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Outline of the lecture

1 Models of vehicles with differential constraints

2 Traveling salesperson problems

3 The heavy load case

4 The light load case

5 Phase transition in the light load
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Vehicle routing with differential constraints

What happens if the vehicles are subject to non-integrable differential
constraints on their motion?

Minimum turn radius, constant speed (UAVs, Dubins cars)
Minimum turn radius, able to reverse (Reeds-Shepps cars)
Differential drive robots (e.g., tanks).
Bounded acceleration vehicles (e.g., helicopters, spacecraft).

Fundamentally different problems, combining combinatorial task
specifications with differential geometry and optimal control.

Decompose the problem, study the asymptotic cases:

Heavy load: Traveling salesperson problems.
Light load: optimal loitering ”stations”.
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Models of vehicles with differential constraints

Dubins vehicle

ẋ = cos θ
ẏ = sin θ

θ̇ = ω
|ω| ≤ 1/ρ

Reeds-Shepp car

ẋ = v cos θ
ẏ = v sin θ

θ̇ = ω
v ∈ {−1, 1}
|ω| ≤ 1/ρ

Differential drive

ẋ = 1
2 (ωl + ωr ) cos θ

ẏ = 1
2 (ωl + ωr ) sin θ

θ̇ = 1
ρ (ωr − ωl)

|ωl | ≤ 1; |ωr | ≤ 1

Double integrator

ẍ = u
‖ẋ‖ ≤ 1
‖u‖ ≤ 1
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DTRP formulation

Problem setup

m identical vehicles in Q
Spatio-temporal Poisson
process: rate λ and uniform
spatial density

On-site service time s = 0

Dynamic Routing of Multiple UAVs

Kinematics of Dubins Vehicle

ẋ = cos θ,
ẏ = sin θ,
θ̇ = ω, |ω| ≤ 1/ρ.

Q

Physical component

m Dubins vehicles in Q
Spatio-temporal Poisson process: rate λ and uniform spatial density

Computation component

Control policy u = {task assignment, scheduling, loitering}
Tu := lim supi→∞ E[wait time of task i]; Topt(λ, m) = infu Tu
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Objective

Control policy π = {task assignment, scheduling, loitering}
Tπ := lim supi→∞ E[wait time of task i ]; T

∗
= infπ Tπ

Design π for which Tπ is equal to or within a constant factor of T
∗
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Stabilizability

λ︸︷︷︸
task generation rate

− m · n

TSPlength(n)︸ ︷︷ ︸
task service rate

= task growth rate

n: # outstanding tasks

TSPlength(n) strictly sub-linear =⇒ stability ∀λ, m

Euclidean TSPlength(n) = Θ(n1/2) (Beardwood et. al. ’59)

Euclidean TSP based path planning heuristic =⇒ O(n)

Traveling salesperson problems for differential vehicles.
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Outline of the lecture

1 Models of vehicles with differential constraints

2 Traveling salesperson problems

3 The heavy load case

4 The light load case

5 Phase transition in the light load
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Traveling Salesperson Problem

Problem Statement

Find the shortest closed curve
feasible for the vehicle through a
given finite set of points in the plane

NP-hardness a consequence of the NP-hardness of the Euclidean TSP.

Does the cost of this TSP increase SUBLINEARLY with n?

Is there a polynomial-time algorithm that returns a tour of length
o(n)??

What is the quality of the solution?
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Stochastic TSP: A nearest-neighbor lower bound

Outline of the calculations

Calculate (an upper bound on) expected distance from an arbitrary vehicle
configuration to closest point, δ∗

Calculate (an upper bound on) the area of the set reachable with a path of
length δ, Rδ.
Pr(δ∗ ≥ δ) ≥ max{0, 1− n|Rδ|/|Q|}

Expected length of the tour cannot be less than n times E[δ∗]

Example: Dubins vehicle

|Rδ| = δ3

3ρ

E[δ∗] = 3
4

(
3ρ|Q|

n

)1/3
.

limn→∞
E[TSP(n)]

n2/3 ≥ 3
4(3ρ|Q|)1/3.

A nearest-neighbor lower bound

The area of the set of points reachable with
a path of length δ by a Dubins’ car with
minimum turning radius equal to ρ is

Area[Rδ] =
δ3

3ρ

The expected distance to the nearest target,
out of n uniformly-distributed targets, is

E [δ∗] =
3

4

(
3ρ

n

)1/3

.

ength of the tour cannot be less than n
times such a distance, hence:

E [DTSPρ(n)] ≥ 3

4
(3ρn2)1/3.
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Towards an upper bound: tiling based algorithms

The way the ETSP tours are constructed relies on the scaling
properties of tours: the length of the tour scales as the coordinates of
the points.

Towards an upper bound

Aerospace Robotics and Embedded Systems Laboratory

Towards an upper bound

• The way the ETSP tours are constructed relies on the scaling 
properties of tours:  the length of the tour scales as the 
coordinates of the points.

• No such scaling exists for the DTSP: the bound on the curvature 
does not scale with the coordinates of the points!

- Any partition-based algorithm must account for a “preferential direction” 
for Dubins’ paths, penalizing turning. 
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No such scaling exists for the TSP for vehicles with differential
constraints, e.g., the bound on the curvature for the Dubins vehicle
does not scale with the coordinates of the points!

Any tiling-based algorithm must account for a ”preferential
direction”, e.g., by penalizing turning for Dubins vehicles
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Bead construction

!

ρ

p− p+B

Ketan Savla (LIDS, MIT) Short title Date 2 / 2

Bead properties

Length(p−, q, p+) ≤ ` + o(`2) for all q ∈ B
Width: w(`) = `2

8ρ + o(`3)

The beads tile the plane

Useful for Dubins vehicle, Reeds-Shepp car and double integrator

Diamond-like cell for differential drive
Bp− p+

!

Ketan Savla (LIDS, MIT) Short title Date 3 / 3
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The single-sweep tiling algorithm

!

p− p+

B− B+

Ketan Savla (LIDS, MIT) Short title Date 2 / 2

Tile the region with beads

Sweep the bead rows, while servicing all the targets in every bead as
follows:

Service every task q in B− using the ”p− → q → p−” protocol

Move from p− to p+

Service every task q in B+ using the ”p+ → q → p+” protocol
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Analysis of the single-sweep tiling algorithm

Path length calculations

TSP(n) = (bead row length + move to next bead row)×# bead rows +
move to service each task×# tasks + tour closure length

!

p− p+

B− B+

Ketan Savla (LIDS, MIT) Short title Date 2 / 2

For a Reeds-Shepp car, as ` → 0:

TSP(n) ≤
(√

|Q|+ `/2
) √

|Q|
w(`)/2 + `n + 2

(√
|Q|+ ρπ

)
≤ 16ρ |Q|

`2 + 8ρ

√
|Q|
` + `n + 2

(√
|Q|+ ρπ

)(
∵ w(`) ≈ `2

8ρ

)
Pick ` =

(
32ρ|Q|

n

)1/3 (
i.e., |B|

|Q| = 2
n

)
=⇒ TSP(n) = O(n2/3).
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For a Dubins vehicle, as ` → 0:

TSP(n) ≤
(√

|Q|+ w(`)
2 + κ

) √
|Q|

w(`)/2 + (` + κ)n + 2
√
|Q|+ κ

≤ 16ρ |Q|
`2 +

√
|Q|+ 16κ

√
|Q|
`2 + `n + κn + 2

√
|Q|+ κ

The κn term grows linearly in n for all ` =⇒ TSP(n) = O(n)
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The recursive sweep tiling algorithm

Tile Q with beads such that: |B|
|Q| = 1

2n

(
i.e., ` ∼ n−1/3

)
Sweep the bead rows, visiting one target per non-empty bead.

Iterate, using at the i-th phase a ”meta-bead” composed of 2i−1

beads.

After log n phases, visit the outstanding targets in any arbitrary order,
e.g., with a greedy strategy.

Phase 1 Phase 2 Phase 3
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Analysis of the recursive algorithm

Theorem: For a Dubins vehicle, with probability one,

lim sup
n→∞

TSP(n)

n2/3
≤ 24 3

√
ρ|Q|

(
1 +

7

3
π

ρ√
|Q|

)

Outline of the proof

Pr(limn→∞ # tasks remaining after phase i∗ > 24 log n) = 0

Path length calculations:

Phase 1 path length O
(

1
`2

)
= O

(
n2/3

)
(∵ ` ∼ n−1/3)

Subsequent phase path lengths are decreasing geometric series; path
length for all i∗ phases is O

(
n2/3

)
Path length by greedy heuristic is O(log n)
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Summary of TSPs

Lower bound: E [TSP(n)] ∈ Ω(n2/3)

Upper bound: E [TSP(n)] ∈ O(n2/3)

TSP(n) is of order n2/3; constant factor approximation algorithms

Computational complexity of the algorithms is of order n

Stabilizability of the DTRP

λ︸︷︷︸
task generation rate

− m · n

TSP(n)︸ ︷︷ ︸
task service rate

= task growth rate

n: # outstanding tasks

E[TSP(n)] ∈ Θ(n2/3) =⇒ trivial receding horizon TSP-based
policies are stable for the DTRP for all λ and m
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The heavy load case: nearest neighbor lower bound

Outline of the calculations

Let nπ be the number of outstanding tasks at steady-state under
stable policy π

Calculate (an upper bound on) expected distance from an arbitrary
vehicle configuration to closest among nπ points, δ∗(nπ)

At steady-state: λ
m = 1

E[δ∗(nπ)]

Little’s formula: λTπ = nπ

Example: Dubins vehicle

E[δ∗(nπ)] = 3
4

(
3ρ|Q|
nπ

)1/3

Steady state+ Little’s formula: λ
m = 4

3

(
λTπ
3ρ|Q|

)1/3

lim inf λ
m
→+∞ T

∗m3

λ2 ≥ 81
64ρ|Q|
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The multiple sweep tiling algorithm

The single vehicle version

1 Tile Q with beads of length
` = c/λ

2 Update outstanding task list

3 Execute single sweep tiling
algorithm

4 Goto 2.

The multi-vehicle version

Divide Q into m equal ”strips”

Assign one vehicle to every strip

Each vehicle executes the multiple sweep algorithm in its own strip
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Analysis of the multiple sweep algorithm

General protocol

Each bead can be treated as a separate queue, with Poisson arrival
process with intensity λB = λ |B||Q|
The vehicle visits each bead with at a rate no smaller than
µB ≈ (single sweep path length)−1

The system time is no greater than the system time for the

corresponding M/D/1 queue: T
∗ ≤ 1

µB

(
1 + 1

2
λB

µB−λB

)
Optimize over `

Example: Dubins vehicle

λB = `3λ
16ρ|Q| ; µB ≥ `2m

16ρ|Q|

(
1 + 7

3π ρ√
|Q|

)−1

lim sup λ
m
→+∞ T

∗m3

λ2 ≤ 71ρ|Q|
(

1 + 7
3π ρ√

|Q|

)3
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Outline of the lecture

1 Models of vehicles with differential constraints

2 Traveling salesperson problems

3 The heavy load case

4 The light load case

5 Phase transition in the light load
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The light load case

The target generation rate is very small: λ/m → 0+

In such case:

Almost surely all vehicles will have enough time to return to some
”loitering station” between task completion/generation times

The problem is reduced to the choice of the loitering stations that
minimizes the system time

Introducing differential constraints

Novel challenges:

Vehicles possibly cannot stop (e.g., Dubins vehicle, Reeds-Shepp car)
Strategies are more complex than defining a loitering ”point”

How many of the results from the Euclidean case carry over to this
case?
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A simple lower bound

The length of shortest feasible path from a vehicle positioned at
p ∈ R2 to an arbitrary point q ∈ Q is lower bounded by ‖q − p‖

A simple lower bound on T
∗

is obtained by relaxing differential
constraints

T
∗ ≥ H∗m(Q)

H∗m(Q) = Θ
(

1√
m

)
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The Median Circling (MC) Policy

Assign ”virtual” generators to each agent. All agents do the following, in
parallel (possibly asynchronously):

Update the generator position according to a gradient descent law.

Service targets in own region, returning to a ”loitering circle” of
radius 2.91ρ centered on their generator position when done

We have

lim
λ/m→0+

TMC ≤ H∗m(Q) + 3.76ρ

Furthermore,

lim
H∗

m→+∞,λ/m→0+

TMC

T
∗ = 1. Q
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IIlustration of the MC policy
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Tighter lower bound using differential constraints

General protocol

Consider a ”frozen moment in time”

Consider the ”modified Voronoi” diagram of the vehicles.

Relaxation: approximate vehicle Voronoi region by their reachable sets

Optimize over the vehicle configurations

Example: Dubins vehicle

A nearest-neighbor lower bound

The area of the set of points reachable with
a path of length δ by a Dubins’ car with
minimum turning radius equal to ρ is

Area[Rδ] =
δ3

3ρ

The expected distance to the nearest target,
out of n uniformly-distributed targets, is

E [δ∗] =
3

4

(
3ρ

n

)1/3

.

ength of the tour cannot be less than n
times such a distance, hence:

E [DTSPρ(n)] ≥ 3

4
(3ρn2)1/3.
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For m ≥ mcrit, T
∗ ≥ k1(|Q|,ρ)

m1/3
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The Strip Loitering (SL) policy

Divide the environment Q into strips of width min
{

k2(Q,ρ)

m2/3 , 2ρ
}

Design a closed loitering path that bisects the strips. All vehicles move along
this path, equally spaced, with dynamic regions of responsibility.
Each vehicle services targets in own region, returning to the ”nominal”
position on the loitering path.

Q

d2d1 δ

target

point
of

departure

ρ

limm→+∞ TSLm1/3 ≤ k3(Q, ρ), and limm→+∞
TSL

T
∗ ≤ k4(Q, ρ).
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Illustration of the SL policy
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Outline of the lecture

1 Models of vehicles with differential constraints

2 Traveling salesperson problems

3 The heavy load case

4 The light load case

5 Phase transition in the light load
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Phase transition in the light load

We have two policies: Median Circling (MC), and Strip Loitering
(SL). Which is better?

Define the non-holonomic density dρ = ρ2m
|Q| .

MC is optimal when dρ → 0,
SL is within a constant factor of the optimal as dρ → +∞.

phase transition: the optimal organization changes from territorial
(MC) to gregarious (SL) depending on the non-holonomic density of
the agents.
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Estimate of the critical density
L

w

Ignoring boundary conditions (e.g., consider the unbounded plane), we can
compare the coverage cost for the two policies analytically:

TSL < TMC ⇔ dρ > 0.0587

(i.e., transition occurs when the area of the dominance region is about 4-5 times
the area of the minimum turning radius circle).

Simulation results yield dcrit
ρ ≈ 0.0759 (within

a factor 1.3 of the analytical result).
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Dynamic Vehicle Routing Summary

Euclidean Dubins vehicle, Reeds-Shepp car
vehicle Double integrator, Differential drive

E[TSP Length] Θ(n
1
2 ) Θ(n

2
3 )

(n →∞)

T
∗

Θ( λ
m2 ) Θ( λ2

m3 )

( λ
m →∞)

T
∗

Θ(m− 1
2 ) Θ(m− 1

2 )

( λ
m → 0, m

|Q| → 0)

T
∗

Θ(m− 1
2 ) Θ(m− 1

3 )

( λ
m → 0, m

|Q| →∞)
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Lecture outline

1 Models of vehicles with differential constraints

2 Traveling salesperson problems

3 The heavy load case

4 The light load case

5 Phase transition in the light load
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Workshop Structure and Schedule

8:00-8:30am Coffee Break
8:30-9:00am Lecture #1: Intro to dynamic vehicle routing
9:05-9:50am Lecture #2: Prelims: graphs, TSPs and queues
9:55-10:40am Lecture #3: The single-vehicle DVR problem
10:40-11:00am Break
11:00-11:45pm Lecture #4: The multi-vehicle DVR problem
11:45-1:10pm Lunch Break
1:10-2:10pm Lecture #5: Extensions to vehicle networks
2:15-3:00pm Lecture #6: Extensions to different demand models
3:00-3:20pm Coffee Break
3:20-4:20pm Lecture #7: Extensions to different vehicle models
4:25-4:40pm Lecture #8: Extensions to different task models
4:45-5:00pm Final open-floor discussion
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