Lecture outline

Dynamic Vehicle Routing for Robotic Networks

Lecture #5: Extensions to vehicle networks and
distributed algorithms

Motivation and inspiration from biology

Intro to comm models, multi-agent networks and distributed algorithms

Francesco Bullo!  Emilio Frazzoli?  Marco Pavone?

Ketan Savla?  Stephen L. Smith? Partitioning with synchronous proximity-graphs communication

lcebc e . . . . . .
University of California, Santa Barbara Partitioning with gossip (asynchronous pair-wise) communication
UC SB bullo@engineering.ucsb.edu I I I N .
- 2LIDS and CSAIL I I Partitioning with no explicit inter-vehicle communication

Massachusetts Institute of Technology

(teamsols : _ @ No explicit communication policy
,pavone,ksavla,slsmith}@mit.edu

@ Game-theoretic interpretation

Workshop at the 2010 American Control Conference
Baltimore, Maryland, USA, June 29, 2010, 8:30am to 5:00pm
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Territory partitioning via centralized space planning Territory partitioning akin to animal territory dynamics
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Tilapia mossambica, “Hexagonal Red harvester ants, “Optimization, Conflict, and
Territories,” Barlow et al, '74 Nonoverlapping Foraging Ranges,” Adler et al, '03

UCSB Campus Development Plan, 2008 Sage sparrows, “Territory dynamics in a sage sparrows

population,” Petersen et al '87
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Territory partitioning: behaviors and optimality

o
2]
o

how to cover a region with n minimum-radius overlapping disks?

how to design a minimum-distortion (fixed-rate) vector quantizer?

where to place mailboxes in a city / cache servers on the internet?

how do animals share territory?

how do they decide foraging
ranges? |
how do they decide nest locations? NS e

what if each robot goes to “center” of own dominance region?

what if each robot moves away from closest vehicle?
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Intro to communication models, multi-agent networks and

distributed algorithms

© |. Suzuki and M. Yamashita. Distributed anonymous mobile robots:

Formation of geometric patterns. SIAM Journal on Computing,
28(4):1347-1363, 1999

@ N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1997
© D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:

@ S. Martinez, F. Bullo, J. Cortés, and E. Frazzoli. On synchronous robotic

Numerical Methods. Athena Scientific, 1997

networks — Part |: Models, tasks and complexity. [EEE Transactions on
Automatic Control, 52(12):2199-2213, 2007

© meaningful + tractable model

@ information/control/communication tradeoffs
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Lecture outline

e Intro to comm models, multi-agent networks and distributed algorithms
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Preliminary: Processor network and distributed algorithm

: group of processors capable to exchange messages
along edges and perform local computations

Transmit |:> Update
and processor
receive <:| state

for a network of processors consists of

@ Wl the

Q A, the

O stll: Wil x A" — Wl the
Q msg[i] - wilil - A, the
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Robotic network Communication models for robotic networks

Delaunay graph r-disk graph r-Delaunay graph

O ] 4 .

A is

(1) moving in space Q

Disk, visibility and Delauney graphs © fixed, directed, balanced © message
~ ot . @ switching @ packet/bits
. “. “ e ] © proximity/geometric or
. 2 . e state-dependent

@ random, random geometric
(packet losses)
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Communication models for robotic networks Synchronous control and communication

Delaunay graph r-disk graph r-Delaunay graph o T - {t[ }ZENO C R>O
. | R . . ) r . . | r . e A
A S, N @ set of values for w
r-limited Delaunay graph Gabriel graph EMST graph o msg : ’]T X Q X W — A
o i A . (5 stf: Tx Wx AN — W
: 0. ALY : .. Y : .. % . 0 CtrIIRZOXQX WXAN—>U
@ fixed, directed, balanced O message Transmit Update
. and Processor
e SWitChing e packet/blts receive state
© proximity/geometric or ﬁ ﬂ
state-dependent @ absolute coords other robots
o randck>m,|random geometric @ absolute coords environment C Update physical state >
(packet losses) boundary
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Spatially distributed poiciesfor DVR

© Partitioning with synchronous proximity-graphs communication

M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo. Equitable partitioning policies for mobile robotic
networks. IEEE Transactions on Automatic Control, 2010. (Submitted Dec 2008 and Aug 2009)

to appear
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Spatially-distributed policies for DVR

Key idea
Distributed multi-vehicle policy = single-vehicle policy + optimal
partitioning + distributed algorithm for partitioning

Heavy load

Light load

Workload balance
= equitable partitions

Optimal pre-positioning
= median Voronoi diagrams

29junl0 @ Baltimore, ACC 13 / 44

Dynamic Vehicle Routing (Lecture 5/8)

FB, EF, MP, KS, SLS (UCSB, MIT)

Key idea
Distributed multi-vehicle policy = single-vehicle policy + optimal
partitioning + distributed algorithm for partitioning
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Median Voronoi diagrams (and beyond) with synchronous
proximity-graphs communication

At each comm round:

1: acquire neighbors’ positions

2: compute own dominance region

3: move towards center of own
dominance region

Circumcenter

Area-center Incenter

S. Martinez, J. Cortés, and F. Bullo. Motion coordination with distributed informa-
tion. IEEE Control Systems Magazine, 27(4):75-88, 2007
14 / 44
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Experimental Partitioning Experimental Partitioning

Takahide Goto, Takeshi Hatanaka, Masayuki Fujita
Tokyo Institute of Technology
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Hardware-in-the-loop Partitioning and DVR for UAVs

(15x real time

John J. Enright, Chung Hsieh, Emilio Frazzoli
ARES Group, MIT and UCLA
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Optimal Distributed Coverage Control
for Multiple Hovering Robots with
Downward Facing Cameras

Mac Schwager
Brian Julian
Daniela Rus

Distributed Robots Laboratory, CSAIL

Mac Schwager, Brian Julian, Daniela Rus
Distributed Robots Laboratory, MIT
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Equitable and median Voronoi diagrams with synchronous
proximity-graphs communication

“Ambitious” goal:
Distributed algorithm to partition the workspace according to:

@ median Voronoi diagram (relevant in light-load)

@ equitable (relevant in heavy load)
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Equitable and median Voronoi diagrams with synchronous
proximity-graphs communication

Equitable and median Voronoi diagrams with synchronous
proximity-graphs communication

“Ambitious” goal:

Distributed algorithm to partition the workspace according to:
© median Voronoi diagram (relevant in light-load)
@ equitable (relevant in heavy load)

“Ambitious” goal:

Distributed algorithm to partition the workspace according to:
© median Voronoi diagram (relevant in light-load)
@ equitable (relevant in heavy load)

Voronoi Diagrams

Voronoi partition {V, ..
points (p1,...,Pm):

., Vm} generated by =

Vi={x€ Q| llx—pil® <llx—pll*,Vj # i}
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Power distance

e p=(p1,...,pm) collection of points in Q C R?
@ each p; has assigned a weight w; € R

e power distance function dp(x, pi; w;)=||x — pi||> — w;

Power Diagrams

Power diagram {V4,..., V,} generated by

(p1,wi), ..., (Pm, Wm)>2

o Vi={x€ Qllx—pill? - w <
Ix = pill2 = wj, V) # 1}

weighted points (
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Voronoi Diagrams

Voronoi partition {Vi, ..., V,,} generated by .
points (p1,...,Pm): .
V- _ _ . 2 < - . 2 v. . ]
i={xe Qllx—pill" <lx—pl°Vj# i} .
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Existence theorem

Let p=(p1,...
there exist weights (w1, ..., wpn) such that the corresponding Power
diagram is equitable with respect to ¢

, Pm) be the positions of m > 1 distinct points in Q. Then

Yy

ey {020} s
[oe,0.0,,=0.00 =1]

1
Vi =1, =0, =0
Vg = (D,D.-D) [0c,=1.0c, 0.0 =0]

FB, EF, MP, KS, SLS (UCSB, MIT)
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Existence theorem for Power diagrams Existence theorem for Power diagrams

Existence theorem

Let p=(p1,...

, Pm) be the positions of m > 1 distinct points in Q. Then
there exist weights (wy, . .
diagram is equitable with respect to ¢

., Wm) such that the corresponding Power

FB, EF, MP, KS, SLS (UCSB, MIT)

up= [ws‘=0,¢52:1 .zp%:()]

—
i
!
v L Vi Vo
;
'
'
1
V2/14 7777777777777 * Q O
B B,
u. u,
1 A - '3
W 0 op: {0} I
=1,, =0,, =0] = » _
v~ (D.D.D) [0z, =1.0c,=0,, =0] [‘Psﬁov%{ov%ﬂ]
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Existence theorem

Let p=(p1,...

, Pm) be the positions of m > 1 distinct points in Q. Then
there exist weights (wy, . .
diagram is equitable with respect to ¢

., Wm) such that the corresponding Power

Uy

V1
Vg = (D,-D,D)
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I
[ioe,=1.02,=0.;, =0]

Dynamic Vehicle Routing (Lecture 5/8)

up= [‘Psfov%z:‘ ,%3:0]

eyt {020} I
[oe,0.0,,~0.00 =1]

29jun10 @ Baltimore, ACC 20 / 44

Existence theorem for Power diagrams

Existence theorem
Let p = (pl,...

, Pm) be the positions of m > 1 distinct points in Q. Then
there exist weights (wy, . .
diagram is equitable with respect to ¢

., Wm) such that the corresponding Power

V3,

v =(-D,-D,-D)

up = o, =0.0 =10, 0]

Existence theorem for Power diagrams

Existence theorem

Let p=(pa,...

, Pm) be the positions of m > 1 distinct points in Q. Then
there exist weights (wy, . .
diagram is equitable with respect to ¢

., Wm) such that the corresponding Power

V1
Vg = (D,-D,-D)

uy= [‘Psfov%z:‘ "‘953:0]
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Gradient descent law for equitable partitioning Convergence result

@ w; locally controlled by vehicle i

@ locational optimization function

Hw) = zm:(/v( )SO(X)dX)_l - Zm:‘vf(w)\il
i=1 iw i=1

o spatially-distributed gradient: 2t = D ien; ozt-j-(wl,'Q - |V1,|2>
i i i ilp

At each comm round:
1: acquire neighbors’ positions
2: compute own dominance region
3: W — Wi — Y5

i = Wi~ Y,
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Theorem (Convergence)

Assume that the p;'s are distinct. Then, the w;’s converge asymptotically
to a vector of weights that yields an equitable Power diagram

@ guaranteed convergence for any set of distinct points
=

o distributed over the dual graph of the induced Power diagram
=

@ adjusting the weights sufficient to obtain an equitable diagram
=
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@ basic idea: keep the weights close to zero

e modify the gradient descent law as

OH

- w
8W,‘ i

o OH g

a_pi.pi_ aWi

W =

@ basic idea: add a term that enforces computation of the median

@ gradient term for computation of the median:
oH | —
OHew _ / PLTX )
o v o=~

e modify the gradient descent law as

b= o Oew (DM Oew)
| P e Y\ on Tom

Region partition:
Min Area Max area
Density
Uniform ﬂ
————— L3
» Quit
Ready
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Lecture outline Partitioning with gossip communication

@ Partitioning with gossip (asynchronous pair-wise) communication
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Voronoi+-centering law requires:
@ synchronous communication
@ communication along edges of dual graph

. N .
o« ° .
. * .. ..‘.'. ']
\ :. o . '.'
o o%% % * o e *
e e y)

@ is synchrony necessary?
@ is it sufficient to communicate peer-to-peer (gossip)?

@ what are minimal requirements?
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Gossip (asynchronous pair-wise) partitioning policy

@ Random communication between two regions
@ Compute two centers

© Compute bisector of centers

@ Partition two regions by bisector

F. Bullo, R. Carli, and P. Frasca. Gossip coverage control for robotic networks: Dynam-
ical systems on the the space of partitions. SIAM Review, January 2010. Submitted

Indoor example implementation
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o Player/Stage platform
@ realistic robot models in discretized environments

@ integrated wireless network model & obstacle-avoidance planner

J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and cover-
age control with gossip communication. In ASME Dynamic Systems and Control
Conference, Hollywood, CA, October 2009
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Peer-to-peer convergence analysis (proof sketch 1/3)

Lyapunov function for peer-to-peer territory partitioning

Hv) =3 / £l center(vi) — qll)é(q)da
j=1vVi
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Peer-to-peer convergence analysis (proof sketch 1/3)

Lyapunov function for peer-to-peer territory partitioning

H(v) =Y / £(J| center(vi) — qll)é(q)da
i=1 Vi

@ state space is not finite-dimensional

non-convex disconnected polygons

arbitrary number of vertices :
@ peer-to-peer map is not deterministic, ill-defined and discontinuous

two regions could have same centers
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The space of partitions (proof sketch 2/3)

Definition (Space of finitely-convex partitions)

Fix ¢, the set v is collections of n subsets of Q, {vi,..
QO U---Uv,=Q,
@ interior(v;) Ninterior(v;) = 0 if i # j, and
© each v; is union of ¢ convex sets

., Vn}, such that

Given sets A and B, symmetric distance is:
da(A, B) = area ((AU B)\ (AN B)>

Theorem (topological properties of the space of finitely-convex partitions)

Partition space with (u,v) — >_7_; da(uj, v;) is metric and compact

29jun10 @ Baltimore, ACC 30 / 44
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Convergence with persistent switches (proof sketch 3/3)

@ X is metric space
@ finite collection of maps T; : X — X fori €/

e consider sequences {x;}¢>0 C X with
xe41 = Tigey(xe)

Assume:
@ W C X compact and positively invariant for each T;
@ U : W — R decreasing along each T;
© U and T; are continuous on W
Q there exists probability p € |0, 1[ such that, for all indices i € | and
times £, we have  Prob [xp41 = Ti(x) | past] > p

If xo € W, then almost surely

x; — (intersection of sets of fixed points of all T;) N U~*(c)
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Gradient policy

@ Partitioning with no explicit inter-vehicle communication
@ No explicit communication policy

A. Arsie, K. Savla, and E. Frazzoli. Efficient routing algorithms for multiple vehicles with no explicit
communications. |[EEE Transactions on Automatic Control, 54(10):2302-2317, 2009
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o Cost function: H(p) =>_7; fvj(p) lg — pjlle(q)dg

° pi = —55(P) = = [yp) o5 19— pille(a)da

@ p(t) converges to a critical point of H(p)

@ Similar result using the gossip partitioning policy
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Gradient policy

o Cost function: H(p) = Y0, Jy, ) la — pyll¢(a)da
° pi= —g—z,_f(P) = _f\/;(p) %Hq — pillv(q)dq

@ p(t) converges to a critical point of H(p)

@ Similar result using the gossip partitioning policy

Salient Features

o Explicit agent-to-agent
communication

@ Needs knowledge of ¢

Partitioning with no explicit inter-vehicle communication

Inspiration: Distributed MacQueen algorithm

7pm) € Qm
o lteratively sample points g; according to probability density function ¢
o At each iteration j:

@ Pick any m generator points (p1, . ..

o Assign the sampled point to the nearest generator i*(g;) € {1,..., m}
e update the position of generator i* as

_ (#pts assigned in past) p;- + gj
#pts assigned in past 4 1

Pix
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Algorithms Algorithms

ST S
No sensor policy N - No sensor policy ’ N
For all time t, each vehicle moves towards: " For all time t, each vehicle moves towards: "
@ the nearest outstanding task; else, //4 @ the nearest outstanding task; else, ° /4
@ the (nearest) point minimizing the average ° @ the (nearest) point minimizing the average 7
distance to tasks serviced in the past ’ ’ distance to tasks serviced in the past

_rf’/ / Sensor-based policy _,f’/n //

/ . For all time t, each vehicle moves towards: /

@ the nearest among outstanding tasks that
4 ° is closest to it than other vehicles; else, d

@ the (nearest) point minimizing the average
distance to tasks serviced in the past
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[[lustration Differences with the MacQueen algorithm

@ At each iteration, the no-communication algorithm computes the
"Fermat-Weber (FW) point” with respect to the set of tasks serviced
(= by a vehicle; MacQueen algorithm computes the mean

o FW; =argmin,co > llg—pill
® gEpast tasks;

M/// L il
@ Mean; = 1 Z . l r ‘ 1

|past tasks;| :

€past tasks;

@ No simple recursion like the MacQueen algorithm — need to store
locations of all the tasks serviced in the past

@ Sequence of FW points exhibit more complex behavior than the
sequence of means.
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Analysis of the algorithm Analysis of the algorithm

@ pi(t): loitering location of agent i at time t J @ pi(t): loitering location of agent i at time t J

e Sufficient to study convergence of (pi(t),...,pm(t)) e Sufficient to study convergence of (pi(t),...,pm(t))

Convergence result

p(t) converges to a critical point of H(p) with probability one.

Key steps in the proof

@ Convergence of the sequence of Fermat-Weber points:

o Gi(t):={ye Q|| qupast tasks; vers(y — q)|| <1}

o By the properties of the Fermat-Weber point, p;(t;) € Ci(t;)

o Prove that pi(tjt+1) € Gi(t))

o Prove that lim;_ o diam(C;j(t;)) = 0 with prob. 1; this implies
pi(tj) — p; with prob 1

@ pi is the median of its own Voronoi cell
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Lecture outline Coverage as a geometric game

Strategies

° p:(pla"'apm) e Qm
@ When a new task is generated, every vehicle move towards its location

@ Partitioning with no explicit inter-vehicle communication

@ Game-theoretic interpretation
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Coverage as a geometric game Properties of the Game

Strategies
o p=(p1,...,pm) € Q" e Potential function: ¢(p) = —> 7, f\/;(p) llpi — qlle(q)dg
@ When a new task is generated, every vehicle move towards its location @ The coverage spatial game is a potential game

Ui(p) = ¥(p) — ¥(p-i))

Utility Function e U is a Wonderful Life utility function

@ Upon its generation, each task offers continuous reward at rate unity

@ A task expires as soon as two vehicles are present at its location or
after diam(Q) time, whichever occurs first.

e Utility function: expected time spent alone at the next task location

o, p-) = 1R (p. )] = £, |max {0.min 1y~ all — s —al |
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Properties of the Game

No communication policy as a learning algorithm

Complete Information

pi = 8%I_Z,{,-(p) = f\/,-(p) ﬁgp(q)dq —> gradient descent policy

e Potential function: ¢(p) = —>."; fV;(p) llpi — qlle(q)dg
@ The coverage spatial game is a potential game
Ui(p) = ¢(p) — (p-i))

@ U is a Wonderful Life utility function

Characterization of Equilibria

critical point of H <= pure Nash equilibrium
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No communication policy as a learning algorithm

pi = a%fui(p) = — f\/,-(p) ﬁgp(q)dq — gradient descent policy

Complete Information

v

@ No knowledge of ¢

@ No inter-agent communication

Limited information

No communication policy as a learning algorithm

Complete Information

pi = Bimui(p) = f\/,-(p) ﬁgp(q)dq — gradient descent policy

A\
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y

Limited information

@ No knowledge of ¢

@ No inter-agent communication

v

Approximations

@ Empirical Utility Maximization:
pl(t) = argmaxxEQ qu@ Ri(X7 p—i7 q)

o Ri(x,p_i,q) = diam(Q) — ||x — q|| if vehicle i reaches task located at
q first, else R;(x, p—i,q) = 0.

vy
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Dynamic Vehicle Routing (Lecture 5/8)

29jun10 @ Baltimore, ACC

42 /44

Warkshop Structure and Schedus

o Motivation and inspiration from biology

© Intro to comm models, multi-agent networks and distributed algorithms
e Partitioning with synchronous proximity-graphs communication

@ Partitioning with gossip (asynchronous pair-wise) communication

@ Partitioning with no explicit inter-vehicle communication
@ No explicit communication policy
@ Game-theoretic interpretation
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8:00-8:30am Coffee Break
8:30-9:00am | Lecture #1: | Intro to dynamic vehicle routing
9:05-9:50am | Lecture #2: | Prelims: graphs, TSPs and queues
9:55-10:40am | Lecture #3: | The single-vehicle DVR problem
10:40-11:00am | Break
11:00-11:45pm | Lecture #4: | The multi-vehicle DVR problem
11:45-1:10pm | Lunch Break
1:10-2:10pm | Lecture #5: | Extensions to vehicle networks
2:15-3:00pm | Lecture #6: | Extensions to different demand models
3:00-3:20pm Coffee Break
3:20-4:20pm | Lecture #7: | Extensions to different vehicle models
4:25-4:40pm | Lecture #8: | Extensions to different task models
4:45-5:00pm Final open-floor discussion
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