” protocol

Move from p− to p+

Service every task q in B+ using the ”p+ → q → p+” protocol
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Analysis of the single-sweep tiling algorithm

Path length calculations

TSP(n) = (bead row length + move to next bead row)×# bead rows +
move to service each task×# tasks + tour closure length

!

p− p+

B− B+

Ketan Savla (LIDS, MIT) Short title Date 2 / 2

For a Reeds-Shepp car, as '→ 0:

TSP(n) ≤
(√

|Q|+ '/2
) √

|Q|
w($)/2 + 'n + 2

(√
|Q|+ ρπ

)

≤ 16ρ |Q|$2 + 8ρ
√
|Q|
$ + 'n + 2

(√
|Q|+ ρπ

) (
∵ w(') ≈ $2

8ρ

)

Pick ' =
(

32ρ|Q|
n

)1/3 (
i.e., |B|

|Q| = 2
n

)
=⇒ TSP(n) = O(n2/3).
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Path length calculations

TSP(n) = (bead row length + move to next bead row)×# bead rows +
move to service each task×# tasks + tour closure length

!

p− p+

B− B+

Ketan Savla (LIDS, MIT) Short title Date 2 / 2

For a Dubins vehicle, as '→ 0:

TSP(n) ≤
(√

|Q|+ w($)
2 + κ

) √
|Q|

w($)/2 + (' + κ)n + 2
√
|Q|+ κ

≤ 16ρ |Q|$2 +
√
|Q|+ 16κ

√
|Q|
$2 + 'n + κn + 2

√
|Q|+ κ

The κn term grows linearly in n for all ' =⇒ TSP(n) = O(n)
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The recursive sweep tiling algorithm

Tile Q with beads such that: |B|
|Q| = 1

2n

(
i.e., ' ∼ n−1/3

)

Sweep the bead rows, visiting one target per non-empty bead.

Iterate, using at the i-th phase a ”meta-bead” composed of 2i−1

beads.

After log n phases, visit the outstanding targets in any arbitrary order,
e.g., with a greedy strategy.

Phase 1 Phase 2 Phase 3
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Analysis of the recursive algorithm

Theorem: For a Dubins vehicle, with probability one,

lim sup
n→∞

TSP(n)

n2/3
≤ 24 3

√
ρ|Q|

(
1 +

7

3
π

ρ√
|Q|

)

Outline of the proof

Pr(limn→∞ # tasks remaining after phase i∗ > 24 log n) = 0

Path length calculations:
Phase 1 path length O

(
1
"2

)
= O

(
n2/3

)
(∵ ' ∼ n−1/3)

Subsequent phase path lengths are decreasing geometric series; path
length for all i∗ phases is O

(
n2/3

)

Path length by greedy heuristic is O(log n)
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Summary of TSPs

Lower bound: E [TSP(n)] ∈ Ω(n2/3)

Upper bound: E [TSP(n)] ∈ O(n2/3)

TSP(n) is of order n2/3; constant factor approximation algorithms

Computational complexity of the algorithms is of order n

Stabilizability of the DTRP

λ︸︷︷︸
task generation rate

− m · n

TSP(n)︸ ︷︷ ︸
task service rate

= task growth rate

n: # outstanding tasks

E[TSP(n)] ∈ Θ(n2/3) =⇒ trivial receding horizon TSP-based
policies are stable for the DTRP for all λ and m
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Outline of the lecture

1 Models of vehicles with differential constraints

2 Traveling salesperson problems

3 The heavy load case

4 The light load case

5 Phase transition in the light load
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The heavy load case: nearest neighbor lower bound

Outline of the calculations

Let nπ be the number of outstanding tasks at steady-state under
stable policy π

Calculate (an upper bound on) expected distance from an arbitrary
vehicle configuration to closest among nπ points, δ∗(nπ)

At steady-state: λ
m = 1

E[δ∗(nπ)]

Little’s formula: λTπ = nπ

Example: Dubins vehicle

E[δ∗(nπ)] = 3
4

(
3ρ|Q|
nπ

)1/3

Steady state+ Little’s formula: λ
m = 4

3

(
λTπ
3ρ|Q|

)1/3

lim inf λ
m→+∞ T

∗m3

λ2 ≥ 81
64ρ|Q|
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The multiple sweep tiling algorithm

The single vehicle version

1 Tile Q with beads of length
' = c/λ

2 Update outstanding task list

3 Execute single sweep tiling
algorithm

4 Goto 2.

The multi-vehicle version

Divide Q into m equal ”strips”

Assign one vehicle to every strip

Each vehicle executes the multiple sweep algorithm in its own strip

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29jun10 @ Baltimore, ACC 21 / 36



The multiple sweep tiling algorithm

The single vehicle version

1 Tile Q with beads of length
' = c/λ

2 Update outstanding task list

3 Execute single sweep tiling
algorithm

4 Goto 2.

The multi-vehicle version

Divide Q into m equal ”strips”

Assign one vehicle to every strip

Each vehicle executes the multiple sweep algorithm in its own strip

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29jun10 @ Baltimore, ACC 21 / 36

Analysis of the multiple sweep algorithm

General protocol

Each bead can be treated as a separate queue, with Poisson arrival
process with intensity λB = λ |B|

|Q|
The vehicle visits each bead with at a rate no smaller than
µB ≈ (single sweep path length)−1

The system time is no greater than the system time for the

corresponding M/D/1 queue: T
∗ ≤ 1

µB

(
1 + 1

2
λB

µB−λB

)

Optimize over '

Example: Dubins vehicle

λB = $3λ
16ρ|Q| ; µB ≥ $2m

16ρ|Q|

(
1 + 7

3π ρ√
|Q|

)−1

lim sup λ
m→+∞ T

∗m3

λ2 ≤ 71ρ|Q|
(

1 + 7
3π ρ√

|Q|

)3
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Outline of the lecture

1 Models of vehicles with differential constraints

2 Traveling salesperson problems

3 The heavy load case

4 The light load case

5 Phase transition in the light load
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The light load case

The target generation rate is very small: λ/m → 0+

In such case:

Almost surely all vehicles will have enough time to return to some
”loitering station” between task completion/generation times

The problem is reduced to the choice of the loitering stations that
minimizes the system time

Introducing differential constraints

Novel challenges:
Vehicles possibly cannot stop (e.g., Dubins vehicle, Reeds-Shepp car)
Strategies are more complex than defining a loitering ”point”

How many of the results from the Euclidean case carry over to this
case?

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29jun10 @ Baltimore, ACC 24 / 36

The light load case

The target generation rate is very small: λ/m → 0+

In such case:

Almost surely all vehicles will have enough time to return to some
”loitering station” between task completion/generation times

The problem is reduced to the choice of the loitering stations that
minimizes the system time

Introducing differential constraints

Novel challenges:
Vehicles possibly cannot stop (e.g., Dubins vehicle, Reeds-Shepp car)
Strategies are more complex than defining a loitering ”point”

How many of the results from the Euclidean case carry over to this
case?

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29jun10 @ Baltimore, ACC 24 / 36

A simple lower bound

The length of shortest feasible path from a vehicle positioned at
p ∈ R2 to an arbitrary point q ∈ Q is lower bounded by ‖q − p‖

A simple lower bound on T
∗

is obtained by relaxing differential
constraints

T
∗ ≥ H∗m(Q)

H∗m(Q) = Θ
(

1√
m

)
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The Median Circling (MC) Policy

Assign ”virtual” generators to each agent. All agents do the following, in
parallel (possibly asynchronously):

Update the generator position according to a gradient descent law.

Service targets in own region, returning to a ”loitering circle” of
radius 2.91ρ centered on their generator position when done

We have

lim
λ/m→0+

TMC ≤ H∗m(Q) + 3.76ρ

Furthermore,

lim
H∗

m→+∞,λ/m→0+

TMC

T
∗ = 1. Q
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IIlustration of the MC policy
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Tighter lower bound using differential constraints

General protocol

Consider a ”frozen moment in time”

Consider the ”modified Voronoi” diagram of the vehicles.

Relaxation: approximate vehicle Voronoi region by their reachable sets

Optimize over the vehicle configurations

Example: Dubins vehicle

A nearest-neighbor lower bound

The area of the set of points reachable with
a path of length δ by a Dubins’ car with
minimum turning radius equal to ρ is

Area[Rδ] =
δ3

3ρ

The expected distance to the nearest target,
out of n uniformly-distributed targets, is

E [δ∗] =
3

4

(
3ρ

n

)1/3

.

ength of the tour cannot be less than n
times such a distance, hence:

E [DTSPρ(n)] ≥ 3

4
(3ρn2)1/3.
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For m ≥ mcrit, T
∗ ≥ k1(|Q|,ρ)

m1/3
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The Strip Loitering (SL) policy

Divide the environment Q into strips of width min
{

k2(Q,ρ)
m2/3 , 2ρ

}

Design a closed loitering path that bisects the strips. All vehicles move along
this path, equally spaced, with dynamic regions of responsibility.
Each vehicle services targets in own region, returning to the ”nominal”
position on the loitering path.

Q

d2d1 δ

target

point
of

departure

ρ

limm→+∞ TSLm1/3 ≤ k3(Q, ρ), and limm→+∞
TSL

T
∗ ≤ k4(Q, ρ).
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Illustration of the SL policy
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Outline of the lecture

1 Models of vehicles with differential constraints

2 Traveling salesperson problems

3 The heavy load case

4 The light load case

5 Phase transition in the light load
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Phase transition in the light load

We have two policies: Median Circling (MC), and Strip Loitering
(SL). Which is better?

Define the non-holonomic density dρ = ρ2m
|Q| .

MC is optimal when dρ → 0,
SL is within a constant factor of the optimal as dρ → +∞.

phase transition: the optimal organization changes from territorial
(MC) to gregarious (SL) depending on the non-holonomic density of
the agents.
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Estimate of the critical density
L

w

Ignoring boundary conditions (e.g., consider the unbounded plane), we can
compare the coverage cost for the two policies analytically:

TSL < TMC ⇔ dρ > 0.0587

(i.e., transition occurs when the area of the dominance region is about 4-5 times
the area of the minimum turning radius circle).

Simulation results yield dcrit
ρ ≈ 0.0759 (within

a factor 1.3 of the analytical result).
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Dynamic Vehicle Routing Summary

Euclidean Dubins vehicle, Reeds-Shepp car
vehicle Double integrator, Differential drive

E[TSP Length] Θ(n
1
2 ) Θ(n

2
3 )

(n →∞)

T
∗

Θ( λ
m2 ) Θ( λ2

m3 )
( λ
m →∞)

T
∗

Θ(m−
1
2 ) Θ(m−

1
2 )

( λ
m → 0, m

|Q| → 0)

T
∗

Θ(m−
1
2 ) Θ(m−

1
3 )

( λ
m → 0, m

|Q| →∞)
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Lecture outline

1 Models of vehicles with differential constraints

2 Traveling salesperson problems

3 The heavy load case

4 The light load case

5 Phase transition in the light load
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Workshop Structure and Schedule

8:00-8:30am Coffee Break
8:30-9:00am Lecture #1: Intro to dynamic vehicle routing
9:05-9:50am Lecture #2: Prelims: graphs, TSPs and queues
9:55-10:40am Lecture #3: The single-vehicle DVR problem
10:40-11:00am Break
11:00-11:45pm Lecture #4: The multi-vehicle DVR problem
11:45-1:10pm Lunch Break
1:10-2:10pm Lecture #5: Extensions to vehicle networks
2:15-3:00pm Lecture #6: Extensions to different demand models
3:00-3:20pm Coffee Break
3:20-4:20pm Lecture #7: Extensions to different vehicle models
4:25-4:40pm Lecture #8: Extensions to different task models
4:45-5:00pm Final open-floor discussion

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29jun10 @ Baltimore, ACC 36 / 36



Dynamic Vehicle Routing for Robotic Networks
Lecture #8: Different Task Models

Francesco Bullo1 Emilio Frazzoli2 Marco Pavone2

Ketan Savla2 Stephen L. Smith2

1CCDC
University of California, Santa Barbara
bullo@engineering.ucsb.edu

2LIDS and CSAIL
Massachusetts Institute of Technology
{frazzoli,pavone,ksavla,slsmith}@mit.edu

Workshop at the 2010 American Control Conference
Baltimore, Maryland, USA, June 29, 2010, 8:30am to 5:00pm

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 8/8) 29jun10 @ Baltimore, ACC 1 / 24

Motivation for Team Forming

Group of vehicles monitoring a region

Several different sensing modalities:
electro-optical,
infra-red,
synthetic aperture radar,
foliage penetrating radar,
etc.

Each event requires a subset of sensing modalities

Equip each vehicle with a single sensing modality

Form appropriate team to properly assess each event

How do we create teams in real-time to observe each event
(service each request)?
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Lecture outline

1 Dynamic Team Forming

2 Three Policies
Complete Team
Task-Specific Team Policy
Scheduled Task-Specific Team Policy

3 Analysis of Policies
Throughput vs System Time
Comparison of Results
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Lecture outline

1 Dynamic Team Forming

2 Three Policies

3 Analysis of Policies
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Dynamic Team Forming

Set of services {r1, . . . , rk}.

Vehicle properties:
k different vehicle types.
Vehicle type j ∈ {1, . . . , k}, can provide only service rj .

Task (demand) model:
Poisson and Uniform arrivals
Each task requires a subset of services in {r1, . . . , rk}.
K different types of tasks
Tasks of type α arrive at rate λα

Task completed when required vehicles simultaneously spend on-site
service time at location.

S. L. Smith and F. Bullo. The dynamic team forming problem: Throughput and delay for unbiased
policies. Systems & Control Letters, 58(10-11):709–715, 2009
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Load Factor and Stability

Rα ∈ {0, 1}k is zero-one column vector recording services required for
task-type α.

on-site service for task-type α is s̄α

mj vehicles provide service rj .

Necessary stability condition:

[R1 · · · RK]





λ1s̄1
...

λKs̄K




<





m1

...

mk





Load factor is now a vector
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Example of Team Forming

k = 4 different services, {r1, r2, r3, r4}.
m = 8 vehicles, two of each type: mj = 2 for j ∈ {1, 2, 3, 4}.
K = 6 task types, {r1}, {r2}, {r3}, {r4}, {r1, r3}, {r2, r4}.

r1

{r1, r3}
r3

Task type α = {r1, r3} has on-site service s̄α, arrival rate λα, and

Rα = [1 0 1 0]!.
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Lecture outline

1 Dynamic Team Forming

2 Three Policies
Complete Team
Task-Specific Team Policy
Scheduled Task-Specific Team Policy

3 Analysis of Policies
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Task-Type Unbiased Policies

For a policy π:

System time of each task-type Tπ,1, . . . ,Tπ,K

Feasible set of system times are subset of RK

Optimization space similar to priority queues, but with teaming

To simplify, consider task-type unbiased policies

Tπ,1 = Tπ,2 = · · · = Tπ,K =: Tπ

and the optimization: infπ Tπ.
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Policy 1: Complete Team Policy

Complete Team Policy
1: Form min{m1, . . . mk} teams of k vehicles, each team

contains one vehicle of each type.
2: Have each team meet and move as a single entity.
3: In each region run UTSP policy (from Lecture 3).

Can also use Divide & Conquer policy for each team
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Policy 1: Complete Team Policy

Two services y , b

3 task-types y , b, {y , b}.
4 vehicles

2 yellow
2 blue
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Policy 2: Task-specific Team Policy

mj vehicles provide service rj .

rj appears in e!j [R1 · · · RK]1K task types.

If mj ≥ e!j [R1 · · · RK]1K ⇒ enough vehicles of type j to create
dedicated team for each task type.

Create mtst teams, where:

mtst :=

⌊
min

j

{
mj

eT
j R1K

}⌋

Task-Specific Team Policy
1: For each of the K task types, create mtst teams of

vehicles.
2: Service each task by one of its mtst corresponding

teams, according to the UTSP policy.
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Policy 2: Task-Specific Team Policy

task types:
{y}, {b}, {y , b}
two vehicles of each type

y , b each appear in two
task-types

mtst = 1
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Policy 3: Preliminary Result

Definition (Service schedule)

A partition of task types into L time slots, such that:

each type appears in exactly one time slot, and

task types in each time slot are pairwise disjoint.

{3}

{4}

{5}

{6}

{1}
{2}

{1, 2}

{1, 4}

{2, 5}{3, 4}

{3, 6}

{5, 6}

{1, 2, 3}

{1, 3, 5}

{1, 4, 6}

{2, 3, 5}

{2, 4, 6}
{4, 5, 6}

timetB 2tB 3tB 4tB 5tB 6tB

{1}

{2}

{3}

{4}

{5}

{6}

{1, 2}

{3, 4}

{5, 6}

{1, 4}
{2, 5}

{3, 6}

{1, 2, 3}

{4, 5, 6}

{1, 3, 5}

{2, 4, 6}

{1, 4, 6}

{2, 3, 5}

0
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Policy 3: Scheduled Task-Specific Team Policy

Scheduled Task-specific team policy

Partition Q into mini{mi} regions and assign one robot
of each type to each region.

1: In each region form a queue for each task type.
2: For each time slot in the schedule:

1 Divide robots into teams to form required task
types.

2 For each team, service corresponding queue with
TSP tour.
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Policy 3: Scheduled Task-Specific Team Policy

Service schedule:

two time slots L = 2

slot one: {y}, {b}
slot two: {y , b}
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Lecture outline

1 Dynamic Team Forming

2 Three Policies

3 Analysis of Policies
Throughput vs System Time
Comparison of Results
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Assumptions for Analysis

Assumptions:

1 mi = m/k for each vehicle type i .

2 λα = λ/K for each task-type α.

3 on-site service has mean s̄ and is upper bounded by smax.

4 pK of the K task-types require service rj , where p ∈ [1/k, 1].

With assumptions, necessary stability condition becomes

λ

m
<

1

pks̄
.

Define per-vehicle throughput as Bm := λ/m.
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Throughput vs System Time Profile

Bm $→






max

{
Tmin,

T ord(Bm/Bcrit)

(1− Bm/Bcrit)2

}
, if Bm < Bcrit,

+∞, if Bm ≥ Bcrit.

Tmin = minimum achievable system time for positive throughput.

Bcrit = maximum achievable throughput (or capacity).

T ord = system time at a constant fraction of capacity
(3−

√
5)/2 ≈ 38% of capacity Bcrit.

Example (Single vehicle DVR)

Bcrit = 1/s̄

Tmin = Eϕ[‖X − p∗‖]/v + s̄ (light load)

T ord ≈ C (
∫
Q ϕ1/2(x)dx)2/v2 (heavy load numerator)
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Throughput vs System Time Profile

! !"# !"$ !"% !"& '
'!

!'

'!
!

'!
'

'!
#

'!
(

'!
$

)*+,-.*/-0

1
2
34
5

Bcrit

Sy
st

em
T

im
e

T

Tmin

Throughput Bm

T ord

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 8/8) 29jun10 @ Baltimore, ACC 21 / 24

System Time for each Policy

Tmin T ord Bcrit

Lower bound
(
T
∗) √

k k 1
pks̄

Complete Team
√

k k 1
ks̄

Task-Specific
√

pkK pkK 1
pks̄

Scheduled Task-Specific L
√

k Lk K
smaxLk

where L ∈ [pK,K]

Best policies for different scenarios:

If throughput is low, then use complete team

If p is close to 1, then use complete team
If p is close to 1/k, then for best capacity use

Task-Specific if enough vehicles
Scheduled Task-Specific otherwise
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Lecture outline

1 Dynamic Team Forming

2 Three Policies
Complete Team
Task-Specific Team Policy
Scheduled Task-Specific Team Policy

3 Analysis of Policies
Throughput vs System Time
Comparison of Results
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8:00-8:30am Coffee Break
8:30-9:00am Lecture #1: Intro to dynamic vehicle routing
9:05-9:50am Lecture #2: Prelims: graphs, TSPs and queues
9:55-10:40am Lecture #3: The single-vehicle DVR problem
10:40-11:00am Break
11:00-11:45pm Lecture #4: The multi-vehicle DVR problem
11:45-1:10pm Lunch Break
1:10-2:10pm Lecture #5: Extensions to vehicle networks
2:15-3:00pm Lecture #6: Extensions to different demand models
3:00-3:20pm Coffee Break
3:20-4:20pm Lecture #7: Extensions to different vehicle models
4:25-4:40pm Lecture #8: Extensions to different task models
4:45-5:00pm Final open-floor discussion
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