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Outline of the lecture

@ Models of vehicles with differential constraints
© Traveling salesperson problems

© The heavy load case

@ The light load case

© Phase transition in the light load
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Vehicle routing with differential constraints

@ What happens if the vehicles are subject to non-integrable differential
constraints on their motion?
e Minimum turn radius, constant speed (UAVs, Dubins cars)
Minimum turn radius, able to reverse (Reeds-Shepps cars)
Differential drive robots (e.g., tanks).
Bounded acceleration vehicles (e.g., helicopters, spacecraft).

e Fundamentally different problems, combining combinatorial task
specifications with differential geometry and optimal control.

@ Decompose the problem, study the asymptotic cases:

o Heavy load: Traveling salesperson problems.
o Light load: optimal loitering " stations”.

Models of vehicles with differential constraints
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Double integrator
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DTRP formulation DTRP formulation

Problem setup
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Problem setup

@ m identical vehicles in Q 4@ ° Q @ m identical vehicles in Q 4@ ° Q
@ Spatio-temporal Poisso.n ° f @ Spatio-temporal Poisso.n ° f
process: rate A and uniform ° process: rate A and uniform °
spatial density N ° spatial density N °
@ On-site service time s =0 é @ On-site service time s =0 %

Objective

e Control policy m = {task assignment, scheduling, loitering}
o T, :=limsup;_ . E[wait time of task /]; T =inf, T,

e Design 7 for which T is equal to or within a constant factor of T
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Stabilizability Stabilizability
A . task growth rat A . task growth rat
(] — m: ——————————— = askK grow rate (] — m: ————————~ aSK grow rate
~ TSPlength(n) ~~ TSPlength(n)
task generation rate task generation rate
. task service rate ) task service rate

n: # outstanding tasks n: # outstanding tasks

o TSPlength(n) strictly sub-linear = stability VA, m

TSPlength(n) strictly sub-linear = stability YA, m

o Euclidean TSPlength(n) = ©(n'/?) (Beardwood et. al. '59)

@ Euclidean TSP based path planning heuristic = O(n)

Traveling salesperson problems for differential vehicles.

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29jun10 @ Baltimore, ACC , MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 7/8) 29junl0 @ Baltimore, ACC



Outline of the lecture Traveling Salesperson Problem

Problem Statement

Find the shortest closed curve
feasible for the vehicle through a

@ Traveling salesperson problems given finite set of points in the plane
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Traveling Salesperson Problem Literature review

© K. Savla, E. Frazzoli, and F. Bullo. Traveling Salesperson Problems for the Dubins vehicle. IEEE Transactions on Automatic Control,
53(6):1378-1391, 2008

Problem Statement

H @ K. Savla, F. Bullo, and E. Frazzoli. Traveling Salesperson Problems for a double integrator. /IEEE Transactions on Automatic Control,
Find the shortest closed curve Ba(@)Ta0703. 2000
feas| ble for the Veh |C|e th rough a © J. J. Enright, K. Savla, E. Frazzoli, and F. Bullo. Stochastic and dynamic routing problems for multiple UAVs. AIAA Journal of Guidance,
i L. X . Control, and Dynamics, 34(4):1152-1166, 2009
glVen fln Iite set Of p0| nts In the p|ane Q J. J. Enright and E. Frazzoli. The stochastic Traveling Salesman Problem for the Reeds-Shepp car and the differential drive robot. In

IEEE Conf. on Decision and Control, pages 3058-3064, San Diego, CA, December 2006

© K. Savla and E. Frazzoli. On endogenous reconfiguration for mobile robotic networks. In Workshop on Algorithmic Foundations of
Robotics, Guanajuato, Mexico, December 2008

@ M. Pavone, K. Savla, and E. Frazzoli. Sharing the load. /IEEE Robotics and Automation Magazine, 16(2):52-61, 2009

o N P-hard ness a Consequence Of the N P—hard ness Of the EUClidean TS P @ F. Bullo, E. Frazzoli, M. Pavone, K. Savla, and S. L. Smith. Dynamic vehicle routing for robotic systems. Proceedings of the IEEE, May
2010. Submitted

] DoeS the cost Of thIS TSP increase SUBLIN EARLY W|th n? @ S. Rathinam, R. Sengupta, and S. Darbha. A resource allocation algorithm for multi-vehicle systems with non holonomic constraints.
IEEE Transactions on Automation Sciences and Engineering, 4(1):98-104, 2007

@ J. Le Ny, E. Feron, and E. Frazzoli. On the curvature-constrained traveling salesman problem. IEEE Transactions on Automatic Control,

@ Is there a polynomial-time algorithm that returns a tour of length 2009. to appear
@ S. Itani. Dynamic Systems and Subadditive Functionals. PhD thesis, Massachusetts Institute of Technology, 2009
o(n)??

@ What is the quality of the solution?
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Stochastic TSP: A nearest-neighbor lower bound

Outline of the calculations

@ Calculate (an upper bound on) expected distance from an arbitrary vehicle
configuration to closest point, §*
o Calculate (an upper bound on) the area of the set reachable with a path of
length §, Rs.
o Pr(d* >96) > max{0,1 — n|Rs|/|2Q|}
o Expected length of the tour cannot be less than n times E[6*]
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Towards an upper bound: tiling based algorithms

@ The way the ETSP tours are constructed relies on the scaling
properties of tours: the length of the tour scales as the coordinates of

the points.

|

[
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Stochastic TSP: A nearest-neighbor lower bound

Outline of the calculations
o Calculate (an upper bound on) expected distance from an arbitrary vehicle
configuration to closest point, §*
o Calculate (an upper bound on) the area of the set reachable with a path of
length 6, Rs.
o Pr(6* >0) > max{0,1 — n|Rs|/|Q|}
o Expected length of the tour cannot be less than n times E[§*]

Example: Dubins vehicle

3
° |Rsl =%
1/3
* 3
o E[o*] = 3 (242)™,

EITSP(0] > 3(3,/))1/3,

o lim, . 373
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Towards an upper bound: tiling based algorithms

@ The way the ETSP tours are constructed relies on the scaling
properties of tours: the length of the tour scales as the coordinates of

the points.

|

[

@ No such scaling exists for the TSP for vehicles with differential
constraints, e.g., the bound on the curvature for the Dubins vehicle
does not scale with the coordinates of the points!

@ Any tiling-based algorithm must account for a " preferential
direction”, e.g., by penalizing turning for Dubins vehicles
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Bead construction Bead construction

Bead properties Bead properties
o Length(p_,q,ps) < £+ o(?) for all g € B o Length(p_,q,ps) < £+ o(f?) for all g € B
o Width: w(f) = & + o(£?) o Width: w(f) = & + o(¢?)
@ The beads tile the plane @ The beads tile the plane
@ Useful for Dubins vehicle, Reeds-Shepp car and double integrator @ Useful for Dubins vehicle, Reeds-Shepp car and double integrator

=
|
=
+
[

Diamond-like cell for differential drive p@m
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@ Tile the region with beads o Tile the region with beads
@ Sweep the bead rows, while servicing all the targets in every bead as @ Sweep the bead rows, while servicing all the targets in every bead as
follows: follows:

e Service every task g in B_ using the "p_ — g — p_" protocol
e Move from p_ to py

e Service every task g in B, using the "p, — g — p." protocol
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Analysis of the single-sweep tiling algorithm Analysis of the single-sweep tiling algorithm

Path length calculations

TSP(n) = (bead row length + move to next bead row) x # bead rows +
move to service each task x # tasks + tour closure length
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Analysis of the single-sweep tiling algorithm Analysis of the single-sweep tiling algorithm

Path length calculations

TSP(n) =
move to service each task x # tasks + tour closure length

(bead row length + move to next bead row) x # bead rows +

14 / 36

B_ B,
" "

¢

@ For a Reeds—Shepp car, as £ — O

TSP(n) (\@ + 6/2) ﬁ)/z +ln+2 (\/@ + mr)

| n

1/3
o Pick £ = (”P—‘Q') / (i.e., 18 = 2) — TSP(n) = O(n?/3).
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Path length calculations
TSP(n) = (bead row length + move to next bead row) x # bead rows +
move to service each task x # tasks + tour closure length

@ For a Reeds-Shepp car, as ¢/ — 0:

TsP(n) < (VIQl+¢/2) \ﬁ 7 +n+2 (/0] + pr)
16p|Q| + SpM +€n +2 (\/@—i— pﬂ) ( w({)

~ 8

IN
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Path length calculations

TSP(n) = (bead row length + move to next bead row) x # bead rows +
move to service each task x # tasks + tour closure length

@ For a Dubins vehicle, as ¢ — 0:
TSP(n) < ( Q]+ M0 )
Q|

V19l
w(f)/z

+({l+K)n+2y/]1Q|+ kK

Q| + &

IN
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Analysis of the single-sweep tiling algorithm The recursive sweep tiling algorithm

Path length calculations

TSP(n) = (bead row length + move to next bead row) x # bead rows +
move to service each task x # tasks + tour closure length

Tile Q with beads such that: % = 2—1,1 (e, £~ n*1/3)

Sweep the bead rows, visiting one target per non-empty bead.

Iterate, using at the i-th phase a "meta-bead” composed of 2/~1

beads.

After log n phases, visit the outstanding targets in any arbitrary order,
e.g., with a greedy strategy.
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@ For a Dubins vehicle, as ¢ — 0:
TSP(n) < < |Q| + @ + m) WV(J)Q/'Q +(L+K)n+2

< 16p8l + /][] + 16k Y2

@ The xn term grows linearly in n for all ¢ = TSP(n) = O(n)
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The recursive sweep tiling algorithm The recursive sweep tiling algorithm

. . B . _ : . B . _
o Tile Q with beads such that: |‘§|| = % (l.e., {~n 1/3) o Tile Q with beads such that: ﬁ = 2—1,7 (l.e., {~n 1/3)
@ Sweep the bead rows, visiting one target per non-empty bead. @ Sweep the bead rows, visiting one target per non-empty bead.
o lterate, using at the i-th phase a "meta-bead” composed of 2/~1 o lterate, using at the i-th phase a "meta-bead” composed of 2/~1
beads. beads.
@ After log n phases, visit the outstanding targets in any arbitrary order, @ After log n phases, visit the outstanding targets in any arbitrary order,
e.g., with a greedy strategy. e.g., with a greedy strategy.
—_— = —_—————
= ==
= =
e e e e e
= ==
= =
e T T e e e e e e .
Phase 1 Phase 2 Phase 1 Phase 2 Phase 3
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Analysis of the recursive algorithm Analysis of the recursive algorithm

@ Theorem: For a Dubins vehicle, with probability one,

SP(n) 3 7 P
a3 = 24V/nlQ| <1+ §W\/ﬁ>

lim sup

n—oo
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@ Theorem: For a Dubins vehicle, with probability one,

lim sup TSP(n) < 243/p|9Q)| <1 + ZW p )

n—oo  N%/3 3°V/]9|
Outline of the proof

@ Pr(lim,_o # tasks remaining after phase i* > 24logn) =0

@ Path length calculations:
o Phase 1 path length O (%) = O (n*3) (- £~ n71/3)
e Subsequent phase path lengths are decreasing geometric series; path
length for all i* phases is O (n?/3)
o Path length by greedy heuristic is O(log n)
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Summary of TSPs Summary of TSPs

Lower bound: E[TSP(n)] € Q(n*/3)
Upper bound: E[TSP(n)] € O(n%/3)

TSP(n) is of order n?/3; constant factor approximation algorithms

Computational complexity of the algorithms is of order n
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o Lower bound: E[TSP(n)] € Q(n?/3)

o Upper bound: E[TSP(n)] € O(n?/3)

@ TSP(n) is of order n®/3; constant factor approximation algorithms
°

Computational complexity of the algorithms is of order n

Stabilizability of the DTRP

) A — 0 L
<~ m TSP(n)

task generation rate

task growth rate

task service rate

n: # outstanding tasks

e E[TSP(n)] € ©(n*/3) = trivial receding horizon TSP-based
policies are stable for the DTRP for all A and m

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 7/8)

29jun10 @ Baltimore, ACC




Outline of the lecture The heavy load case: nearest neighbor lower bound
Outline of the calculations

@ Let n; be the number of outstanding tasks at steady-state under
stable policy 7

e Calculate (an upper bound on) expected distance from an arbitrary
vehicle configuration to closest among n, points, *(n;)

@ At steady-state: % = IE[&*—I(mr)]
9 The heavy load case o Little's formula: AT, = . |
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The heavy load case: nearest neighbor lower bound The multiple sweep tiling algorithm
Outline of the calculations
The single vehicle version

@ Let n; be the number of outstanding tasks at steady-state under
stable policy 7 © Tile Q with beads of length e
@ Calculate (an upper bound on) expected distance from an arbitrary i= g _ _ oo .'-' 7
vehicle configuration to closest among n, points, §*(n,) Q@ Update outstanding task list =
L A1 © Execute single sweep tilin S
o At steady-state: £ = B ()] 2 gorithm g p g Y
o Little's formula: AT, = n,
’ Q Goto 2.

Example: Dubins vehicle

o E[5*(ns)] = 3 (22)""

N

1/3
@ Steady state+ Little's formula: % = % <3)‘T“|>

@ liminf T*’)’\’—; > %p|Q|

& —+oo
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The multiple sweep tiling algorithm Analysis of the multiple sweep algorithm

The single vehicle version ANVAANYSANAN @ Each bead can be treated as a separate queue, with Poisson arrival

Q Tile Q with beads of Iength L i .‘.. 5 process with intensity )\B = )\%
t=c/A Nl K @ The vehicle visits each bead with at a rate no smaller than

@ Update outstanding task list S PPttt us = (single sweep path length)~1

© Execute single sweep tiling o PaPa: @ The system time is no greater than the system time for the
algorithm N AR : i ST < L 1_2s
Gg , corresponding M/D/1 queue: T~ < (1 + 2NB—>\B>

QO Goto 2. / o Optimize over /¢

The multi-vehicle version

@ Divide Q into m equal "strips”
@ Assign one vehicle to every strip

@ Each vehicle executes the multiple sweep algorithm in its own strip
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Analysis of the multiple sweep algorithm Outline of the lecture

@ Each bead can be treated as a separate queue, with Poisson arrival
process with intensity Az = A B
Y AB = g
@ The vehicle visits each bead with at a rate no smaller than
w5 = (single sweep path length)™1
@ The system time is no greater than the system time for the

corresponding M/D/1 queue: T < /%B (1 -l-% AB )

UB—AB
@ Optimize over /¢

v

Example: Dubins vehicle

@ The light load case
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The light load case The light load case

@ The target generation rate is very small: \/m — 07

In such case:

@ Almost surely all vehicles will have enough time to return to some
"loitering station” between task completion/generation times

@ The problem is reduced to the choice of the loitering stations that
minimizes the system time

Dynamic Vehicle Routing (Lecture 7/8)
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@ The target generation rate is very small: \/m — 07

In such case:
@ Almost surely all vehicles will have enough time to return to some
"loitering station” between task completion/generation times

@ The problem is reduced to the choice of the loitering stations that
minimizes the system time

Introducing differential constraints

@ Novel challenges:

o Vehicles possibly cannot stop (e.g., Dubins vehicle, Reeds-Shepp car)
e Strategies are more complex than defining a loitering " point”

@ How many of the results from the Euclidean case carry over to this
case?
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A simple lower bound The Median Circling (MC) Policy

@ The length of shortest feasible path from a vehicle positioned at
p € R? to an arbitrary point g € Q is lower bounded by ||g — p|

o A simple lower bound on T is obtained by relaxing differential
constraints

o T >H:(Q)

o H;(Q)=0© (%ﬁ)

Assign "virtual” generators to each agent. All agents do the following, in
parallel (possibly asynchronously):

@ Update the generator position according to a gradient descent law.

@ Service targets in own region, returning to a "loitering circle” of
radius 2.91p centered on their generator position when done

FB, EF, MP, KS, SLS (UCSB, MIT)
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The Median Circling (MC) Policy

Assign "virtual” generators to each agent. All agents do the following, in
parallel (possibly asynchronously):

@ Update the generator position according to a gradient descent law.

@ Service targets in own region, returning to a "loitering circle” of
radius 2.91p centered on their generator position when done

@ We have

)\/,Iri,n_1>0+ Tve < H(Q) + 3.76p

@ Furthermore,

Tvic

T

lim
H,—~+00,A/m—0t
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Tighter lower bound using differential constraints

General protocol
o Consider a "frozen moment in time”
@ Consider the "modified Voronoi” diagram of the vehicles.
@ Relaxation: approximate vehicle Voronoi region by their reachable sets

@ Optimize over the vehicle configurations

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 7/8)  29jun10 @ Baltimore, ACC 28 / 36

Illustration of the MC policy
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Tighter lower bound using differential constraints

General protocol
o Consider a "frozen moment in time”
@ Consider the "modified Voronoi” diagram of the vehicles.
@ Relaxation: approximate vehicle Voronoi region by their reachable sets

@ Optimize over the vehicle configurations

Example: Dubins vehicle

ki(19l,0)

=k
@ For m> muit, T > 3
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The Strip Loitering (SL) policy

k D)
{ i,(ng/f),Zp}

@ Design a closed loitering path that bisects the strips. All vehicles move along
this path, equally spaced, with dynamic regions of responsibility.

@ Each vehicle services targets in own region, returning to the "nominal”
position on the loitering path.

o Divide the environment Q into strips of width min

< _ \ o d\l A L‘ 7 _
point
7{/ ? pois

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 7/8)

29jun10 @ Baltimore, ACC 29 / 36

@

G

e ¢ ¢ 6 6 & 3 © ®
©
[®)
. ® © © 9 © © 9 9
L ] 9
o G G
- e & ¢ @ & & & G a
©
(&)
® ©® 9© 9 o © 9 9
ST 9

FB, EF, MP, KS, SLS (UCSB, MIT)

Dynamic Vehicle Routing (Lecture 7/8)

29jun10 @ Baltimore, ACC

The Strip Loitering (SL) policy

k )
o 2p}

@ Design a closed loitering path that bisects the strips. All vehicles move along
this path, equally spaced, with dynamic regions of responsibility.

@ Each vehicle services targets in own region, returning to the "nominal”
position on the loitering path.

@ Divide the environment Q into strips of width min

¥ S e e e U § e
YN — ____ 1 B L7 s
\\ //’ ")‘ #)- c # 7 4’} : point = -
-_ - ,Xt ,,,,, ,*F,E/L‘\ ; departure
N

My, oo TSLml/3 < k3(Q,,0)a and limy 4 ;S} < k4(Qap)-
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© Phase transition in the light load
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Phase transition in the light load Phase transition in the light load

@ We have two policies: Median Circling (MC), and Strip Loitering
(SL). Which is better?

@ Define the non-holonomic density d, = p%'".
e MC is optimal when d, — 0,

o SL is within a constant factor of the optimal as d, — +o0.
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@ Ignoring boundary conditions (e.g., consider the unbounded plane), we can

compare the coverage cost for the two policies analytically:
TsL < Tmc & d, > 0.0587

(i.e., transition occurs when the area of the dominance region is about 4-5 times
the area of the minimum turning radius circle).
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@ We have two policies: Median Circling (MC), and Strip Loitering
(SL). Which is better?

@ Define the non-holonomic density d, = %'
e MC is optimal when d, — 0,

o SL is within a constant factor of the optimal as d, — +oc.

@ phase transition: the optimal organization changes from territorial
(MC) to gregarious (SL) depending on the non-holonomic density of
the agents.
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@ lIgnoring boundary conditions (e.g., consider the unbounded plane), we can

compare the coverage cost for the two policies analytically:
TsL < Tmc & d, > 0.0587

(i.e., transition occurs when the area of the dominance region is about 4-5 times
the area of the minimum turning radius circle).

@ Simulation results yield d$™* ~ 0.0759 (within
a factor 1.3 of the analytical result).

TURNING RADIUS SQUARED

AREA PER VEHICLE
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Dynamic Vehicle Routing Summary Lecture outline

Euclidean Dubins vehicle, Reeds-Shepp car
vehicle Double integrator, Differential drive
E[TSP Length] o(n?) o(n3)
(n — o)
T O(7) O ()
(5 — )
T o(m2) O(m2)
(3—05 -0 1 1
T o(m™2) O(m™3)
(% — 0, |—S| — 00)

@ Models of vehicles with differential constraints
© Traveling salesperson problems

© The heavy load case

@ The light load case

© Phase transition in the light load
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Workshop Structure and Schedule

8:00-8:30am
8:30-9:00am
9:05-9:50am
9:55-10:40am
10:40-11:00am
11:00-11:45pm
11:45-1:10pm
1:10-2:10pm
2:15-3:00pm
3:00-3:20pm
3:20-4:20pm
4:25-4:40pm
4:45-5:00pm
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Coffee Break
Lecture #1:
Lecture #2:
Lecture #3:
Break
Lecture #4:
Lunch Break
Lecture #5:
Lecture #6:
Coffee Break
Lecture #7:
Lecture #8:

Dynamic Vehicle Routing (Lecture 7/8)

Dynamic Vehicle Routing (Lecture 7/8)
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Intro to dynamic vehicle routing
Prelims: graphs, TSPs and queues
The single-vehicle DVR problem

The multi-vehicle DVR problem

Extensions to vehicle networks
Extensions to different demand models

Extensions to different vehicle models
Extensions to different task models
Final open-floor discussion
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