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Autonomy and Networking Technologies

Individual members in the group can

@ sense its immediate environment

@ communicate with others

process the information gathered

take a local action in response
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Prototypical Dynamic Vehicle Routing Problem

4 .

@ a group of vehicles, and o
@ a set of service demands
Q
. 4 o
© Prototypical DVR problem «
provide service in minimum time
service = take a picture at location o - Q

Vehicle routing (All info known ahead of time, Dantzig '59)

Determine a set of paths that allow vehicles to service the demands

Dynamic vehicle routing (New info in real time, Psaraftis '88)
@ New demands arise in real-time

o Existing demands evolve over time
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Prototypical Dynamic Vehicle Routing Problem

: O
@ a group of vehicles, and
@ a set of service demands C§

provide service in minimum time
service = take a picture at location

Vehicle routing (All info known ahead of time, Dantzig '59)

Determine a set of paths that allow vehicles to service the demands

Dynamic vehicle routing (New info in real time, Psaraftis '88)

@ New demands arise in real-time

o Existing demands evolve over time

Light and heavy load regimes
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From coordination and static routing to
Dynamic Vehicle Routing

Simple coordination problems arise in static environments

@ motion coordination: rendezvous, deployment, flocking

@ task allocation, target assignment
© static vehicle routing (P. Toth and D. Vigo '01)

Routing policies vs planning algorithms

dynamic, stochastic and adversarial events take place

Q design (in contrast to pre-planned routes or motion planning
algorithms) to specify how to react to events

@ dynamic demands add to the combinatorial
nature of vehicle routing
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Literature on DVR and queueing for robotic networks Lecture outline

, MP, KS, SLS (UCSB, MIT)

Shortest path through randomly-generated and worst-case points
(Beardwood, Halton and Hammersly, 1959 — Steele, 1990)

(Lin, Kernighan, 1973)

(Psaraftis, 1988)
(Bertsimas and Van Ryzin, 1990-1993)
(Papastavrou, 1996)

Traveling salesman problem solvers
DVR formulation on a graph
DVR on Euclidean plane

Unified receding-horizon policy

Adaptation and decentralization

Vehicles with dynamics, nonholonomic vehicles, Dubins UAVs
Pickup & delivery tasks

Heterogeneous vehicles and team forming

Distinct-priority and impatient demands

Moving demands
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© Contributions
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Contributions of our recent works

00

adaptive DVR policies for single vehicles in light and heavy load
cooperative DVR policies via partitioning

scalable distributed partitioning policies under a variety of
communication /interaction scenarios

(models, algorithms and analysis of) service vehicles with dynamics
& stochastic and combinatorics of nonholonomic Dubins vehicles
performing Traveling Salesman Problems and DVR tasks

(models, algorithms and analysis of) service vehicles with time
constraints and heterogeneous priorities

(models, algorithms and analysis of) demands requiring service by
multiple heterogeneous vehicles simultaneously.
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Lecture outline Plain-vanilla re-optimization?

Q Comparison with alternative approaches

Example: DVR on segment

@ Objective: minimize average *
waiting time 0
o Strategy: re-optimize at each
event

0.5 1
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Example: DVR on segment

@ Objective: minimize average +
waiting time 0
@ Strategy: re-optimize at each
event
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@ Objective: minimize average + (I # @ Objective: minimize average + < I ?
waiting time 0 o5 1 waiting time 0 o5 1
o Strategy: re-optimize at each o Strategy: re-optimize at each
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Example: DVR on segment

Example: DVR on segment

@ Objective: minimize average <]5 > I ? @ Objective: minimize average <]5 > I ?
waiting time 0 o5 1 waiting time 0 o5 1
o Strategy: re-optimize at each @ Strategy: re-optimize at each
event event

@ For adversarial target generation, vehicle travels forever without ever
servicing any request —

@ Even if queue remains bounded, what about ? how far
from the optimal?
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Online algorithms? Lecture outline

Online algorithms

@ online algorithm operates based on input information up to the
current time

@ online algorithm is (worst-case) r-competitive if

Costonline (/) < rCostoptimal offline(/), V problem instances /.

(Jaillet and M. R. Wagner '06)

Disadvantages

Q@ cumulative cost

@ worst-case analysis
@ not possible to include a-priori information (e.g., arrival rate)
@ not as clear what competitive ratio means

@ so far, only few simple DVR problems admit online algorithms

@ Acknowledgements

Q Autonomy and Networking Technologies

© Prototypical DVR problem

@ Literature review

© Contributions

e Comparison with alternative approaches
@ Re-optimization

@ Online algorithms

@ Workshop Structure and Schedule
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Workshop Structure and Schedule

8:00-8:30am
8:30-9:00am
9:05-9:50am
9:55-10:40am
10:40-11:00am
11:00-11:45pm
11:45-1:10pm
1:10-2:10pm
2:15-3:00pm
3:00-3:20pm
3:20-4:20pm
4:25-4:40pm
4:45-5:00pm
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Coffee Break
Lecture #1:
Lecture #2:
Lecture #3:
Break
Lecture #4:
Lunch Break
Lecture #5:
Lecture #6:
Coffee Break
Lecture #7:
Lecture #8:
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Intro to dynamic vehicle routing
Prelims: graphs, TSPs and queues
The single-vehicle DVR problem

The multi-vehicle DVR problem

Extensions to vehicle networks
Extensions to different demand models

Extensions to different vehicle models
Extensions to different task models
Final open-floor discussion
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Lecture #2: Preliminary Results in Combinatorics

© The Traveling Salesman Problem
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II @ Euclidean TSP
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@ Kendall's Notation
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Koy reerences for this lecur

Graph Theory Basics:

R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer, o Graph Theory
2 edition, 2000 @ Weighted Graphs
Combinatorial Optimization: @ Minimum Spanning Tree

B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms, vol-
ume 21 of Algorithmics and Combinatorics. Springer, 4 edition, 2007

Stochastic TSP:
J. M. Steele. Probability Theory and Combinatorial Optimization. SIAM, 1987

Basic Queueing Theory:
L. Kleinrock. Queueing Systems. Volume I: Theory. Wiley, 1975
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Graph Theory Review Graph Theory Review

@ An undirected graph G = (V, E). @ An undirected graph G = (V, E).
@ a in G is a sequence vi, €1, Vo, . .., Vk, €k, Vk+1, With @ a in G is a sequence vi, €1, Vo, . .., Vk, €k, Vk+1, With
o e # ¢ fori#j. o e # ¢ fori#j.
o v; #vjforall i #j. o v; #vjforalli#j.
o A or has vi = Vk41. o A or has vi = Vvk41.
o A is a path that contains all vertices. e A is a path that contains all vertices.
o Similarly define a or e Similarly define a or
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Graph Theory Review Weighted Graphs

An undirected graph G = (V, E).

a in G is a sequence vy, €1, o, ..
o e,-;éejfori;éj.
o v; #vjforall i #j.

<y Vi, €ky VKt 1, with

o A or has vi = Vk41.
o A is a path that contains all vertices.
o Similarly define a or
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° A G = (V, E,c) has edge weights ¢ : E — Ry.

o Ina ,E=V xV.

Special classes of
° if
c({v1, va}) + c({v2, v3}) > c({v1, v3}) for all vi,va,v3 € V.
° if

VcR? and c({vi,vi}) = llvi = vjll2.

FB, EF, MP, KS, SLS (UCSB, MIT)
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Minimum Spanning Tree Minimum Spanning Tree

o A is a graph with no cycles
o A of G is a subgraph
that
O is a tree

@ connects all vertices together

Minimum Spanning Tree Problem

Given: a weighted graph G — (V, E,¢c)
Task: find a spanning tree T = (E1, V1) such that > g c(e) is
minimum.

Can be solved in using
@ Recursively adds shortest edge that does not create a cycle

@ Runsin O(n?) time (where |V| = n)
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o A is a graph with no cycles
o A of G is a subgraph
that
O is a tree

@ connects all vertices together

Minimum Spanning Tree Problem

Given: a weighted graph G — (V, E, c)
Task: find a spanning tree T = (Et, V) such that
minimum.

e c(e) is

Can be solved in using
@ Recursively adds shortest edge that does not create a cycle

@ Runsin O(n?) time (where |V| = n)
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Homiltonan Cycle Decision Problem

Hamiltonian Cycle

Given: An undirected graph G.
Question: Does G contain a Hamiltonian cycle?

Hamiltonian Cycle is
(One of Karp's 21 NP-complete problems)

in polynomial time (NP).
to it.

o Every solution can be

@ Every problem in NP can be

Dynamic Vehicle Routing (Lecture 2/8) 29junl0 @ Baltimore, ACC 8/29
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Traveling Salesman Problem Approximation Algorithms for the TSP

Traveling Salesman Problem (TSP)
Given: A complete graph G, = (V,, E,) and weights ¢ : E, — R-o.

Task: Find a Hamiltonian cycle with minimum weight.

e TSP is
@ To show NP-hard: Reduce Hamiltonian Cycle to TSP.

Given an undirected graph G = (V, E) with |V| = n:
@ Construct complete graph G, with weight 1 for each edge in E and
weight 2 for all other edges.
@ Then G is Hamiltonian < optimum TSP tour has length n.

Dynamic Vehicle Routing (Lecture 2/8) 29junl0 @ Baltimore, ACC 10 / 29
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© The Traveling Salesman Problem
@ Approximation Algorithms
@ Metric TSP
@ Euclidean TSP

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29junl0 @ Baltimore, ACC 9/29

Theorem (Sahni and Gonzalez, 1976)
Unless P = NP, there is no k-factor approx alg for the TSP for any k > 1.

k-factor approx would imply poly time algorithm for
Hamiltonian Cycle.

for metric and non-metric problems:
@ Heuristic: Lin-Kernighan based solvers (Lin and Kernighan, 1973)
o Empirically ~ 5% of optimal in O(n*?) time.
o Exact: Concorde TSP Solver (Applegate, Bixby, Chvatal, Cook, 2007)
e Exact solution of Euclidean TSP on 85,900 points!
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Metric TSP Eulerian Graphs

° : degree of each vertex is even

° . Closed walk containing every edge.

@ Graph has Eulerian walk < Eulerian.

Given: A complete metric graph G, = (V) E,) @ Eulerian walk can be computed in O(|V/|+ |E]) time.

Task: Find a Hamiltonian cycle with minimum weight.

@ The Metric TSP is

@ There exist approximation algorithms!
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Double-Tree Algorithm Double-Tree Algorithm

1: Find a minimum spanning tree T of graph G,. 1: Find a minimum spanning tree T of graph G,.
2: G := graph containing two copies of each edge in T. 2: G := graph containing two copies of each edge in T.
3: Compute Eulerian walk in Eulerian graph G. 3: Compute Eulerian walk in Eulerian graph G.
4: Walk gives ordering, ignore all but first occurrence 4: Walk gives ordering, ignore all but first occurrence
of vertex. of vertex.
o
e °
' °
®
L
L
L
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Double-Tree Algorithm Double-Tree Algorithm

1: Find a minimum spanning tree T of graph G,.
2: G:= graph containing two copies of each edge in T.
3: Compute Eulerian walk in Eulerian graph G. Double-Tree Algorithm is a 2-approx algorithm for the Metric TSP. Its
4: Walk gives ordering, ignore all but first occurrence running time is O(n?).
of vertex.

Deleting one edge from a tour gives a spanning tree.

Thus minimum spanning tree is shorter than optimal tour.

°
°

@ Each edge is doubled.

@ Spanning tree can be computed in O(n?) time.
°

Eulerian walk computed in O(n) time.
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Christofides’ Algorithm Christofides’ Algorithm

: Find a minimum spanning tree T of G.

[y

1: Find a minimum spanning tree T of G.

2: Let W be the set of vertices with odd degree in T. 2: Let W be the set of vertices with odd degree in T.
3: Find the minimum weight perfect matching M in 3: Find the minimum weight perfect matching M in
subgraph generated by W. subgraph generated by W.
4: Find an Eulerian path in G := (V,, E(T) U M), (skip 4: Find an Eulerian path in G = (V,, E(T) U M), (skip
vertices already seen). vertices already seen).
e
e ®
' °
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subgraph generated by W. subgraph generated by W.

4: Find an Eulerian path in G := (V,, E(T) U M), (skip 4: Find an Eulerian path in G = (V,, E(T) U M), (skip
vertices already seen). vertices already seen).
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Christofides’ Algorithm Euclidean TSP

Christofides’ Algorithm gives a 3/2-approx algorithm for the Metric TSP.

Its running time is O(n3).
g () Theorem (Arora, 1998; Mitchell, 1999)

For each fixed € > 0, a (1 + €)-approximate solution can be found in
O(n(log n)€) time.

o L(Christofides) = L(MST) + L(M).

e But, L(MST) < L(TSP), and

o L(M) < L(M)<L(TSP)/2.
Where M’ is the minimum perfect matching of W using edges that
are part of TSP.
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Length Bounds for Euclidean TSP Worst-case TSP Length Upper Bound (Intuition)

e Consider Q, := {x1,...,xn} of n points in unit square.

How long is the TSP tour through n points in unit square? @ There exists ¢ > 0 such that

. c
min {|Ixi — x| : xi,x; € Qn} < NG
Theorem (Few, 1955) o Let ¢, denote worst-case TSP length through n pts.

e Then ¢, < /{14 2c/\/n.
e Summing we get £(n) < C/n.

For every set Qp of n points in the unit square

ETSP(Qn) < V2n +7/4.
o © ¢
L
e Equally space n points on a grid Y
e Then ETSP(Q,) = Cy/n. ¢
@ So, worst-case length > C/n. o ®
o
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Worst-case TSP Length Upper Bound (Intuition) Worst-case TSP Length Upper Bound (Intuition)

e Consider Q, := {x1,...,xn} of n points in unit square.
@ There exists ¢ > 0 such that

Consider @, := {x1,...,x,} of n points in unit square.
There exists ¢ > 0 such that

c
ﬁ.
Let ¢, denote worst-case TSP length through n pts.
Then £, < {,_1 4 2¢c/+\/n.

Summing we get ¢(n) < Cy/n.

c
ﬁ.
Let ¢, denote worst-case TSP length through n pts.
Then £, < {,_1 4 2¢c/+\/n.

Summing we get ¢(n) < Cy/n.

min {|Ixi — x| : xi,x; € Qn} < min {|Ixi — x| : xi,x; € Qn} <
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e Consider Q, := {x1,...,Xn} of n points in unit square. e Consider Q, := {x1,...,xn} of n points in unit square.

@ There exists ¢ > 0 such that @ There exists ¢ > 0 such that

. C . I
min {[|x; — x[| : x;, x; € Qn} < NG min {[|x; — x|l : xi,x; € Qn} < 7

o Let ¢, denote worst-case TSP length through n pts.
e Then ¢, < {1+ 2c/\/n.
e Summing we get £(n) < C/n.

o © /

Let ¢, denote worst-case TSP length through n pts.
Then £, < {,_1 4 2¢c/+\/n.
Summing we get ¢(n) < Cy/n.
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TSP Length for Random Points Summary of Traveling Salesman Problem

Theorem (Beardwood, Halton, and Hammersley, 1959)

Let Q, be a set of n i.i.d. random variables with compact support in R?
and distribution ¢(x). Then, with prob. 1

. ETSP(Q)) —/ \(d=1)/d

where Btsp 4 Is a constant independent of ¢, and ¢ is absolutely
continuous part of ¢.

For uniform distribution in square of area A
ETSP(Qn)
Vn

Best estimate of Btsp > is Percus and Martin, 1996

— ﬁ-rsp’zx/z as n — +oo.

ﬂTSP,Z ~ (0.7120.

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 2/8)

29jun10 @ Baltimore, ACC 21 /29

@ Solving TSP is , and no approx algorithms exist.

o For , still NP-hard but good
o For Euclidean TSP, very good heuristics exist.
@ Length of tour through n points in unit square:
o Worst-case is ©(v/n).
o Uniform random is ©(/n).
o For all density functions O(+/n).

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29junl0 @ Baltimore, ACC 22 /29

Basic Queveing Mode

© Queueing Theory
@ Kendall's Notation
@ Little’'s Law and Load Factor

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 2/8)

o Customers arrive, wait in a queue, and are then processed
@ Queue length builds up when arrival rate is larger than service rate

>
incoming customers .outgoing customers

N

queue length

modeled as stochastic process with rate A

of each customer is a r.v. with finite mean 5 and
second moment s2.
° is 1/5.

29jun10 @ Baltimore, ACC 23 /29
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itle's Lov and Load Factor

A = the arrival process
@ B = the service time distribution
C = the number of servers

D = Deterministic
o M = Markovian

o for arrivals: Poisson process
o for service times: Exponential distribution

Poisson arrivals with rate A\

General service times with mean 3

@ m servers

, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 2/8)

G (or GI) = General distribution (independent among customers)

29junl0 @ Baltimore, ACC
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Define:
@ average wait-time in queue as W

@ average system as T := W +35.

Little's Law/Theorem

For a stable queue N = \W

@ For m servers, define as
A5
0= —
m
° for stable queue is o < 1.

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 2/8)
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Wait-time examples Lecture outline

For M/D/1 queue:

W=_——
2(1 -0
For M/G/1 queue: B
W A
2(1-0)

For G/G/1 queue (Kingman, 1962):

Ao2 +02)

w 2(1-10)

IN

and the upper bound becomes exact as p — 1.

FB, EF, MP, KS, SLS (UCSB, MIT)
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@ Graph Theory
@ Weighted Graphs
@ Minimum Spanning Tree

© The Traveling Salesman Problem
@ Approximation Algorithms
@ Metric TSP
@ Euclidean TSP

e Queueing Theory
@ Kendall's Notation

o Little’s Law and Load Factor

FB, EF, MP, KS, SLS (UCSB, MIT)
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Dynamic Vehicle Routing for Robotic Networks

Lecture #3: The single-vehicle DVR problem

Francesco Bullo!  Emilio Frazzoli?  Marco Pavone?

Ketan Savla®  Stephen L. Smith?

tcebc
University of California, Santa Barbara
bullo@engineering.ucsb.edu

2LIDS and CSAIL
Massachusetts Institute of Technology
{frazzoli,pavone,ksavla,slsmith}@mit.edu

Workshop at the 2010 American Control Conference
Baltimore, Maryland, USA, June 29, 2010, 8:30am to 5:00pm
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Lecture outline

@ Queueing-theoretical model for DVR

D. J. Bertsimas and G. J. van Ryzin. A stochastic and dynamic vehicle routing problem in the
Euclidean plane. Operations Research, 39:601-615, 1991

The problem

A °
DVR - distinct features ? .

@ service demands vary over time . <.

@ information about future is ’ "
stochastic . Y

@ real-time routing policies

@ queueing phenomena - <

DVR is fundamentally a queueing problem:
@ arrival process
@ service model

© performance measure

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29jun10 @ Baltimore, ACC 3/25
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General queueing-theoretical model for DVR 1/2

Arrival process: spatio-temporal Poisson
@ time intensity A > 0
@ spatial density : P[demand in S] = [g o(x) dx

@ inter-arrival times and locations are i.i.d.

FB, EF, MP, KS, SLS (UCSB, MIT)
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General queueing-theoretical model for DVR 1/2

. spatio-temporal Poisson
time intensity A > 0
spatial density ¢: P [demand in ] = [ ¢(x) dx

inter-arrival times and locations are i.i.d.

000

m holonomic vehicles with maximum velocity v
vehicles provide a random on-site service

on-site service times are i.i.d. (equal on average to 5)

©0O0O0

demand removed from the system upon on-site service completion

MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8)

29junl0 @ Baltimore, ACC

Relation to standard queueing systems

e DVR model close to M/G/m queue

° : service times are i.i.d. in general
A
@ service time = travel time + on-site service
@ FCFS policy
Average
@ unconditional expected travel time distance = 0.52
between two consecutive demands ~ 0.52.

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29junl0 @ Baltimore, ACC
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General queueing-theoretical model for DVR 2/2

. steady-state system time of demands T

Problem statement

Solve optimization problem over all causal routing policies 7:

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29junl0 @ Baltimore, ACC 5/25

Relation to standard queueing systems

e DVR model close to M/G/m queue

° . service times are i.i.d. in general
)
@ service time = travel time + on-site service
@ FCFS policy
@ unconditional expected travel time ~ Average
between two consecutive demands ~ 0.52. distance > 0.52
@ conditional expected travel time between

two consecutive demands > 0.52.

FB, EF, MP, KS, SLS (UCSB, MIT)
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A first look at the problem: stability Analysis approach

o )\ - E[service time|/m fraction of time each vehicle is busy

System is if A - E[service time]/m < 1.
Since 5 < E[service time], a weaker necessary condition is:

0=A5/m<1

Surprisingly, o < 1 is also sufficient for stability = stability condition is
of the size and shape of Q

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29junl0 @ Baltimore, ACC 7/25

@ Lack of i.i.d. property substantially complicates analysis

@ General approach:
© lower bounds on performance, independent of algorithms,
@ design of algorithms and upper bound on their performance, possibly in
asymptotic regimes (i.e., 0 — 0" and o — 17)

29jun10 @ Baltimore, ACC 8 /25

Dynamic Vehicle Routing (Lecture 3/8)
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Lecture outline Light-load lower bound

© Lower bounds on performance (m=1)

D. J. Bertsimas and G. J. van Ryzin. A stochastic and dynamic vehicle routing problem in the
Euclidean plane. Operations Research, 39:601-615, 1991

D. J. Bertsimas and G. J. van Ryzin. Stochastic and dynamic vehicle routing with general interar-
rival and service time distributions. Advances in Applied Probability, 25:947-978, 1993

29jun10 @ Baltimore, ACC 9 /25

Dynamic Vehicle Routing (Lecture 3/8)

FB, EF, MP, KS, SLS (UCSB, MIT)

@ minimizer p* of

b /Q Ix = pllp(x)dx = E,[IX = pll]

@ best a priori location to reach next demand

Lower bound (most useful when A\ — 0T)

For all policies m: T > E,[||X — p*[|]/v +5

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29junl0 @ Baltimore, ACC




Light-load lower bound

@ minimizer p* of

P /Q Ix — plip(x)dx = E[IIX — pll]

@ best a priori location to reach next demand

Lower bound (most useful when A — 07)

For all policies m: T, > E,[||X — p*[]/v +5

o T = Wtravel + Won—site + 5.
o Wtravel Z E@[HX - p*H]/V

Light-load lower bound

@ minimizer p* of

b /Q Ix = pllp(x)dx = E,[IX — pll]

@ best a priori location to reach next demand

Lower bound (most useful when A — 07)

For all policies m: T, > E,[||X — p*[[]/v +5

o T = Wtravel + Won—site + 5.
o Wtravel Z E@[HX - p*H]/V
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Light-load lower bound
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@ minimizer p* of

P /Q Ix — plip(x)dx = E[IIX — pll]

@ best a priori location to reach next demand

Lower bound (most useful when A — 07)

For all policies m: T > E,[||X — p*[|]/v +5

o T = Wtravel + Won—site +s.
° Wtravel > EW[HX - p*H]/V
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Light-load lower bound

@ minimizer p* of

P /Q Ix — plip(x)dx = E[IIX — pll]

@ best a priori location to reach next demand

Lower bound (most useful when A — 07)

For all policies m: T > E,[||X — p*[[]/v +5

10 / 25

o T = Wtravel + Won—site + 5.
° Wtravel > EW[HX - p*H]/V
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Heavy-load lower bound Heavy-load lower bound

Definition (Spatially-biased and -unbiased policies)

A policy 7 is said to be
@ spatially unbiased if system time is independent of demand location

@ spatially biased if system time depends on demand location

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29junl0 @ Baltimore, ACC

Definition (Spatially-biased and -unbiased policies)
A policy 7 is said to be
@ spatially unbiased if system time is independent of demand location

@ spatially biased if system time depends on demand location

Heavy-load lower bound

A (Jo@t2(x)ax)”

. . .=  Biy _
tially-unbiased pol T > 1
spatially-unbiased policies z = 21— 0P as o —
3
2/3 d
. . = B A (fQS" (x) X) _
tially-biased pol TR > 1
spatially-biased policies == 2= as o —

11/ 25

Proof sketch (for unbiased policies)

@ the idea is to use
policies!)

(which are independent of

o let D be the travel distance
@ one can show that
_ 1/2(x)dx
D > Brsp 0¥ ) asp— 17,

V2N
with N average number of waiting demands
o for stability:

D 1 fggol/z(x)dx
5+—<5 = S+frsp——F——<1/A
v A vV2N /

@ since N=\W and T = W + 5 one obtains:

A (Jo @t (x)d)”
v2(1—0)?

Dynamic Vehicle Routing (Lecture 3/8)

-+ Blsp
T >
-2
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Lecture outline

TWES

© Control policies

D. J. Bertsimas and G. J. van Ryzin. A stochastic and dynamic vehicle routing problem in the
Euclidean plane. Operations Research, 39:601-615, 1991

D. J. Bertsimas and G. J. van Ryzin. Stochastic and dynamic vehicle routing with general interar-
rival and service time distributions. Advances in Applied Probability, 25:947-978, 1993

M. Pavone, E. Frazzoli, and F. Bullo. Distributed and adaptive algorithms for vehicle routing
in a stochastic and dynamic environment. /EEE Transactions on Automatic Control, May 2010.
(Submitted, Apr 2009) to appear
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An optimal light load policy An optimal light load policy

Compute median p*. Then: Compute median p*. Then:

1: service demands in FCFS order 4 e 1: service demands in FCFS order 4 e

2: return to p* after each service is o 2: return to p* after each service is o
completed completed

Optimality of SQM policy Optimality of SQM policy

lim Tsom/T =1
g, Tsam/

—

@ As A\ — 07, P[demand generated when system is empty] — 1
@ = all demands generated with the vehicle at p*
o = Tsqm = Ey[|X — p*[l]/v +3
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An optimal spatially-unbissed heavy-ioad policy

Partition Q into r subregions Qy with ka o(x)dx = 1/r.
Then: @ idea: queue
1: within each subregion form sets of size n/r
2: deposit sets in a queue

3: service sets FCFS by following a TSP tour

@ jth set viewed as jth customer: arrival and service times are !
@ inter-arrival distribution is Erlang of order n

Optimize over n. o expected service time is n5 + Brsp /0 [, ©'/2(x)dx /v

@ standard results give upper bound on the wait in queue for a set

Optimality of UTSP policy

@ then easy to find upper bound for individual demands

lim Tyrsp(r)/Ty <1+1/r
o—1-
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Adaptivity

SQM unstable as o — 1~
intuition: average per-demand travel D is
but stability condition implies D < (1 — g)/A!

wait time grows as (1 — o)~ instead of (1 — o)~ !!

DVR problems are fundamentally different from traditional queueing
systems (techniques, results, etc.)

o for stability of the queue of sets:
for light load: A
o for light loa —(n§+ﬁTSP\/ﬁ/ (pl/z(x)dx/v) <1
o for heavy load: or n o)
@ then one should select:
@ biased service provides strict reduction of optimal system time for any 5 o 1/2 5 5
1—
non-uniform n>APBrgp | | o/ (x)dx| /(v°(1-0)7)

@ = wrong selection of n might lead to instability or unacceptable
deterioration in performance

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29junl0 @ Baltimore, ACC 17 / 25 , MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29junl0 @ Baltimore, ACC 18 / 25

Divide & Conquer policy DC policy (with r — +00)

@ NP-hard computation, but effective heuristics

Partition O into r subregions the policy does not require knowledge of
Qk with [, @(x)dx = 1/r. @ vehicle velocity v, environment Q
Then: —~A S e @ arrival rate A
1: while no customers, move ‘ L N . . .
. ) s > P e Lt © expected on-site service s
to empirical median p 2 o &

2: while customers waiting

@ move to subregion Q . . .
& k in light load, delay is optimal
@ service all demands in

Qk by following a TSP
tour

Q@ k+— k-+1 (modulo r)

in heavy load, delay is optimal

000

stable in any load condition
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Proof (r=1)

@ p* — p* and recovers SQM

@ no well-defined notion of “jth customer”

e focus on dynamical system

E[niy1] < AE[i Sq + TSP(n,-)}
g=1

<A (3 E[n;] + 5TSP/QSO1/2(X)dX \/IW/V)

@ upper bound trajectories with the trajectories of dynamical

system

Ziv1 = 02 + (\V) Brsp /Q PM2(x)dx /2

o Tpc <limijoo Zi/A

, MP, KS, SLS (UCSB, MIT)
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Receding-Horizon policy

For n € (0,1], single agent performs:
1: while no customers, move to empirical median p*
2: while customers waiting

© compute TSP tour through current demands

©Q service n-fraction of path

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 3/8) 29junl0 @ Baltimore, ACC 22 / 25

ooy

@ NP-hard computation, but effective heuristics

the policy does not require knowledge of
@ vehicle velocity v, environment Q
@ arrival rate )\ and spatial density function ¢
(s

expected on-site service 5

in light load, delay is optimal
in heavy load, delay is within a multiplicative factor from optimal

000

multiplicative factor depends upon ¢ and is conjectured to equal 2

23 / 25

@ Queueing-theoretical model for DVR

© Lower bounds on performance (m=1)

© Control policies
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Load balancing in DVR via territory partitioning

Dynamic Vehicle Routing for Robotic Networks

Lecture #4: The multi-vehicle DVR problem

Francesco Bullo!  Emilio Frazzoli?  Marco Pavone?

Ketan Savla®  Stephen L. Smith?

cebc

University of California, Santa Barbara
UC S B bullo@engineering.ucsb.edu I I I H .
—— 2LIDS and CSAIL I I

Massachusetts Institute of Technology
{frazzoli,pavone,ksavla,slsmith}@mit.edu

© Resource allocation in DVR is transcribed into partitioning!

. F f this | i ivehicle DVR vi imal
Workshop at the 2010 American Control Conference © Focus of this lecture is mutivehicle via optimal partitioning

Baltimore, Maryland, USA, June 29, 2010, 8:30am to 5:00pm
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Lecture outline Territory partitioning is ... art

@ Territory Partitioning

Ocean Park Paintings, by Richard Diebenkorn (1922-1993)
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Multi-center functions

Territory partitioning: optimality and behaviors

Expected wait time (in light load)

@ how to cover a region with n minimum-radius overlapping disks? H(p,v) = / lIx — pyldx + - - - +/ l[x — pnlldx
@ how to design a minimum-distortion (fixed-rate) vector quantizer? Vi Vn
© where to place mailboxes in a city / cache servers on the internet? @ nrobots at p = {p1,...,pn}

@ environment is partitioned into v = {v1,..., vp}

how do animals share territory?
how do they decide foraging

Hipv) =3 / F(x — pillolx)
i=17Vi

ranges? e
how do they decide nest locations? N g 05 ° p:R*— R>o density
© what if each robot goes to “center” of own dominance region? o f:R>g — R penalty function
@ what if each robot moves away from closest vehicle? F. Bullo, J. Cortés, and S. Martinez. Distributed Control of Robotic Networks. Applied Mathematics

Series. Princeton University Press, 2009. Available at http://www.coordinationbook.info
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Optimal partitioning Optimal centering (for region v with density ¢)
The {V1,..., Va} generated by points (p1,..., pn) function of p minimizer = center
Vi(p) ={x € Q| [Ix = pill < lIx = pjll, Vi # i} p / [[x = plle(x)dx (or )
= Qﬂ(half plane between i and j, containing /) v
j pr [ Ix = plPelx)ox (or )

p — area(v Ndisk(p, r))

AN y p — radius of largest disk centered
) {_ at p enclosed inside v

o . A o ee p — radius of smallest disk cen-
3 tered at p enclosing v

Descartes 1644, Dirichlet 1850, Voronoi 1908, Thiessen 1911, From ~ online

E lopedia of
Fortune 1986 (sweepline algorithm O(nlog(n))) T:Zicgfepecefte(:s
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How to compute the median of a convex set From optimality conditions to algorithms

H(pv) = / F(Ix — pillolx) e
j=1vVi

For convex planar set Q with strictly positive density ¢,

Hrw(p) :/ llp — x|[(x)dx Theorem (Alternating Algorithm, Lloyd '57)
© Q at fixed positions, optimal partition is Voronoi

O Hew is strictl @ at fixed partition, optimal positions are “generalized centers”
Fw is strictly convex

© alternate v-p optimization

@ the global minimum point is in Q and is called median of Q ) ] -
= local optimum = center Voronoi partition

© compute median via gradient flow with

d p—x
—Hew(p :/ —(x)dx
ap” PP = [ Tio = P

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC 9 /27 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC 10 / 27
Gradient algorithm for multicenter function Gradient algorithm for multicenter function
After assuming v is Voronoi partition, After assuming v is Voronoi partition,

H(p) = ; /V A= pile)ax H(p) = ; /V A= pile)ax

For f smooth, note simplifications for boundary terms For f smooth, note simplifications for boundary terms
OH / 0 OH 0
—(p) = —f(||x — p; X)dx —p:/ —f(||x — p; x)dx
5P = [, 3 (=P 20 5P = [, 3 (k=R o0

ox
" /W_(p) (I = ) (). )0 x)
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Gradient algorithm for multicenter function Gradient algorithm for multicenter function

After assuming v is Voronoi partition, After assuming v is Voronoi partition,

H = f(llx — p; x)dx H = f(llx — p; x)dx
(») 2:; /V A= el (») g /V A= el

For f smooth, note simplifications for boundary terms For f smooth, note simplifications for boundary terms

9P Jy " e P01 5= [ gt (b p e)ax
Ox Ox
+ /Wi(p) f (IIx = pill) (ni(x), a*pimx)dx + /dv B f(llx — pill) (ni(x), ap,-MX)dX
Ox Ox
+jn§:gh ,/avj(p)nav,-(p) f(lIx = pill) (nji(x), a—pi>90(x)dx —/ | )f(||x — pill) (ni(x), a_,;,->90(")dx

contrib from neighbors

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8)

29junl0 @ Baltimore, ACC 11 / 27 FB, EF, MP, KS, SLS (UCSB, MIT)
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Example optimal partition Lecture outline

© The multi-vehicle DVR problem

D. J. Bertsimas and G. J. van Ryzin. Stochastic and dynamic vehicle routing with general interar-
rival and service time distributions. Advances in Applied Probability, 25:947-978, 1993

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC 12 / 27 FB, EF, MP, KS, SLS (UCSB, MIT)
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Multi-vehicle DVR problem Light-load lower bound

@ results on single-vehicle DVR generalize easily to the multi-vehicle
case

@ previous methodology (locational optimization, queueing and control
theory, combinatorics) applicable to this case

@ main new idea:

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC 14 / 27

Multi - Median

e minimizer p* = {p;,...,p;} of

prEglminlX —pil) = 3 [ l1x—pillel)as
i=1 i

Lower bound (most useful when A — 0T)

For all policies m: Tr > Ey[min; | X — p;[]]/v +5

@ multi-median: best a priori location
to reach a newly arrived demand

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC 15 / 27

Heavy-load lower bound Heavy-load lower bound

Heavy-load lower bound

2
B A ( Jo 901/2(x)dx)
2 m? v2 (1 — p)?

3
B A ( Jo 902/3(x)dx)
2 m? v2 (1 — p)?

spatially-unbiased policies: T, > as o — 17

spatially-biased policies: T, > as o — 17

16 / 27

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC

Heavy-load lower bound

2
1/2 d
o g M (Joet o) )
tially-unbiased pol DT> 1
spatially-unbiased policies 2= V(1= o) as o —
3
2/3(x)d
o g M (Jo# ) )
tially-biased pol DT> 1
spatially-biased policies: T, > > V(1= o) as o —
— 1/2(x)dx
@ Recall inter-demand distance D > Grsp M, asp— 1°
o for stability with m vehicles:
D_m Jo 2 (x)dx
S+—<-+ = 5+ frsp —— <m/A
v oA vV2N
__ — — — —x% 2 A 1/2(x)d 2
oN=AWand T=W+5 = T >0 (,{gfz(l(_x;)j)

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC 16 / 27




An optimal light-load policy An optimal light-load policy

Compute multi-median p* and

assign one vehicle at each A f
median point. Then: ® *
1: Assign demand that falls - )
in V; to vehicle i N
2: each vehicles service - °
demands in FCFS order o © K

3: each vehicle returns to
p; after each service is
completed

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC 17 / 27

Compute multi-median p* and

assign one vehicle at each A f
median point. Then: ® *
1: Assign demand that falls - )
in V; to vehicle i N
2: each vehicles service - °
demands in FCFS order o © %

3: each vehicle returns to
p; after each service is
completed

@ As A\ — 07, P[demand generated when system is empty] — 1
@ = all demands are generated with the vehicles at p*

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 4/8)

29jun10 @ Baltimore, ACC 17 / 27

An optimal spatially-unbiased heavy-load policy An optimal spatially-unbiased heavy-load policy

Partition Q into r subregions Q with fékgxx)dx = 1/r.

Then:

1: within each subregion form sets of size n/r

2: deposit sets in a queue

3: service sets FCFS with the first available vehicle by
following a TSP tour

Optimize over n.

Optimality of UTSP policy

Partition Q into r subregions Q with fékgxx)dx = 1/r.

Then:

1: within each subregion form sets of size n/r

2: deposit sets in a queue

3: service sets FCFS with the first available vehicle by
following a TSP tour

Optimize over n.

Optimality of UTSP policy

Iinl1 TUTsp(r)/?E < 1+4+1/r
o—1

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC 18 / 27

Iirrl1 TUTSP(r)/?E < 1+41/r
o—1

@ reduction to GI/G/m

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 4/8)
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Lecture outline Partitioning policies

Definition (7-partitioning policy)

Given m vehicles and single-vehicle policy 7:
@ Workspace divided into m subregions
@ One-to-one correspondence vehicles/subregions

© Each agent executes the single-vehicle policy 7 within its own
subregion

© Multi-vehicle DVR policies based on partitioning

M. Pavone, E. Frazzoli, and F. Bullo. Distributed and adaptive algorithms for vehicle routing
in a stochastic and dynamic environment. |[EEE Transactions on Automatic Control, May 2010.
(Submitted, Apr 2009) to appear

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC 19 / 27 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC 20 / 27

Motivation Motivation
@ light load: problem reduces to locational optimization @ light load: problem reduces to locational optimization
@ heavy load: @ heavy load:
@ delay of optimal single vehicle policy scales as A |Q)| @ delay of optimal single vehicle policy scales as A |Q)|

A1l _ A9l
. m m ~—  m?
, as in the lower bound

A el A9l
. m m ~ m?
, as in the lower bound © = delay scales as m~

@ by (equitably) partitioning, delay reduces to
2

@ by (equitably) partitioning, delay reduces to
© = delay scales as m—2

@ systematic approach to lift adaptive single-vehicle policies to
multi-vehicle policies

@ coupled with partitioning algorithms, provides distributed
multi-vehicle policies

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC 21 /27 MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC 21 /27



Opiimal partitining i heavy oad

o light load: problem reduces to locational optimization
@ heavy load:
@ delay of optimal single vehicle policy scales as A |Q)|

@ by (equitably) partitioning, delay reduces to 2 2l _ A9

E m mr
© = delay scales as m~2, as in the lower bound

@ systematic approach to lift adaptive single-vehicle policies to

multi-vehicle policies
@ coupled with partitioning algorithms, provides distributed

multi-vehicle policies

29jun10 @ Baltimore, ACC 21 /27

Dynamic Vehicle Routing (Lecture 4/8)

FB, EF, MP, KS, SLS (UCSB, MIT)

o per-vehicle workload is oc A [ ¢(x)dx

o per-vehicle service capacity is oc A [o, ©1/2(x)dx

@ optimal partitioning = per-vehicle workload service

capacity

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC 22 /27

Optimal partitioning in heavy load Optimal partitioning in heavy load

o per-vehicle workload is oc A [ ¢(x)dx

o per-vehicle service capacity is oc A [o, ©'/2(x)dx

@ optimal partitioning = per-vehicle workload service

capacity

A partition {Q}7 is:
o equitable if [, ¢(x)dx = [4p(x)dx/m
@ simultaneously equitable if
Q Jo, p(x)dx = [4p(x)dx/m,

@ Jo, ¢M2(¥)dx = [ M3 (x)dx/m

29junl0 @ Baltimore, ACC

Dynamic Vehicle Routing (Lecture 4/8)

FB, EF, MP, KS, SLS (UCSB, MIT)

o per-vehicle workload is oc A [ ¢(x)dx

o per-vehicle service capacity is oc A [o, ©'/2(x)dx

@ optimal partitioning = per-vehicle workload service

capacity

A partition {Q}7 is:
o equitable if [, (x)dx = [4p(x)dx/m
@ simultaneously equitable if
(1] ka o(x)dx = fg o(x)dx/m,
@ [o, ¢! (x)dx = [4 @M ?(x)dx/m

(S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink, 2000)

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC




Opimal partitioning in heav o

Given single-vehicle optimal policy 7, a w*-partitioning policy using a
simultaneously equitable partition is an optimal unbiased policy

o P[demand arrives in Q] = ka o(x)dx=1/m
@ arrival rate in region k: Ay = A\/m

@ = 0k = A\S = A5/m = p < 1= system is stable

e conditional density for region k: (p(X)/(ka ©(x) dx) = mp(x)

2
- m B3 X
o T=%1, (fgk o) ax B ot | o, 7] )

_ m 1= 1
- k=1 mT“* 2

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29junl0 @ Baltimore, ACC 23 /27

o Jk such that oz = A\(1/m+¢)5=0+¢A3

@ potentially, policy for p < 1!

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 4/8)

29jun10 @ Baltimore, ACC 24 /27

Comments Special cases

o Jk such that o = A\(1/m+¢€)5=0+¢A3

@ potentially, policy for p < 1!

@ per-vehicle service capacity is unbalanced = policy stable but

@ guaranteed to be within m of optimal unbiased performance

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8)

@ stability not an issue:

n
).\ - m- Wgth(n) = demand growth rate
generation rate —~ v

service rate

@ since TSPlength(n) o \/n = stability for all A\, m

29jun10 @ Baltimore, ACC 24 /27
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Special cases Lecture outline

@ stability not an issue:
n @ Territory Partitioning
A — m-——=————— = demand growth rate
~~ TSPlength(n) &
generation rate ~ /

service rate

Q The multi-vehicle DVR problem

since TSPlength(n) o< v/n = stability for all A\, m

© Multi-vehicle DVR policies based on partitioning

equitable wrt to ¢ = equitable wrt to ¢!/2

FB, EF, MP, KS, SLS (UCSB, MIT)

no need to use algorithms for simultaneous equitability

29jun10 @ Baltimore, ACC 26 / 27
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Workshop Structure and Schedule

8:00-8:30am | Coffee Break
8:30-9:00am Lecture #1: | Intro to dynamic vehicle routing
9:05-9:50am | Lecture #2: | Prelims: graphs, TSPs and queues
9:55-10:40am | Lecture #3: | The single-vehicle DVR problem
10:40-11:00am | Break
11:00-11:45pm | Lecture #4: | The multi-vehicle DVR problem
11:45-1:10pm | Lunch Break
1:10-2:10pm Lecture #5: | Extensions to vehicle networks
2:15-3:00pm | Lecture #6: | Extensions to different demand models
3:00-3:20pm Coffee Break
3:20-4:20pm Lecture #7: | Extensions to different vehicle models
4:25-4:40pm | Lecture #8: | Extensions to different task models
4:45-5:00pm Final open-floor discussion

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 4/8)

29jun10 @ Baltimore, ACC 27 /27




Lecture outline

@ Motivation and inspiration from biology

Dynamic Vehicle Routing for Robotic Networks

Lecture #b5: Extensions to vehicle networks and
distributed algorithms

© Intro to comm models, multi-agent networks and distributed algorithms

Francesco Bullo!  Emilio Frazzoli® Marco Pavone?
Ketan Savla®  Stephen L. Smith? e Partitioning with synchronous proximity-graphs communication
tcebc S . . . . ..
University of California, Santa Barbara @ Partitioning with gossip (asynchronous pair-wise) communication
UC SB bullo@engineering.ucsb.edu I I I N .
" 2LIDS and CSAIL I I @ Partitioning with no explicit inter-vehicle communication

Massachusetts Institute of Technology o No explicit communication poIicy
{frazzoli,pavone,ksavla,slsmith}@mit.edu L .
@ Game-theoretic interpretation

Workshop at the 2010 American Control Conference
Baltimore, Maryland, USA, June 29, 2010, 8:30am to 5:00pm

29junl0 @ Baltimore, ACC FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29jun10 @ Baltimore, ACC 2 /44
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Territory partitioning via centralized space planning Territory partitioning akin to animal territory dynamics

i e, JRC W e

» ) A
'& & D Q?

%

- W~ 8

hg.j‘; 24 ____‘b’: ?; Ojﬁb";§§*;§0"ﬂo”’s%’”eoo

Tilapia mossambica, “Hexagonal Red harvester ants, “Optimization, Conflict, and
Territories,” Barlow et al, '74 Nonoverlapping Foraging Ranges,” Adler et al, '03

UCSB Campus Development Plan, 2008 Sage sparrows, “Territory dynamics in a sage sparrows

population,” Petersen et al '87
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Territory partitioning: behaviors and optimality

o
Q
o

how to cover a region with n minimum-radius overlapping disks?
how to design a minimum-distortion (fixed-rate) vector quantizer?

where to place mailboxes in a city / cache servers on the internet?

how do animals share territory?

how do they decide foraging
ranges? sy
how do they decide nest locations? Nl S

© what if each robot goes to “center” of own dominance region?

@ what if each robot moves away from closest vehicle?

MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8)

Intro to communication models, multi-agent networks and
distributed algorithms

© |. Suzuki and M. Yamashita. Distributed anonymous mobile robots:
Formation of geometric patterns. SIAM Journal on Computing,
28(4):1347-1363, 1999

@ N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1997

© D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997

@ S. Martinez, F. Bullo, J. Cortés, and E. Frazzoli. On synchronous robotic
networks — Part |: Models, tasks and complexity. IEEE Transactions on
Automatic Control, 52(12):2199-2213, 2007

© meaningful 4 tractable model

@ information/control /communication tradeoffs

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 5/8)

29jun10 @ Baltimore, ACC 5/ 44
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Lecture outline

© Intro to comm models, multi-agent networks and distributed algorithms

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29jun10 @ Baltimore, ACC 6 /44

Preliminary: Processor network and distributed algorithm

: group of processors capable to exchange messages
along edges and perform local computations

Transmit |:> Update
and processor
receive <:| state

for a network of processors consists of

O Wl the

Q A, the

O stll: Wil x an — Wl the
Q msgll : Wl — A the

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29jun10 @ Baltimore, ACC




Robotic network Communication models for robotic networks

Delaunay graph r-disk graph r-Delaunay graph
% %‘ga% < ] ) < . Y e . S
A is w e Ul e
o mOVlng |n Space Q r-limited Delaunay graph Gabriel graph EMST graph
Disk, visibility and Delauney graphs . .
y y grap © fixed, directed, balanced O message
.~ PR @ switching @ packet/bits
b [ ] o L ]
R S “, < e -, © proximity/geometric or
. > . N state-dependent
@ random, random geometric
g
(packet losses)

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC 9 /44 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC

Communication models for robotic networks Synchronous control and communication

Delaunay graph r-disk graph r-Delaunay graph o ’]I‘ — {te}geNO C R>O
[ 3 ) X ° [ 3 ) 7 ° [ 3 | 4 ° 9 A
2 \\ e SoA, e N e © set of values for w
r-limited Delaunay graph Gabriel graph EMST graph o mSg T X QX W — A
1 el et . o stf : Tx W x AN - W
: A, %, : .. % . : .. %, ) Ctrl:RzoXQx WXAN—>U
© fixed, directed, balanced O message Traaamit Update
. an processor
g SW|tCh|ng 9 packet/b|ts receive state
© proximity/geometric or ﬁ @
state-dependent @ absolute coords other robots
@ random, random geometric @ absolute coords environment C Update physical state )
(packet losses) boundary

MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC 11 / 44



Spatially-istributed poices for DVR

Key idea
Distributed multi-vehicle policy = single-vehicle policy 4+ optimal
partitioning + distributed algorithm for partitioning

@© Partitioning with synchronous proximity-graphs communication

M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo. Equitable partitioning policies for mobile robotic
networks. /IEEE Transactions on Automatic Control, 2010. (Submitted Dec 2008 and Aug 2009)

to appear

29jun10 @ Baltimore, ACC 13 / 44
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Spatially-distributed policies for DVR Median Voronoi diagrams (and beyond) with synchronous
proximity-graphs communication

Distributed multi-vehicle policy = single-vehicle policy 4+ optimal
At each comm round:

partitioning + distributed algorithm for partitioning
1: acquire neighbors’ positions
Light load Heavy load 2: compute own dominance region
. .. 3: move towards center of own
Optimal pre-positioning Workload balance . .
. - . e dominance region
= median Voronoi diagrams = equitable partitions

/7
Lo . g
. o)
/ " .
Ao ) ~ .
. /
. o“ . /
. /
. . .
Area-center Incenter Circumcenter

S. Martinez, J. Cortés, and F. Bullo. Motion coordination with distributed informa-
tion. IEEE Control Systems Magazine, 27(4):75-88, 2007

29jun10 @ Baltimore, ACC 14 / 44
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Experimental Partitioning Experimental Partitioning

Optimal Distributed Coverage Control
for Multiple Hovering Robots with
Downward Facing Cameras

Mac Schwager
Brian Julian
DELIIER T

Distributed Robots Laboratory, CSAIL

Mac Schwager, Brian Julian, Daniela Rus
Distributed Robots Laboratory, MIT

Takahide Goto, Takeshi Hatanaka, Masayuki Fujita
Tokyo Institute of Technology

Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC 16 / 44
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Equitable and median Voronoi diagrams with synchronous
proximity-graphs communication

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC

Hardware-in-the-loop Partitioning and DVR for UAVs

(15x real time

“Ambitious” goal:
o
Distributed algorithm to partition the workspace according to:

@ median Voronoi diagram (relevant in light-load)

@ equitable (relevant in heavy load)

John J. Enright, Chung Hsieh, Emilio Frazzoli
ARES Group, MIT and UCLA

Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC
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Equitable and median Voronoi diagrams with synchronous
proximity-graphs communication

“Ambitious” goal:

Equitable and median Voronoi diagrams with synchronous
proximity-graphs communication

“Ambitious” goal:

Distributed algorithm to partition the workspace according to:
@ median Voronoi diagram (relevant in light-load)

@ equitable (relevant in heavy load)

Voronoi Diagrams

Distributed algorithm to partition the workspace according to:
@ median Voronoi diagram (relevant in light-load)

@ equitable (relevant in heavy load)

Voronoi Diagrams

Voronoi partition {V4, ..., V;,} generated by .

points (p1,. .., Pm):

Vi={x€ Qlllx—pil® <llx - pl* vj # i}

29jun10 @ Baltimore, ACC 18 / 44

Dynamic Vehicle Routing (Lecture 5/8)

FB, EF, MP, KS, SLS (UCSB, MIT)

Power distance

o p=(p1...
@ each p; has assigned a weight w; € R

, Pm) collection of points in @ C R?

e power distance function dp(x, pi; w;)=|x — pi||> — w;

Power Diagrams

Power diagram {V4,..., V;,} generated by

weighted points ((pl, wi)s -y (Pm, Wm)>2

o Vi={xeQlx—pil*-w <
Ix = pjll? — wy, W) # i}

Voronoi partition {V4, ..., V;,} generated by .

points (p1,. .., Pm):

Vi={x€ Qlllx—pil® <llx - pl* vj # i}

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC 18 / 44

Existence theorem

Let p=(p1,...,pm) be the positions of m > 1 distinct points in Q. Then
there exist weights (wi, ..., wn,) such that the corresponding Power
diagram is equitable with respect to ¢

u u.
! ey {920} ||3

[o.,z00. =00, =1

1
V1 =1, = =
v 0:0.0) [ic,=10c,=0.0, =0]
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Existence theorem for Power diagrams Existence theorem for Power diagrams

Existence theorem

Let p=(p1,-..

there exist weights (wq, . .
diagram is equitable with respect to

, Pm) be the positions of m > 1 distinct points in Q. Then

., Wm) such that the corresponding Power

FB, EF, MP, KS, SLS (UCSB, MIT)

Existence theorem for Power diagrams

Existence theorem

Let p=(p1,--.

there exist weights (wi, . .
diagram is equitable with respect to ¢

up= [(pt‘zo.cpﬁzﬂ ,tpzad)]

a ‘s ‘7 —
i
|
) i Vg V1 V2
1
|
1
|
1
V2 )‘ ,,,,,,,,,,,,,
Py P2
V1
vg = (-D,-D, D) cf‘]
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, Pm) be the positions of m > 1 distinct points in Q. Then

., Wm) such that the corresponding Power

va ! v,

M
Vo = (D,-D,D)

FB, EF, MP, KS, SLS (UCSB, MIT)

up= [(pc‘:o.cpszﬂ ,tpcaﬂ)]
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Existence theorem

Let p=(p1,-..

there exist weights (wq, . .
diagram is equitable with respect to ¢

, Pm) be the positions of m > 1 distinct points in Q. Then

., Wm) such that the corresponding Power

V1
Vg = (D,-D,D)

FB, EF, MP, KS, SLS (UCSB, MIT)

Existence theorem for Power diagrams

Existence theorem

Let p=(p1,...

, Pm) be the positions of m > 1 distinct points in Q. Then
there exist weights (wj, . .
diagram is equitable with respect to ¢

up= [(pt‘zo.cpﬁzﬂ ,tp%:O]
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., Wm) such that the corresponding Power

Y

M
Vg = (-D,-D,D)

FB, EF, MP, KS, SLS (UCSB, MIT)

n
[«0c,=1.0c,=0.%, =0]

Y2= [tpt‘=0,w£2:1 '(p%:O]

ep: {920} 1
0., 00,00, =1]
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Gradient descent law for equitable partitioning Convergence result

@ w; locally controlled by vehicle i

@ locational optimization function

-zm: </Vi(W)

i=1

H(w) =

Z Vi(w)l5?

:Z 90 1 1
jeN: Y \TV,E ~ TV

x)dx>

oH

ow;

o spatially-distributed gradient:

At each comm round:

1: acquire neighbors’ positions
2: compute own dominance region
3: W «— w; —

FB, EF, MP, KS, SLS (UCSB, MIT)

, EF, , KS, o Dynamic Vehicle Routing (Lecture 5/8) b

29junl0 @ Baltimore, ACC

21/ 44

Theorem (Convergence)

Assume that the p;’s are distinct. Then, the w;’s converge asymptotically
to a vector of weights that yields an equitable Power diagram

@ guaranteed convergence for any set of distinct points
=

o distributed over the dual graph of the induced Power diagram
=

@ adjusting the weights sufficient to obtain an equitable diagram
=

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC 22 / 44

Including the median Voronoi diagram property

@ basic idea: keep the weights close to zero
@ modify the gradient descent law as

OH

8W,' ’

oH . OH
opi P ow;

W,'Z— W,'ZO

@ basic idea: add a term that enforces computation of the median
@ gradient term for computation of the median:

87'{;:\/\/:/ pi — X ;
v, lIpi = x||

opi
e modify the gradient descent law as

OHrw <3_H 3HFW)
Opi Opi” Op;

(x)dx

8WI" I

MP, KS, SLS (UCSB, MIT) 29junl0 @ Baltimore, ACC
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| Region partition:
Min Area Max area

Density

" Uniform v

v

Quit

Ready

, EF, , KS, 0 Dynamic Vehicle Routing (Lecture 5/8) j i
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Lecture outline Partitioning with gossip communication

Voronoi+centering law requires:
@ synchronous communication
@ communication along edges of dual graph

@ Partitioning with gossip (asynchronous pair-wise) communication

Minimalist coordination

@ is synchrony necessary?
e is it sufficient to communicate peer-to-peer (gossip)?

@ what are minimal requirements?

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC 26 / 44

Gossip (asynchronous pair-wise) partitioning policy

@ Random communication between two regions

@ Compute two centers

TTITT1]

© Compute bisector of centers

Q Partition two regions by bisector

IIITTTTL]
1111 X
]

TTTTTIT]
TTITTTY

[

]
T T

]
TTTTTTTITT1T

L

TTTTT TTT TITIITIIITITT T T T T T T

o Player/Stage platform

@ realistic robot models in discretized environments

@ integrated wireless network model & obstacle-avoidance planner

J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and cover-

F. Bullo, R. Carli, and P. Frasca. Gossip coverage control for robotic networks: Dynam- age control with gossip communication. In ASME Dynamic Systems and Control

ical systems on the the space of partitions. SIAM Review, January 2010. Submitted Conference, Hollywood, CA, October 2009
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Peer-to-peer convergence analysis (proof sketch 1/3)

Lyapunov function for peer-to-peer territory partitioning

() = - [ (] center(w) - al)o(a)da
=1V
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Peer-to-peer convergence analysis (proof sketch 1/3)

Lyapunov function for peer-to-peer territory partitioning

() =3 [ (] center(w) - al)o(a)da
j=1"Vi

@ state space is not finite-dimensional

non-convex disconnected polygons

arbitrary number of vertices :
@ peer-to-peer map is not deterministic, ill-defined and discontinuous

two regions could have same centers

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC 29 / 44

The space of partitions (proof sketch 2/3)

Definition (Space of finitely-convex partitions)

Fix ¢, the set v is collections of n subsets of @, {v1,...,v,}, such that
Q viU---Uv,=Q,
@ interior(v;) Ninterior(v;) = 0 if i # j, and

© each v; is union of ¢ convex sets

Given sets A and B, symmetric distance is:
da(A, B) = area ((A UB)\ (AN B))

Theorem (topological properties of the space of finitely-convex partitions)

Partition space with (u,v) — > ; da(uj, vi) is metric and compact

29jun10 @ Baltimore, ACC 30 / 44

Dynamic Vehicle Routing (Lecture 5/8)
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Convergence with persistent switches (proof sketch 3/3)

@ X is metric space
o finite collection of maps T;: X — X fori e/

o consider sequences {x;}¢>0 C X with
xer1 = Tiey(xe)

Assume:
Q@ W C X compact and positively invariant for each T;
@ U : W — R decreasing along each T;
© U and T; are continuous on W
© there exists probability p € ]0,1[ such that, for all indices i € I and
times ¢, we have  Prob [Xg+1 = Ti(xe) | past] >p

If xo € W, then almost surely

x; — (intersection of sets of fixed points of all T;) N U~(c)

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC 31 /44




Cecture ovtln

Gradient policy

@ Partitioning with no explicit inter-vehicle communication
@ No explicit communication policy

A. Arsie, K. Savla, and E. Frazzoli. Efficient routing algorithms for multiple vehicles with no explicit
communications. /[EEE Transactions on Automatic Control, 54(10):2302-2317, 2009

FB, EF, MP, KS, SLS (UCSB, MIT)

Gradient policy

Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC 32 /44

@ Cost function: H(p) = Z}’Zl f\/j(p) la — pjlle(q)dq

o b= ~Z4p) = — [y 22 la - pillo(a)da
@ p(t) converges to a critical point of H(p)

@ Similar result using the gossip partitioning policy

Salient Features

o Explicit agent-to-agent
communication

@ Needs knowledge of ¢

e Cost function: H(p) = Zf:l f\/j(p) la = pille(q)dg

° pji= —g—Z(P) == fv,.(p) a%,”q — pillv(q)dq
o p(t) converges to a critical point of H(p)

o Similar result using the gossip partitioning policy

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC 33 /44

Partitioning with no explicit inter-vehicle communication

Inspiration: Distributed MacQueen algorithm

e Pick any m generator points (p1, ..., pm) € Q7
o lteratively sample points g; according to probability density function ¢

@ At each iteration j:

o Assign the sampled point to the nearest generator i*(q;) € {1,...
e update the position of generator i* as

, m}

~_ (##pts assigned in past) pi- + g;
T #pts assigned in past + 1

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 5/8)

29jun10 @ Baltimore, ACC 33 /44
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Algorithms Algorithms

-3 - /‘/P\\
No sensor policy ) SN e
For all time t, each vehicle moves towards: “u
@ the nearest outstanding task; else, 4 )
. . . . - d °
@ the (nearest) point minimizing the average
distance to tasks serviced in the past )
e
I »
4

FB, EF, MP, KS, SLS (UCSB, MIT)
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No sensor policy

For all time t, each vehicle moves towards: .
@ the nearest outstanding task; else,

@ the (nearest) point minimizing the average
distance to tasks serviced in the past

Sensor-based policy -

For all time t, each vehicle moves towards:

@ the nearest among outstanding tasks that
is closest to it than other vehicles; else, p

@ the (nearest) point minimizing the average . .
distance to tasks serviced in the past

35 /44
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[[lustration Differences with the MacQueen algorithm

e

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 5/8)

29junl0 @ Baltimore, ACC

@ At each iteration, the no-communication algorithm computes the
"Fermat-Weber (FW) point” with respect to the set of tasks serviced
by a vehicle; MacQueen algorithm computes the mean

2.

g€Epast tasks;

1
|past tasks;| Z :
gEpast tasks;

FW; = argmin, co llg — pill

Mean; =

@ No simple recursion like the MacQueen algorithm — need to store
locations of all the tasks serviced in the past

@ Sequence of FW points exhibit more complex behavior than the
sequence of means.

36 /44
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Analysis of the algorithm Analysis of the algorithm

@ p;(t): loitering location of agent i at time t o p;(t): loitering location of agent i at time t
o Sufficient to study convergence of (pi(t),..., pm(t))

o Sufficient to study convergence of (pi(t),..., pm(t))

Convergence result

p(t) converges to a critical point of H(p) with probability one.

Key steps in the proof

o Convergence of the sequence of Fermat-Weber points:

O Cf(t) = {y €Q | ” Zquast tasks; vers(y - q)” < 1}

o By the properties of the Fermat-Weber point, pi(t;) € Ci(t;)

o Prove that pi(tj11) € Ci(t))

o Prove that lim;_ o, diam(C;(t;)) = 0 with prob. 1; this implies
pi(t;) — p; with prob 1

@ pi is the median of its own Voronoi cell

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC 38 /44 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC 38 /44
Lecture outline Coverage as a geometric game

Strategies

° p:(Pla---aPm)e Qm
@ When a new task is generated, every vehicle move towards its location

e Partitioning with no explicit inter-vehicle communication

@ Game-theoretic interpretation
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Coverage as a geometric game Properties of the Game

Strategies
e p=(p1,---,pm) € QM e Potential function: ¢(p) = —> 7, f\/,'(p) llpi — qlle(q)dg
@ When a new task is generated, every vehicle move towards its location @ The coverage spatial game is a potential game

Ui(p) = ¥(p) — ¥(p-i)

Utility Function e U is a Wonderful Life utility function

@ Upon its generation, each task offers continuous reward at rate unity

@ A task expires as soon as two vehicles are present at its location or
after diam(Q) time, whichever occurs first.

o Utility function: expected time spent alone at the next task location

Upisp-1) = E,1R(p. )] = B, [max {o.min I all = 1o — il }

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC 40 / 44 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC

Properties of the Game

No communication policy as a learning algorithm

Complete Information

pi = 8ipl_z,{,(p) = f\/,'(p) ﬁcp(q)dq — gradient descent policy

o Potential function: ¢(p) = —> ", f\/,'(p) lpi — qlle(q)dg
@ The coverage spatial game is a potential game
Ui(p) = ¥(p) — Y(p-i))

o U is a Wonderful Life utility function

Characterization of Equilibria

critical point of H <= pure Nash equilibrium

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC 41 / 44 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29junl0 @ Baltimore, ACC




No communication policy as a learning algorithm

Complete Information

pi = aipl_u,-(p) = — f\/,-(p) ﬁgp(q)dq — gradient descent policy

Limited information

@ No knowledge of ¢

@ No inter-agent communication

FB, EF, MP, KS, SLS (UCSB, MIT)
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No communication policy as a learning algorithm

Complete Information

pi = aipl_u,-(p) = — f\/,-(p) ﬁgp(q)dq — gradient descent policy

Limited information

@ No knowledge of ¢

@ No inter-agent communication

Approximations

@ Empirical Utility Maximization:
pl(t) = argmax,cg Zq~<p R,'(X, P—i, q)

o Ri(x,p_i,q) = diam(Q) — ||x — g]| if vehicle i reaches task located at
q first, else Ri(x, p—i,q) = 0.

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 5/8)
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Workshop Structire and Schedul

@ Motivation and inspiration from biology

© Intro to comm models, multi-agent networks and distributed algorithms
e Partitioning with synchronous proximity-graphs communication

@ Partitioning with gossip (asynchronous pair-wise) communication

@ Partitioning with no explicit inter-vehicle communication
@ No explicit communication policy
@ Game-theoretic interpretation

FB, EF, MP, KS, SLS (UCSB, MIT)
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8:00-8:30am | Coffee Break
8:30-9:00am Lecture #1: | Intro to dynamic vehicle routing
9:05-9:50am | Lecture #2: | Prelims: graphs, TSPs and queues
9:55-10:40am | Lecture #3: | The single-vehicle DVR problem
10:40-11:00am | Break
11:00-11:45pm | Lecture #4: | The multi-vehicle DVR problem
11:45-1:10pm | Lunch Break
1:10-2:10pm Lecture #5: | Extensions to vehicle networks
2:15-3:00pm | Lecture #6: | Extensions to different demand models
3:00-3:20pm Coffee Break
3:20-4:20pm Lecture #7: | Extensions to different vehicle models
4:25-4:40pm | Lecture #8: | Extensions to different task models
4:45-5:00pm Final open-floor discussion

FB, EF, MP, KS, SLS (UCSB, MIT)
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Motivation: Time-Critical Tasks

Dynamic Vehicle Routing for Robotic Networks

Lecture #6: Different Demand Models

Motivating Scenario

@ Group of UAVs equipped with sensors, monitoring region

Francesco Bullo!  Emilio Frazzoli?  Marco Pavone?

) o Alerted of events that require close-range observation
Ketan Savla®  Stephen L. Smith? a ©

1
Ucnixlzriity of California, Santa Barbara Events with time constraints:
UCSB bullo@engineering.ucsb.edu III o . @ Each event must be observed within a time-window
e 2LIDS and CSAIL I I
Massachusetts Institute of Technology
{frazzoli,pavone,ksavla,slsmith}@mit.edu Events with priority levels:

o Each event has associated level of importance (e.g. 1 to 10)

Workshop at the 2010 American Control Conference
Baltimore, Maryland, USA, June 29, 2010, 8:30am to 5:00pm
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Lecture outline Lecture outline

@ Stochastic Time Constraints

@ Stochastic Time Constraints
@ Policy Independent Lower Bound
@ Nearest Depot Assignment Policy
@ Batch Policy

@ Priority Classes of Demands

@ Policy Independent Lower Bound A o o o _
A M. Pavone and E. Frazzoli. Dynamic vehicle routing with stochastic time constraints. In IEEE Int.
4 Separate Queues POIICy Conf. on Robotics and Automation, Anchorage, AK, May 2010

M. Pavone, N. Bisnik, E. Frazzoli, and V. Isler. A stochastic and dynamic vehicle routing problem
with time windows and customer impatience. ACM/Springer Journal of Mobile Networks and
Applications, 14(3):350-364, 2009
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DVR with stochastic time constraints Problem formulation

o basic DVR model + N Problem statement
) , - Solve problem OPT:
@ demand | for a random patience
time G; . min |7|, subjectto lim B [W; < Gj] > ¢4
) e s J—00
@ Gj'si.i.d. sequence ~ Fg
e demand j if not serviced within G;
o limj_, oo Pr [W; < Gj]: acceptance probability for policy
o ¢4 € (0, 1): desired acceptance probability
° im0 Pr [W < G] > ¢4

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8) 29junl0 @ Baltimore, ACC 5/23 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8) 29junl0 @ Baltimore, ACC 6 /23

Problem formulation Lower bound
Problem statement

Solve problem OPT: P[W < G] <P [minke{lmm} 1= Gj]

. . . d . X.—
min ||, subject to jll)rgon Wi < Gj]>¢ < sup P [m'nke{l,...,m} M < Gj}

 (PrysPm)EQM
Well-posedness

o Existence: limj_o P [W; < Gj] exists for all w
Ergodicity: limj_.oc P [W; < Gj] = lim¢— oo N°(t)/N(t) (as.)

~~

iH(pl,n.,Pm)

main idea: theory of regenerative processes
regeneration points: times a new demand finds the system empty
expected length of busy cycles is finite

use classic limit theorems

, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8) 29jun10 @ Baltimore, ACC 6 /23 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8) 29jun10 @ Baltimore, ACC 7/23



11X =Xl

PIW, < Gl <P |minkes, m 2570 < 6]

< wp Plmine 2520 < ]

B (pla“-apm)egm\ ~~
iH(Pl,n.,Pm)

(Lowerbound .

OPT is lower bounded by:

OPT: min m
méeNs
s.t. sup  H(p1,.-.,Pm) > ¢
(P1ye-,pm)EQ™M

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8) 29junl0 @ Baltimore, ACC 7/23

NDA policy (optimal as A — 0)

Compute maximum of H: (p1,...,Pm)-

Then:

1: px is depot of kth vehicle

2: nearest-depot assignment . . .
3: FCFS service > > >

29jun10 @ Baltimore, ACC 8/23

Dynamic Vehicle Routing (Lecture 6/8)

FB, EF, MP, KS, SLS (UCSB, MIT)

P[W, < G <P |minkeqr, m 2570 < 6]

< sup P [minke{l,...,m} M < Gj}
(Pl,---,Pm)GQ”’\ ~ v
iH(Pl,.n,Pm)

Lower bound
OPT is lower bounded by:

OPT : min m
meNs
s.t. sup H(p1,- - -\ Pm) > ¢°
(P1;--,Pm)EQ™

29jun10 @ Baltimore, ACC 7/23
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NDA policy (optimal as A — 0)

Compute maximum of H: (pi1,...,Pm)-

Then:

1: px is depot of kth vehicle

2: nearest-depot assignment . . .
3: FCFS service > > >

@ as usual, as A — 07, the problem reduces to optimal pre-positioning

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8) 29jun10 @ Baltimore, ACC 8/23




NDA policy (optimal 25 ) — 0

Compute maximum of H: (p1,...,Pm)-
Then:

1: px is depot of kth vehicle

2: nearest-depot assignment

3: FCFS service

Partition @ into m simultaneously
equitable subregions and assign one

vehicle to each subregion. Then:
1: each vehicle services demands by ¢ \ { \

forming TSP tours

@ as usual, as A — 07, the problem reduces to optimal pre-positioning

Performance of batch policy

0.94
0.92r ;;:fo,g I { o if s=0: mB:mln{m‘ Supee]R>O(1—FG(9))(1_%S_t)Z¢d}
Mmin 27 ) | | |
B o o with time windows: mg/m* < 3.78, when \ large and ¢ — 1~
Z I Y -
o 0.88- . 7
0.861 |
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Characterization of batch policy Lecture outline

o upper bound expected length of TSP tour with const - A\/m?, via
control-theoretical methods

@ use Markov's ineq to lower bound:

PW < G]>P[W < G|2TSP < §]P[2TSP < 6]
> (1 - Fg(0))(1 —E[2TSP]/0)

@ Priority Classes of Demands
@ Policy Independent Lower Bound
@ Separate Queues Policy

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8) 29junl0 @ Baltimore, ACC 10 / 23 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8) 29junl0 @ Baltimore, ACC 11 /23



Demands with priority levels Demands with priority levels

m vehicles '
n of demands
o 1 = highest priority *
e n = lowest priority
4 )\1, ce ,)\n
locations distributed </
can extend to non-uniform ¢

Steady-state T1,..., Th

Goal for vehicles

Minimize cl?l GEeeeaF CnTn

(T ¢i =1 priority of class i)

S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli. Dynamic vehicle routing with priority classes of
stochastic demands. SIAM Journal on Control and Optimization, 48(5):3224-3245, 2010

m vehicles '
n of demands *
o 1 = highest priority
e n = lowest priority

(*] )\1,...,)\,, @

locations distributed 1
can extend to non-uniform ¢

Steady-state T1,..., Th

Goal for vehicles

Minimize ¢;T1 + -+ ¢, T n

(T ¢i =1 priority of class i)

S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli. Dynamic vehicle routing with priority classes of
stochastic demands. SIAM Journal on Control and Optimization, 48(5):3224-3245, 2010
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Demands with priority levels Demands with priority levels

@ m vehicles '
en of demands 4 @
e 1 = highest priority
e n = lowest priority
(*] )\1, N 7>\n @
@ locations distributed </
can extend to non-uniform ¢
Steady-state T1,....Th

Goal for vehicles

@ m vehicles '
en of demands 4 @
o 1 = highest priority
e n = lowest priority
(*] )\1, N ,)\n @ @
@ locations distributed </
can extend to non-uniform ¢
Steady-state T1,....Th

Goal for vehicles

Minimize clTl dFcocqF CnTn

(T ¢i =1 priority of class i)

S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli. Dynamic vehicle routing with priority classes of
stochastic demands. SIAM Journal on Control and Optimization, 48(5):3224-3245, 2010

Minimize c;T1+ -+ ¢n T p (T ¢i =1 priority of class i)

S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli. Dynamic vehicle routing with priority classes of
stochastic demands. SIAM Journal on Control and Optimization, 48(5):3224-3245, 2010
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Queue remains bounded

Define as

St ARSy
B m

@ \; = arrival rate for class /

@ 5; = average on-site service time for class i

As before, iso<1

O Light load ¢ — 0t
@ Heavy load p — 1~
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Light load Lower Bound in Heavy Load

@ Each vehicle can return to a median between arrivals

@ Priority levels do not change behavior.

m vehicle SQM policy is optimal (or an adaptive policy)

Compute m-median locations and assign one vehicle to
each location.
Then:

1: service demands in FCFS order
2: return to median after each service is completed
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Let ?z = optimal value of cost c; T1+ -+ ¢y T p.

Lower bound for every policy

S ﬁTSPIQI

Te2 2m2v2

Z w2 Y o

j=a+1

o arrival rates A\1,..., A\, @ environment area | Q)|

o weights ¢1,...,¢p @ vehicle speed v

@ number of vehicles m
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Proof Idea of Lower Bound Separate Queues Policy

o Allow of some classes: r, € {0,1} for each class «

@ travel distance is r,d,
C_I','/V

0,

demand served prior o
1

o Forstability: >0 ; A\ (ridi/v+5) <m

@ Can bound travel distance as

7 Brsp Q|

o 2 —
V2 \ S nN;

@ generates a linear program with 2" — 1 constraints, one for each
combination {r,...,r}

@ solution to LP is largest lower bound

, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 6/8) 29junl0 @ Baltimore, ACC 17 /23

Probability distribution p = [p1, ..., pn].

Partition environment into m equal area regions and
assign one vehicle to each region.

Then:

1: Select a class according to probability dist p

2: Service all demands of selected class following TSP
3: Repeat

Policy performance optimized over p.
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Separate Queues Performance Simulation of Separate Queues Policy

Heavy load performance

For the SQ policy,

7 @ n = number of classes
c,5Q < 2n2

@ independent of o, c,5, A
TC

as o — 1.

@ Receding horizon: service only a fraction n of TSP
@ when following TSP, service newly arrived demands within € of TSP.

1| Q|
Yo-1Na'

where p is fractional in tour length (i.e., 0.1 for 10% increase)
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o class 1 = yellow
9
e © class 2 = grey
@ c;=08and ¢ =0.2
e p=[0.82,0.18]
@
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Proof idea for upper bound

In heavy-load, shortest path through N points:

= Brsp/|Q|N  with prob. 1 (BHH theorem)

Study expected # of outstanding demands at each iteration

Ni(t+1) < F(Ni(t), ..., Nm(t),p, A, 5)

Function f has a linear part plus a sub-linear part

Bound evolution by stable linear system for all p < 1

N(t+1)=A(p,\,5)N(t) + B(p, A\, 3)

Allows computation of limsup,_, ., N(t)
Apply Little’s theorem N; = \; T;

© Stochastic Time Constraints
@ Policy Independent Lower Bound
@ Nearest Depot Assignment Policy
@ Batch Policy

@ Priority Classes of Demands
@ Policy Independent Lower Bound
@ Separate Queues Policy

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 6/8)
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Workshop Structure and Schedule

8:00-8:30am
8:30-9:00am
9:05-9:50am
9:55-10:40am
10:40-11:00am
11:00-11:45pm
11:45-1:10pm
1:10-2:10pm
2:15-3:00pm
3:00-3:20pm
3:20-4:20pm
4:25-4:40pm
4:45-5:00pm

FB, EF, MP, KS, SLS (UCSB, MIT)

Coffee Break
Lecture #1:
Lecture #2:
Lecture #3:
Break
Lecture #4:
Lunch Break
Lecture #5:
Lecture #6:
Coffee Break
Lecture #7:
Lecture #8:
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Intro to dynamic vehicle routing
Prelims: graphs, TSPs and queues
The single-vehicle DVR problem

The multi-vehicle DVR problem

Extensions to vehicle networks
Extensions to different demand models

Extensions to different vehicle models
Extensions to different task models
Final open-floor discussion
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Dynamic Vehicle Routing for Robotic Networks

Lecture #7: Vehicle Models

Emilio FrazzoliZ  Marco Pavone?

Stephen L. Smith?

Francesco Bullo!
Ketan Savla2

tcebc
University of California, Santa Barbara
bullo@engineering.ucsb.edu

I I I N .
2LIDS and CSAIL I I
Massachusetts Institute of Technology

{frazzoli,pavone,ksavla,slsmith}@mit.edu

Workshop at the 2010 American Control Conference
Baltimore, Maryland, USA, June 29, 2010, 8:30am to 5:00pm
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Outline of the lecture

@ Models of vehicles with differential constraints
Q Traveling salesperson problems

© The heavy load case

@ The light load case

@ Phase transition in the light load

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29junl0 @ Baltimore, ACC 2 /36

Vehicle routing with differential constraints

@ What happens if the vehicles are subject to non-integrable differential
constraints on their motion?

Minimum turn radius, constant speed (UAVs, Dubins cars)

Minimum turn radius, able to reverse (Reeds-Shepps cars)

Differential drive robots (e.g., tanks).

Bounded acceleration vehicles (e.g., helicopters, spacecraft).

@ Fundamentally different problems, combining combinatorial task
specifications with differential geometry and optimal control.

@ Decompose the problem, study the asymptotic cases:

o Heavy load: Traveling salesperson problems.
o Light load: optimal loitering "stations”.

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29jun10 @ Baltimore, ACC

Models of vehicles with differential constraints

Reeds-Shepp car

Dubins vehicle

X = wvcosf

y = vsing W
0 = w y -
ve{-11}

w| <1/p

Double integrator
2 (wr + w,) cos @

vy = 3(w+w)sind x=4d
A by ] < 1
o Jull <1

lw| <1; |wr| <1

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29junl0 @ Baltimore, ACC

4/36



DTRP formulation DTRP formulation
|

[e]e]
[e]e]

@ m identical vehicles in Q 4@ ° Q @ m identical vehicles in Q 4@ ° Q
@ Spatio-temporal Poisso.n ° f @ Spatio-temporal Poisso.n o f
process: rate A and uniform ° process: rate A and uniform °
spatial density N ° spatial density N °
@ On-site service time s = 0 o @ On-site service time s =0 o

Objective

e Control policy m = {task assignment, scheduling, loitering}
o T, :=limsup;_ . E[wait time of task i]; T =inf, T,

o Design 7 for which T is equal to or within a constant factor of T
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Stabilizability Stabilizability
° A . task growth rat ° A . task growth rat
— m:s —————————~ = as row rate — m:s —————————~ as row rate
N TSPlength(n) & <~ TSPlength(n) &
task generation rate task generation rate
. task service rate . task service rate

n: # outstanding tasks n: # outstanding tasks

o TSPlength(n) strictly sub-linear = stability VA, m

TSPlength(n) strictly sub-linear = stability YA, m
o Euclidean TSPlength(n) = ©(n'/?) (Beardwood et. al. '59)
@ Euclidean TSP based path planning heuristic = O(n)

@ Traveling salesperson problems for differential vehicles.
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Outline of the lecture Traveling Salesperson Problem

Problem Statement

Find the shortest closed curve
_ feasible for the vehicle through a
@ Traveling salesperson problems given finite set of points in the plane
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Traveling Salesperson Problem Literature review

Q K. Savla, E. Frazzoli, and F. Bullo. Traveling Salesperson Problems for the Dubins vehicle. IEEE Transactions on Automatic Control,
53(6):1378-1391, 2008

F| nd the Shortest Closed curve 2] ;(4(?;\;;8_F7983ull20002nd E. Frazzoli. Traveling Salesperson Problems for a double integrator. /EEE Transactions on Automatic Control,

feasible for the Vehicle th rough a @ J. J. Enright, K. Savla, E. Frazzoli, and F. Bullo. Stochastic and dynamic routing problems for multiple UAVs. AIAA Journal of Guidance,

i L. X ) Control, and Dynamics, 34(4):1152-1166, 2009

given finite set of points In the pIa ne © J. J. Enright and E. Frazzoli. The stochastic Traveling Salesman Problem for the Reeds-Shepp car and the differential drive robot. In
IEEE Conf. on Decision and Control, pages 3058-3064, San Diego, CA, December 2006

@ K. Savla and E. Frazzoli. On endogenous reconfiguration for mobile robotic networks. In Workshop on Algorithmic Foundations of
Robotics, Guanajuato, Mexico, December 2008

@ M. Pavone, K. Savla, and E. Frazzoli. Sharing the load. IEEE Robotics and Automation Magazine, 16(2):52-61, 2009

Problem Statement

o N P—hard ness a Conseq uence Of the N P—hard ness Of the EUC|Idean TS P @ F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith. Dynamic vehicle routing for robotic systems. Proceedings of the IEEE, May
2010. Submitted

o Does the cost Of thIS TSP increase SU BLI N EARLY Wlth n? @ S. Rathinam, R. Sengupta, and S. Darbha. A resource allocation algorithm for multi-vehicle systems with non holonomic constraints.
IEEE Transactions on Automation Sciences and Engineering, 4(1):98-104, 2007

O J. Le Ny, E. Feron, and E. Frazzoli. On the curvature-constrained traveling salesman problem. |EEE Transactions on Automatic Control,

@ Is there a polynomial-time algorithm that returns a tour of length 2009. to appear
@ S. ltani. Dynamic Systems and Subadditive Functionals. PhD thesis, Massachusetts Institute of Technology, 2009
o(n)??

@ What is the quality of the solution?
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Stochastic TSP: A nearest-neighbor lower bound

Outline of the calculations

o Calculate (an upper bound on) expected distance from an arbitrary vehicle
configuration to closest point, §*
o Calculate (an upper bound on) the area of the set reachable with a path of
length §, Rs.
o Pr(6* >0) > max{0,1 — n|Rs|/|Q|}

o Expected length of the tour cannot be less than n times E[6*]

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8)

Towards an upper bound: tiling based algorithms

29jun10 @ Baltimore, ACC 10 / 36

Stochastic TSP: A nearest-neighbor lower bound

Outline of the calculations
o Calculate (an upper bound on) expected distance from an arbitrary vehicle
configuration to closest point, §*
o Calculate (an upper bound on) the area of the set reachable with a path of
length §, Rs.
o Pr(6* >0) > max{0,1 — n|Rs|/|Q|}
o Expected length of the tour cannot be less than n times E[6*]

Example: Dubins vehicle

3
° |R5|:‘35—p

1/3
o E[é*] _ % (3P|Q|) / .
0 lim,_oo HESPMI > 3(3)9))1/3,

2/3
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Towards an upper bound: tiling based algorithms

@ The way the ETSP tours are constructed relies on the scaling
properties of tours: the length of the tour scales as the coordinates of

the points.

N

T
ke

Dynamic Vehicle Routing (Lecture 7/8)

FB, EF, MP, KS, SLS (UCSB, MIT)
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@ The way the ETSP tours are constructed relies on the scaling
properties of tours: the length of the tour scales as the coordinates of

the points.

N

T
ke

@ No such scaling exists for the TSP for vehicles with differential
constraints, e.g., the bound on the curvature for the Dubins vehicle
does not scale with the coordinates of the points!

@ Any tiling-based algorithm must account for a " preferential
direction”, e.g., by penalizing turning for Dubins vehicles
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Bead construction Bead construction

Bead properties Bead properties

o Length(p_,q,ps) < £+ o(f?) for all g € B o Length(p_,q,ps) < £+ o(f?) for all g € B

o Width: w(f) = & + o(#) o Width: w(f) = & + o(£)

@ The beads tile the plane @ The beads tile the plane

@ Useful for Dubins vehicle, Reeds-Shepp car and double integrator @ Useful for Dubins vehicle, Reeds-Shepp car and double integrator

T

=

+
©

Diamond-like cell for differential drive p@m
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T e T

o Tile the region with beads o Tile the region with beads
@ Sweep the bead rows, while servicing all the targets in every bead as @ Sweep the bead rows, while servicing all the targets in every bead as
follows: follows:

e Service every task g in B_ using the "p_ — g — p_" protocol
e Move from p_ to py

o Service every task q in B using the "p, — g — p4" protocol
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Analysis of the single-sweep tiling algorithm Analysis of the single-sweep tiling algorithm

Path length calculations

TSP(n) = (bead row length + move to next bead row) x # bead rows +
move to service each task x # tasks 4+ tour closure length

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29junl0 @ Baltimore, ACC 14 / 36

Path length calculations
TSP(n) = (bead row length + move to next bead row) x # bead rows +
move to service each task x # tasks 4+ tour closure length

@ For a Reeds-Shepp car, as ¢ — 0:

TSP(n) < <\/|§+£/2) @2 +/0n+2 <\/@+pw>
< 16P|Q‘ +8pm +ln+2 <\/\§+p7r) ( w(l) ~ g—j))

29jun10 @ Baltimore, ACC 14 / 36
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Analysis of the single-sweep tiling algorithm Analysis of the single-sweep tiling algorithm

Path length calculations

TSP(n) = (bead row length + move to next bead row) x # bead rows +
move to service each task x # tasks 4+ tour closure length

14

@ For a Reeds-Shepp car, as ¢ — 0:

TsP(n) < (v/1Ql+¢/2) VIO 4 in+2 (V1] + pr)

1/3
o Pick £ = (”p—'Q') / (i.e., a0 %) — TSP(n) = O(n?3).
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< 16p8 +8p‘m +0n+2 (\/@err) ( w(l) ~ %)

Path length calculations

TSP(n) = (bead row length + move to next bead row) x # bead rows +
move to service each task x # tasks 4+ tour closure length

@ For a Dubins vehicle, as ¢ — 0:
TSP(n) < ( |Q\+@+m> V)@z+(£+m)n+2 O] +
10+ 1652 4t + k0 +2,/10] + 5

< l6p
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Analysis of the single-sweep tiling algorithm The recursive sweep tiling algorithm

Path length calculations
TSP(n) = (bead row length + move to next bead row) x # bead rows + o Tile Q with beads such that: % =2 (ie, £~ n1/3)
move to service each task x 7 tasks + tour closure length @ Sweep the bead rows, visiting one target per non-empty bead.

o lterate, using at the i-th phase a "meta-bead” composed of 2/~1

B._.__B
o After log n phases, visit the outstanding targets in any arbitrary order,

\ i | e.g., with a greedy strategy.

|
I
{
I
)
I
{
{

- ==

0

|
i
y
i
y
N
i

< o< o< >< ><1
==——————+
@ For a Dubins vehicle, as ¢ — 0: '§$§§§§§§§:’:§“
— =
w(0) V12l s
TSP(n) < Ql+ 5"+ k) s T U+ E)IN+2/]Q] + & ——
W% =
Q ‘ S
< 16pd 1652 4 tn 4 kn 42 K
< 16p'5 +/|Q] + 165Yp= + fn+ kn +2./[Q] + Phase 1

@ The xn term grows linearly in n for all ¢ = TSP(n) = O(n)
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The recursive sweep tiling algorithm The recursive sweep tiling algorithm
: : 1Bl 1 -1/3 : : 1Bl 1 -1/3
o Tile Q with beads such that: 1ol = 3n (l.e., 0~ nY ) o Tile Q with beads such that: 1ol = 3n (l.e., 0~ n1/ )
@ Sweep the bead rows, visiting one target per non-empty bead. @ Sweep the bead rows, visiting one target per non-empty bead.
o lterate, using at the i-th phase a "meta-bead” composed of 2/~1 o lterate, using at the i-th phase a "meta-bead” composed of 2/~1
beads. beads.
o After log n phases, visit the outstanding targets in any arbitrary order, @ After log n phases, visit the outstanding targets in any arbitrary order,
e.g., with a greedy strategy. e.g., with a greedy strategy.

|
{
I
{
I
.0
)

——— ===
S S s
= === P e -
SIS ISR TSI ISR
P L P L
P >SS o oS
P S=sosos2oss
P L L SRS
S=S=————— S=S=—————
TSI TSRS SIS >SS
sSSP === > > b
= === P -
< o< o <> S o< ><><><D
e SRS
P >SS 2> o oS
D s S S -
L S L
>SS oS oS oS Ps zS2s2sos ospS
———=_=0= ———=_=0=
S S —a———

(0]
—_

Phas Phase 2 Phas Phase 2 Phase 3

(0]
—_
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Analysis of the recursive algorithm Analysis of the recursive algorithm

@ Theorem: For a Dubins vehicle, with probability one, @ Theorem: For a Dubins vehicle, with probability one,

TSP(n) TSP(n)

7 7
limsup ——— < 24v/p|Q| [ 1+ 3 e limsup ——— < 24v/p|Q| [ 1+ 3 e
n—o00 n2/3 \/‘Q‘ n—oo n2/3 \/‘Q‘
Outline of the proof

@ Pr(lim,_oo # tasks remaining after phase i* > 24logn) =0
@ Path length calculations:
o Phase 1 path length O (%) = O (n?/3) (- €~ n71/3)
o Subsequent phase path lengths are decreasing geometric series; path
length for all i* phases is O (n?/3
o Path length by greedy heuristic is O(log n)
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Summary of TSPs Summary of TSPs

Lower bound: E[TSP(n)] € Q(n*/3)
Upper bound: E[TSP(n)] € O(n?/3)

TSP(n) is of order n®/3; constant factor approximation algorithms

Lower bound: E[TSP(n)] € Q(n?/3)
Upper bound: E[TSP(n)] € O(n?/3)

TSP(n) is of order n®/3; constant factor approximation algorithms

Computational complexity of the algorithms is of order n Computational complexity of the algorithms is of order n

Stabilizability of the DTRP

) m- = task growth rate
< TS P(n) &
task generation rate —_——
task service rate

n: # outstanding tasks

o E[TSP(n)] € ©(n*3) = trivial receding horizon TSP-based
policies are stable for the DTRP for all A and m
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Outline of the lecture

© The heavy load case

19 / 36
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The heavy load case: nearest neighbor lower bound

Outline of the calculations

@ Let n; be the number of outstanding tasks at steady-state under
stable policy 7

o Calculate (an upper bound on) expected distance from an arbitrary
vehicle configuration to closest among n, points, *(n;)

@ At steady-state: % = W

o Little's formula: AT, = n,
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The heavy load case: nearest neighbor lower bound The multiple sweep tiling algorithm

Outline of the calculations

@ Let n; be the number of outstanding tasks at steady-state under
stable policy 7

o Calculate (an upper bound on) expected distance from an arbitrary
vehicle configuration to closest among n, points, 6*(n;)

o At steady-state: % = _E[(S*%n,r)]

o Little's formula: AT, = n,

Example: Dubins vehicle

o E[6*(n,)] = % (M)l/f‘

Nrn

o Steady state+ Little's formula: fr‘,

—% 3
T > 8|9

|
1
(SIS
VS
Ll
of
N——
._.
~
w

° |Imlnf%_>+oo

WED
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The single vehicle version

Q Tile @ with beads of length K :
0=c/\ Yoo\ LN
@ Update outstanding task list ' . 0
© Execute single sweep tiling ; i )
algorithm S
Q Goto 2.
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The multiple sweep tiling algorithm Analysis of the multiple sweep algorithm

The single vehicle version

Q Tile Q with beads of length e N
@ Update outstanding task list e . e

© Execute single sweep tiling ; &
algorithm L SN YO
O Goto 2.

The multi-vehicle version

@ Divide Q into m equal "strips”
@ Assign one vehicle to every strip

@ Each vehicle executes the multiple sweep algorithm in its own strip

29jun10 @ Baltimore, ACC 21 / 36
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General protocol

@ Each bead can be treated as a separate queue, with Poisson arrival
process with intensity A\ 0]

@ The vehicle visits each bead with at a rate no smaller than
s =~ (single sweep path length)~1
@ The system time is no greater than the system time for the

corresponding M/D/1 queue: T < L (1 1 2ﬁ>

@ Optimize over ¢
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Analysis of the multiple sweep algorithm Outline of the lecture

General protocol

@ Each bead can be treated as a separate queue, with Poisson arrival

process with intensity Az = /\||Q||

@ The vehicle visits each bead with at a rate no smaller than
s =~ (single sweep path length)~1
@ The system time is no greater than the system time for the

i e |
corresponding M/D/1 queue: T~ < - (1 + 2ﬁ>

@ Optimize over ¢

Example: Dubins vehicle

8 2 -1
Br . 2m 7P
65101 HE = TopQ] <1 il IQI)

3
o lim supx_>+oo?*’;\’—; < 71p|Q| (1 + %W_L)

0)\[3:
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Dynamic Vehicle Routing (Lecture 7/8)

@ The light load case
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The light load case The light load case

@ The target generation rate is very small: \/m — 0" @ The target generation rate is very small: \/m — 0"
In such case: In such case:
o Almost surely all vehicles will have enough time to return to some o Almost surely all vehicles will have enough time to return to some
"loitering station” between task completion/generation times "loitering station” between task completion/generation times
@ The problem is reduced to the choice of the loitering stations that @ The problem is reduced to the choice of the loitering stations that
minimizes the system time minimizes the system time

Introducing differential constraints

@ Novel challenges:
o Vehicles possibly cannot stop (e.g., Dubins vehicle, Reeds-Shepp car)
e Strategies are more complex than defining a loitering " point”
@ How many of the results from the Euclidean case carry over to this
case?
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A simple lower bound The Median Circling (MC) Policy

Assign "virtual” generators to each agent. All agents do the following, in

@ The length of shortest feasible path from a vehicle positioned at parallel (possibly asynchronously):

€ R? to an arbitrary point g € Q is lower bounded by ||g — . : .
P yPp q¢€< v llg=pl @ Update the generator position according to a gradient descent law.

@ Service targets in own region, returning to a "loitering circle” of
o A simple lower bound on T is obtained by relaxing differential radius 2.91p centered on their generator position when done
constraints

o T >H:(Q)

m

o H:(Q)=0 (L)
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The Median Circling (MC) Policy

Assign "virtual” generators to each agent. All agents do the following, in
parallel (possibly asynchronously):

@ Update the generator position according to a gradient descent law.

@ Service targets in own region, returning to a "loitering circle” of
radius 2.91p centered on their generator position when done

o We have

lim Tye < Hp(Q) +3.76p

A/m—0
@ Furthermore,

. Tac
im — = 1.
Hi——+00,A/m—0t T

lllustration of the MC policy

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8)
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Tighter lower bound using differential constraints

General protocol

o Consider a "frozen moment in time"
o Consider the "modified Voronoi” diagram of the vehicles.
@ Relaxation: approximate vehicle Voronoi region by their reachable sets

@ Optimize over the vehicle configurations

Tighter lower bound using differential constraints

General protocol

@ Consider a "frozen moment in time”

@ Optimize over the vehicle configurations

@ Consider the "modified Voronoi” diagram of the vehicles.

@ Relaxation: approximate vehicle Voronoi region by their reachable sets

Example: Dubins vehicle

kl('Q'ap)

=t
o Form > meie, T = = 573
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The Strip Loitering (SL) policy

(2
2,,(,29/3”),2/)}

@ Design a closed loitering path that bisects the strips. All vehicles move along
this path, equally spaced, with dynamic regions of responsibility.

@ Each vehicle services targets in own region, returning to the "nominal”
position on the loitering path.

//7\\ 7*74‘77// \¢ ‘
e — =

@ Divide the environment O into strips of width min {

7\\ /‘/4;- 77777777777 %/ T \ A
q;’ B (EEEEEEE - A(m‘?
[ Ny ,)_,,,,7[,/ - o 4}111-.__%0 o
T N « o ¥

FB, EF, MP, KS, SLS (UCSB, MIT)
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The Strip Loitering (SL) policy

(2
2,,(,29/3”),2/)}

@ Design a closed loitering path that bisects the strips. All vehicles move along
this path, equally spaced, with dynamic regions of responsibility.

@ Each vehicle services targets in own region, returning to the "nominal”
position on the loitering path.

@ Divide the environment O into strips of width min {

AN
¢ e - Fo---, e
SN Ny NG ) d 5
\\ //’ ")- »- : \¢ o ! point. -
T ’t _____ *“‘*Q/“\ / dop(ifnurc
AN

limpm— 100 Tsp < k4(Q,P)-

Iimmﬂ+oo TSLrnl/3 < k3(Q>p)a and T
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© Phase transition in the light load
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Phase transition in the light load Phase transition in the light load

@ We have two policies: Median Circling (MC), and Strip Loitering
(SL). Which is better?

. . . 2
@ Define the non-holonomic density d, = h

o MC is optimal when d, — 0,
o SL is within a constant factor of the optimal as d, — +oo0.

32 /36

@ We have two policies: Median Circling (MC), and Strip Loitering
(SL). Which is better?

. . . 2
@ Define the non-holonomic density d, = h

o MC is optimal when d, — 0,
o SL is within a constant factor of the optimal as d, — +oo.

@ phase transition: the optimal organization changes from territorial
(MC) to gregarious (SL) depending on the non-holonomic density of
the agents.
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@ lIgnoring boundary conditions (e.g., consider the unbounded plane), we can
compare the coverage cost for the two policies analytically:
Tst < Tme & d, > 0.0587

(i.e., transition occurs when the area of the dominance region is about 4-5 times
the area of the minimum turning radius circle).
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Estimate of the critical density Estimate of the critical density
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@ lIgnoring boundary conditions (e.g., consider the unbounded plane), we can
compare the coverage cost for the two policies analytically:
Tst < Tme & d, > 0.0587

(i.e., transition occurs when the area of the dominance region is about 4-5 times
the area of the minimum turning radius circle).

@ Simulation results yield d/‘j“t ~ 0.0759 (within
a factor 1.3 of the analytical result).

TURNING RADIUS SQUARED

AREA PER VEHICLE
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Dynamic Vehicle Routing Summary Lecture outline

Euclidean Dubins vehicle, Reeds-Shepp car
vehicle Double integrator, Differential drive
E[TSP Length] O(n?) o(n3)
(n — 0)
T O(7) O(7s)
(5 — o0)
T ©(m":) O(m":)
(,)T‘) — 0,_|*%| — 0)
©O(m™2) O(m~3)
(m - 07 ﬁ - OO)

@ Models of vehicles with differential constraints
Q Traveling salesperson problems

© The heavy load case

@ The light load case

@ Phase transition in the light load
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Workshop Structure and Schedule

8:00-8:30am
8:30-9:00am
9:05-9:50am
9:55-10:40am
10:40-11:00am
11:00-11:45pm
11:45-1:10pm
1:10-2:10pm
2:15-3:00pm
3:00-3:20pm
3:20-4:20pm
4:25-4:40pm
4:45-5:00pm
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Coffee Break
Lecture #1:
Lecture #2:
Lecture #3:
Break
Lecture #4:
Lunch Break
Lecture #5:
Lecture #6:
Coffee Break
Lecture #7:
Lecture #8:

Dynamic Vehicle Routing (Lecture 7/8)

Dynamic Vehicle Routing (Lecture 7/8)
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Intro to dynamic vehicle routing
Prelims: graphs, TSPs and queues
The single-vehicle DVR problem

The multi-vehicle DVR problem

Extensions to vehicle networks
Extensions to different demand models

Extensions to different vehicle models
Extensions to different task models
Final open-floor discussion
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Motivation for Team Forming

Dynamic Vehicle Routing for Robotic Networks

Lecture #8: Different Task Models

@ Group of vehicles monitoring a region
o Several different sensing modalities:
Francesco Bullo!  Emilio Frazzoli?  Marco Pavone? ° .elictro—:j)ptlcal,
. o infra-red,
Ketan Savla®  Stephen L. Smith? .
o synthetic aperture radar,
e foliage penetrating radar,
rcepc o etc
University of California, Santa Barbara '
UCSB bullo@engineering.ucsb.edu III' - @ Each event requires a subset of sensing modalities
" 21IDS and CSAIL II @ Equip each vehicle with a single sensing modality
Massachusetts Institute of Technology .
{frazzoli,pavone,ksavla,slsmith}enit.edu e Form appropriate team to properly assess each event

How do we create teams in real-time to observe each event

Workshop at the 2010 American Control Conference (service each request)?

Baltimore, Maryland, USA, June 29, 2010, 8:30am to 5:00pm
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Lecture outline Literature Review

Scaling laws in Robotic Networks

V. Sharma, M. Savchenko, E. Frazzoli, and P. Voulgaris. Transfer time complexity
) ) of conflict-free vehicle routing with no communications. International Journal of
© Dynamic Team Forming Robotics Research, 26(3):255-272, 2007

S. L. Smith and F. Bullo. Monotonic target assignment for robotic networks. IEEE
o Transactions on Automatic Control, 54(9):2042-2057, 2009
© Three Policies

@ Complete Team Throughput vs Delay in Wireless Networks
[} Task—Specific Team Policy G. Sharma, R. Mazumdar, and N. Shroff. Delay and capacity trade-offs in mobile ad
@ Scheduled Task-Specific Team Policy hoc networks: A global perspective. In IEEE Conf. on Computer Communications,

pages 1-12, Barcelona, Spain, April 2006

A. El Gamal, J. Mammen, B. Prabhakar, and D. Shah. Optimal throughput-delay
e Analysis of Policies scaling in wireless networks. Part |: The fluid model. IEEE Transactions on Infor-

. mation Theory, 52(6):2568—-2592, 2006
@ Throughput vs System Time ’ . 52(6)

@ Comparison of Results Graph Coloring
T. A. McKee and F. R. McMorris. Topics in Intersection Graph Theory, volume 2
of Monographs on Discrete Mathematics and Applications. SIAM, 1999

B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms, vol-
ume 21 of Algorithmics and Combinatorics. Springer, 4 edition, 2007
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Lecture outline Dynamic Team Forming

Set of services {ry,...,ri}.

k different vehicle types.
Vehicle type j € {1,..., k}, can provide only service r;.

0 Dynamic Team Forming

@ Poisson and Uniform arrivals

e Each task requires a subset of services in {ry,...,rg}.

o K different types of tasks

@ Tasks of type « arrive at rate A,

@ Task completed when required vehicles spend on-site
service time at location.

S. L. Smith and F. Bullo. The dynamic team forming problem: Throughput and delay for unbiased
policies. Systems & Control Letters, 58(10-11):709-715, 2009
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Load Factor and Stability Example of Team Forming

L _ _ ) o k = 4 different services, {r1, r, 3, r}.
e R, € {0,1}* is zero-one column vector recording services required for

task-type . e m = 8 vehicles, two of each type: m; =2 for j € {1,2,3,4}.

o IC = 6 task types, , ) ) y UL, B3y, 2, sy,
@ on-site service for task-type « is 5, vpes, {nh {roh {rsh {rad, 4, 13}, 412, )

@ m; vehicles provide service r;.
{ri,r3}

S

)\151 ma

AKSK my
Task type a = {r1, r3} has on-site service 5,, arrival rate \,, and

Ro=[1010]".
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Task-Type Unbiased Policcs

For a policy =:
o System time of each task-type T, 1,..., T.x

© Three Policies o Feasible set of system times are subset of RX
@ Complete Team
@ Task-Specific Team Policy
@ Scheduled Task-Specific Team Policy

@ Optimization space similar to priority queues, but with teaming

To simplify, consider

Tﬂ',].: T7r,2:"': Tﬂ"C::Tﬂ'

and the optimization: inf; T .

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 8/8) 29junl0 @ Baltimore, ACC 9 /24 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 8/8) 29junl0 @ Baltimore, ACC
Policy 1: Complete Team Policy Policy 1: Complete Team Policy
N ®
o
o » @ Two services y, b
_ e o 3 task-types y, b,{y, b}.
1: Form min{my,... mx} teams of k vehicles, each team NS :
@ 4 vehicles
contains one vehicle of each type. o ©
) ) e e e o 2 yellow
2: Have each team meet and move as a single entity. ° © o 2 blue
In each region run UTSP policy (from Lecture 3).
° o
Can also use Divide & Conquer policy for each team
® e
e o o e
o ©
° e
o Y
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Policy 2: Task-specific Team Policy

@ m; vehicles provide service r;.

e r; appears in ejT[Rl -+ Rx]1x task types.

o If m;>¢l[Ry --- Rc]lk = enough vehicles of type j to create
dedicated team for each task type.

@ Create mrgr teams, where:
: m;
Mrgr = | MiN{ ———
=t J ejTRl;C

1: For each of the K task types, create mig; teams of
vehicles.

2: Service each task by one of its mgr corresponding
teams, according to the UTSP policy.

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 8/8) 29junl0 @ Baltimore, ACC

A partition of task types into L time slots, such that:
@ each type appears in exactly one time slot, and

@ task types in each time slot are pairwise disjoint.

\N—>
K]

NS

=
B

o

{1

{2}

{3}

{4y | {L2} ] {14}

{5} | {3,4} | {2.5} [{1,2,3}
{6} | {5,6} | {3,6} [{4,5,6}|{2.4.6}| {2.3,5}

2]

=

-
=i\
<

—
&=
R

0 tp 2t 3tp dtp Stp 6tg  time
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Policy 2: Task-Specific Team Policy

V e
e
= 5 ®
@ task types:
o O {}/},{b},{y, b}
o @ < @ two vehicles of each type
@ y, b each appear in two
o 4 e ° task-types
o
e Mygp =1
] 4 =
°
® ] o
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Partition Q into min;{m;} regions and assign one robot
of each type to each region.
1: In each region form a queue for each task type.
2: For each time slot in the schedule:
©Q Divide robots into teams to form required task
types.
© For each team, service corresponding queue with
TSP tour.
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Polcy 3 Scheduled Task-Speciic Team Policy

=]
® o e
@]
e ® :
o @ two time slots L = 2
e slot one: {y}, {b}
© e slot two: {y, b}

> A e : -

o © e © Analysis of Policies

@ Throughput vs System Time
o @ Comparison of Results
=) O

° W

® PN
®
(S =] o e
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Assumptions for Analysis Throughput vs System Time Profile

- T rd(Bm/Bcrit) .
T iy =2 f By < Burit,
. . B s max{ mn,(l_Bm/Bcrit)z , m < Derit
@ m; = m/k for each vehicle type i. m
Q@ )\, = A/K for each task-type a. +o0, if Bm > Berit-
© on-site service has mean 5 and is upper bounded by Smax. @ Tmin = minimum achievable system time for positive throughput.
O pK of the K task-types require service rj, where p € [1/k,1].

@ Bt = maximum achievable throughput (or capacity).

@ T4 = system time at a constant fraction of capacity

@ With assumptions, necessary stability condition becomes (3-— \/5)/2 ~ 38% of capacity Bgit.
A - 1
m ~ pks’ Example (Single vehicle DVR)

Tmin = E[||X — p*||]/v +5 (light load)
Tord ~ C(fQ ©'/2(x)dx)?/v? (heavy load numerator)

o Define as By = \/m. Berie = 1/3
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Throughput vs System Time Profile System Time for each Policy

System Time T

0 0.2 0.4 0.6 0.8 Bcrit
Throughput B,,

Tmin | Tord | Berit
Lower bound (T") Vk K %
Complete Team Vk k L
Task-Specific VPkK | pkK %
Scheduled Task-Specific | Lvk Lk ﬁ

where L € [pK, K]

o If throughput is low, then use complete team

o If pis close to 1, then use complete team
o If pis close to 1/k, then for best capacity use

o Task-Specific if enough vehicles
e Scheduled Task-Specific otherwise
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Workshop Structire and Schedul

© Dynamic Team Forming

© Three Policies
@ Complete Team
@ Task-Specific Team Policy
@ Scheduled Task-Specific Team Policy

© Analysis of Policies
@ Throughput vs System Time
@ Comparison of Results
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9:55-10:40am
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11:00-11:45pm
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1:10-2:10pm
2:15-3:00pm
3:00-3:20pm
3:20-4:20pm
4:25-4:40pm
4:45-5:00pm
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Lecture #2:
Lecture #3:
Break
Lecture #4:
Lunch Break
Lecture #5:
Lecture #6:
Coffee Break
Lecture #7:
Lecture #8:

Dynamic Vehicle Routing (Lecture 8/8)

Intro to dynamic vehicle routing
Prelims: graphs, TSPs and queues
The single-vehicle DVR problem

The multi-vehicle DVR problem

Extensions to vehicle networks
Extensions to different demand models

Extensions to different vehicle models
Extensions to different task models
Final open-floor discussion

29jun10 @ Baltimore, ACC 24 / 24




