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Lecture outline

1 Motivation and inspiration from biology

2 Intro to comm models, multi-agent networks and distributed algorithms

3 Partitioning with synchronous proximity-graphs communication

4 Partitioning with gossip (asynchronous pair-wise) communication

5 Partitioning with no explicit inter-vehicle communication
No explicit communication policy
Game-theoretic interpretation
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Territory partitioning via centralized space planning

UCSB Campus Development Plan, 2008
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Territory partitioning akin to animal territory dynamics

Tilapia mossambica, “Hexagonal

Territories,” Barlow et al, ’74

Red harvester ants, “Optimization, Conflict, and

Nonoverlapping Foraging Ranges,” Adler et al, ’03

Sage sparrows, “Territory dynamics in a sage sparrows

population,” Petersen et al ’87
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Territory partitioning: behaviors and optimality

DESIGN of performance metrics

1 how to cover a region with n minimum-radius overlapping disks?

2 how to design a minimum-distortion (fixed-rate) vector quantizer?

3 where to place mailboxes in a city / cache servers on the internet?

ANALYSIS of cooperative distributed behaviors

how do animals share territory?
how do they decide foraging
ranges?
how do they decide nest locations?

4 what if each robot goes to “center” of own dominance region?

5 what if each robot moves away from closest vehicle?
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Intro to communication models, multi-agent networks and
distributed algorithms

References

1 I. Suzuki and M. Yamashita. Distributed anonymous mobile robots:
Formation of geometric patterns. SIAM Journal on Computing,
28(4):1347–1363, 1999

2 N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1997

3 D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation:
Numerical Methods. Athena Scientific, 1997

4 S. Mart́ınez, F. Bullo, J. Cortés, and E. Frazzoli. On synchronous robotic
networks – Part I: Models, tasks and complexity. IEEE Transactions on
Automatic Control, 52(12):2199–2213, 2007

Objective

1 meaningful + tractable model

2 information/control/communication tradeoffs
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Preliminary: Processor network and distributed algorithm

Processor network: group of processors capable to exchange messages
along edges and perform local computations

Transmit

and

receive

Update

processor

state

Distributed algorithm for a network of processors consists of

1 W [i ], the processor state set

2 A, the communication alphabet

3 stf[i ] : W [i ] × An →W [i ], the state-transition map

4 msg[i ] : W [i ] → A, the message-generation map
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Robotic network

A robotic network is

1 set of robots moving in space Q
2 interaction graph

Disk, visibility and Delauney graphs
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Communication models for robotic networks

Delaunay graph r-disk graph r-Delaunay graph

r-limited Delaunay graph Gabriel graph EMST graph

Relevant graphs

1 fixed, directed, balanced

2 switching

3 proximity/geometric or
state-dependent

4 random, random geometric
(packet losses)

Message model

1 message

2 packet/bits

Sensing model

1 absolute coords other robots

2 absolute coords environment
boundary
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Synchronous control and communication

1 communication schedule T = {t`}`∈N0 ⊂ R≥0

2 communication alphabet A
3 set of values for processor vars W

4 message-generation function msg : T×Q×W → A
5 state-transition functions stf : T×W × AN →W
6 control function ctrl : R≥0 ×Q×W × AN → U

Transmit

and

receive

Update

processor

state

Update physical state
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Lecture outline

1 Motivation and inspiration from biology

2 Intro to comm models, multi-agent networks and distributed algorithms

3 Partitioning with synchronous proximity-graphs communication

4 Partitioning with gossip (asynchronous pair-wise) communication

5 Partitioning with no explicit inter-vehicle communication
No explicit communication policy
Game-theoretic interpretation

M. Pavone, A. Arsie, E. Frazzoli, and F. Bullo. Equitable partitioning policies for mobile robotic
networks. IEEE Transactions on Automatic Control, 2010. (Submitted Dec 2008 and Aug 2009)
to appear
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Spatially-distributed policies for DVR

Key idea

Distributed multi-vehicle policy = single-vehicle policy + optimal
partitioning + distributed algorithm for partitioning

Light load

Optimal pre-positioning
⇒ median Voronoi diagrams

Heavy load

Workload balance
⇒ equitable partitions
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Median Voronoi diagrams (and beyond) with synchronous
proximity-graphs communication

Voronoi+centering law

At each comm round:

1: acquire neighbors’ positions
2: compute own dominance region
3: move towards center of own

dominance region

Area-center Incenter Circumcenter

S. Mart́ınez, J. Cortés, and F. Bullo. Motion coordination with distributed informa-
tion. IEEE Control Systems Magazine, 27(4):75–88, 2007
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Experimental Partitioning

Takahide Goto, Takeshi Hatanaka, Masayuki Fujita
Tokyo Institute of Technology
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Experimental Partitioning

Mac Schwager, Brian Julian, Daniela Rus
Distributed Robots Laboratory, MIT
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Hardware-in-the-loop Partitioning and DVR for UAVs

(15x real time)

John J. Enright, Chung Hsieh, Emilio Frazzoli
ARES Group, MIT and UCLA
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Equitable and median Voronoi diagrams with synchronous
proximity-graphs communication

“Ambitious” goal:

Distributed algorithm to partition the workspace according to:

1 median Voronoi diagram (relevant in light-load)

2 equitable (relevant in heavy load)

Voronoi Diagrams

Voronoi partition {V1, . . . ,Vm} generated by
points (p1, . . . , pm):

Vi = {x ∈ Q | ‖x − pi‖2 6 ‖x − pj‖2,∀j 6= i}
In general, an equitable Voronoi Diagram fails to exist...
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Partitioning using Power Diagrams

Power distance

p = (p1, . . . , pm) collection of points in Q ⊂ R2

each pi has assigned a weight wi ∈ R
power distance function dP(x , pi ; wi )=‖x − pi‖2 − wi

Power Diagrams

Power diagram {V1, . . . ,Vm} generated by

weighted points
(
(p1,w1), . . . , (pm,wm)

)
:

Vi = {x ∈ Q|‖x − pi‖2 − wi 6
‖x − pj‖2 − wj ,∀j 6= i}

p2

p1
(3,4)

(3,5
)
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)
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Existence theorem for Power diagrams

Existence theorem

Let p = (p1, . . . , pm) be the positions of m ≥ 1 distinct points in Q. Then
there exist weights (w1, . . . ,wm) such that the corresponding Power
diagram is equitable with respect to ϕ
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Gradient descent law for equitable partitioning

wi locally controlled by vehicle i

locational optimization function

H(w)
.
=

m∑
i=1

(∫
Vi (w)

ϕ(x)dx
)−1

=
m∑

i=1

|Vi (w)|−1
ϕ

spatially-distributed gradient: ∂H
∂ wi

=
∑

j∈Ni
αϕ

ij

(
1

|Vj |2ϕ
− 1

|Vi |2ϕ

)
Gradient law for equitable partitioning

At each comm round:

1: acquire neighbors’ positions
2: compute own dominance region
3: wi ← wi − γ ∂H

∂wi
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Convergence result

Theorem (Convergence)

Assume that the pi ’s are distinct. Then, the wi ’s converge asymptotically
to a vector of weights that yields an equitable Power diagram

guaranteed convergence for any set of distinct points
⇒ global convergence result

distributed over the dual graph of the induced Power diagram
⇒ communication, on average, with six neighbors

adjusting the weights sufficient to obtain an equitable diagram
⇒ move the pi ’s to optimize secondary objectives
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Including the median Voronoi diagram property

Close to Voronoi:

basic idea: keep the weights close to zero

modify the gradient descent law as

ẇi = − ∂H
∂wi
− wi ,

∂H
∂pi
· ṗi −

∂H
∂wi

wi = 0

Motion toward the median:

basic idea: add a term that enforces computation of the median

gradient term for computation of the median:

∂HFW

∂pi
=

∫
Vi

pi − x

‖pi − x‖
ϕ(x)dx

modify the gradient descent law as

ẇi = − ∂H
∂wi

, ṗi =
∂HFW

∂pi
ψ

(∂H
∂pi

,
∂HFW

∂pi

)
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Simulation
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Partitioning with gossip communication

Voronoi+centering law requires:
1 synchronous communication
2 communication along edges of dual graph

G1

Minimalist coordination

is synchrony necessary?

is it sufficient to communicate peer-to-peer (gossip)?

what are minimal requirements?
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Gossip (asynchronous pair-wise) partitioning policy

1 Random communication between two regions
2 Compute two centers
3 Compute bisector of centers
4 Partition two regions by bisector

F. Bullo, R. Carli, and P. Frasca. Gossip coverage control for robotic networks: Dynam-
ical systems on the the space of partitions. SIAM Review, January 2010. Submitted
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Indoor example implementation

Player/Stage platform

realistic robot models in discretized environments

integrated wireless network model & obstacle-avoidance planner

J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and cover-
age control with gossip communication. In ASME Dynamic Systems and Control
Conference, Hollywood, CA, October 2009
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Peer-to-peer convergence analysis (proof sketch 1/3)

Lyapunov function for peer-to-peer territory partitioning

H(v) =
n∑

i=1

∫
vi

f (‖ center(vi )− q‖)φ(q)dq

1 state space is not finite-dimensional

non-convex disconnected polygons

arbitrary number of vertices

2 peer-to-peer map is not deterministic, ill-defined and discontinuous

two regions could have same centers

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29jun10 @ Baltimore, ACC 29 / 44

Peer-to-peer convergence analysis (proof sketch 1/3)

Lyapunov function for peer-to-peer territory partitioning

H(v) =
n∑

i=1

∫
vi

f (‖ center(vi )− q‖)φ(q)dq

1 state space is not finite-dimensional

non-convex disconnected polygons

arbitrary number of vertices

2 peer-to-peer map is not deterministic, ill-defined and discontinuous

two regions could have same centers

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 5/8) 29jun10 @ Baltimore, ACC 29 / 44

The space of partitions (proof sketch 2/3)

Definition (Space of finitely-convex partitions)

Fix `, the set v is collections of n subsets of Q, {v1, . . . , vn}, such that

1 v1 ∪ · · · ∪ vn = Q,

2 interior(vi ) ∩ interior(vj) = ∅ if i 6= j , and

3 each vi is union of ` convex sets

Given sets A and B, symmetric distance is:

d∆(A,B) = area
(
(A∪B) \ (A∩B)

)

Theorem (topological properties of the space of finitely-convex partitions)

Partition space with (u, v) 7→
∑n

i=1 d∆(ui , vi ) is metric and compact
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Convergence with persistent switches (proof sketch 3/3)

X is metric space

finite collection of maps Ti : X → X for i ∈ I

consider sequences {x`}`≥0 ⊂ X with

x`+1 = Ti(`)(x`)

Assume:

1 W ⊂ X compact and positively invariant for each Ti

2 U : W → R decreasing along each Ti

3 U and Ti are continuous on W

4 there exists probability p ∈ ]0, 1[ such that, for all indices i ∈ I and
times `, we have Prob

[
x`+1 = Ti (x`) | past

]
≥ p

If x0 ∈W , then almost surely

x` → (intersection of sets of fixed points of all Ti ) ∩ U−1(c)
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Lecture outline

1 Motivation and inspiration from biology

2 Intro to comm models, multi-agent networks and distributed algorithms

3 Partitioning with synchronous proximity-graphs communication

4 Partitioning with gossip (asynchronous pair-wise) communication

5 Partitioning with no explicit inter-vehicle communication
No explicit communication policy
Game-theoretic interpretation

A. Arsie, K. Savla, and E. Frazzoli. Efficient routing algorithms for multiple vehicles with no explicit
communications. IEEE Transactions on Automatic Control, 54(10):2302–2317, 2009
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Motivation

Gradient policy

Cost function: H(p) =
∑n

j=1

∫
Vj (p) ‖q − pj‖ϕ(q)dq

ṗi = −∂H
∂pi

(p) = −
∫
Vi (p)

∂
∂pi
‖q − pi‖ϕ(q)dq

p(t) converges to a critical point of H(p)

Similar result using the gossip partitioning policy

Salient Features

Explicit agent-to-agent
communication

Needs knowledge of ϕ
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Partitioning with no explicit inter-vehicle communication

Inspiration: Distributed MacQueen algorithm

Pick any m generator points (p1, . . . , pm) ∈ Qm

Iteratively sample points qj according to probability density function ϕ

At each iteration j :

Assign the sampled point to the nearest generator i∗(qj) ∈ {1, . . . ,m}
update the position of generator i∗ as

pi∗ =
(#pts assigned in past) pi∗ + qj

#pts assigned in past + 1
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Algorithms

No sensor policy

For all time t, each vehicle moves towards:

the nearest outstanding task; else,

the (nearest) point minimizing the average
distance to tasks serviced in the past

Sensor-based policy

For all time t, each vehicle moves towards:

the nearest among outstanding tasks that
is closest to it than other vehicles; else,

the (nearest) point minimizing the average
distance to tasks serviced in the past

3

On the other hand, an agent executing a control policy of
the form (3) can sense the current position of other agents,
but still has information only on the targets itself visited in
the past. We call these sensor-based (sb) policies, to signify
the fact that only factual information is exchanged between
agents—as opposed to information related to intent and past
history. Note that both the families of coordination policies
rely, in principle, on the knowledge of the locations of all
outstanding targets. However only local target sensing will
be necessary in practice. This last claim is difficult to justify
from a theoretical point of view, and it is better understood in
terms of simulations. For a more complete treatment of this
issue, in particular the effect of limiting sensing radius for
target sensing and its effect on the system performance, see
the review [16].

A policy π = (π1, π2, . . . , πm) is said to be stabilizing if,
under its effect, the expected number of outstanding targets
does not diverge over time, i.e., if

nπ :=

= lim
t→+∞

E[n(t)|ṗi(t) = πi(p(t),Bi(t),D(t)), i ∈ {1, . . . ,m}]

is finite. Intuitively, a policy is stabilizing if the mobile agents
are able to visit targets at a rate that is—on average—at least
as fast as the rate at which new service requests are generated.

Let Tj be the time elapsed between the issuance of the j-
th service request, and the time it is fulfilled. If the system
is stable, then the following balance equation (also known as
Little’s formula [17]) holds:

nπ = λTπ, (4)

where Tπ := limj→∞ E[Tj ] is the system time under policy
π, i.e., the expected time a service request must wait before
being fulfilled, given that the mobile agents follow the strategy
defined by π. Note that the system time Tπ can be thought
of as a measure of the quality of service, as perceived by the
“user” issuing the service requests.

At this point we can finally state our problem: we wish to
devise a policy that is (i) stabilizing, and (ii) yields a quality
of service (i.e., system time) achieving, or approximating, the
theoretical optimal performance given by

T opt = inf
π stabilizing

Tπ (5)

Centralized and decentralized strategies are known that op-
timize or approximate (5) in a variety of cases of interest [11],
[12], [18], [19]. However, all such strategies rely either on a
central authority with the ability to communicate to all agents,
or on the exchange of certain information about each agent’s
strategy with other neighboring agents. In addition, these
policies require the knowledge of the spatial distribution ϕ;
decentralized versions of these implement versions of Lloyd’s
algorithm for vector quantization [20].

In the remainder of this paper, we will investigate how
the additional constraints posed on the exchange of informa-
tion between agents by the models (2) and (3) impact the
achievable performance and quality of service. Remarkably,
the policies we will present do not rely on the knowledge

of the spatial distribution ϕ, and are a generalized version of
MacQueen’s clustering algorithm [21].

III. CONTROL POLICY DESCRIPTION

In this section, we introduce two control policies of the
forms, respectively, (2) and (3). An illustration of the two
policies is given in Figure 1.

Fig. 1. An illustration of the two control policies proposed in Section III.
While no targets are outstanding, vehicles wait at the point that minimizes
the average distance to targets they have visited in the past; such points are
depicted as squares, while targets are circles and vehicles triangles. In the no-
communication policy, at the appearance of a new target, all vehicles pursue
it (left). In the sensor-based policy, only the vehicle that is closest to the target
will pursue it (right).

A. A control policy requiring no explicit communication
Let us begin with an informal description of a policy πnc

requiring no explicit information exchange between agents. At
any given time t, each agent computes its own control input
according to the following rule:

1) If D(t) is not empty, move towards the nearest outstand-
ing target.

2) If D(t) is empty, move towards the point minimizing
the average distance to targets serviced in the past by
each agent. If there is no unique minimizer, then move
to the nearest one.

In other words, we set

πnc(pi(t),Bi(t),D(t)) = vers(Fnc(pi(t),Bi(t),D(t))−pi(t)),
(6)

where

Fnc(pi,Bi,D) =






arg min
q∈D
‖pi − q‖, if D $= ∅,

arg min
q∈Ω

∑

e∈Bi

‖e− q‖, otherwise,

(7)
‖ ·‖ is the Euclidean norm, and

vers(v) =
{

v/‖v‖, if v $= 0,
0 otherwise.

The convex function W : q &→
∑

e∈B ‖q− e‖, often called the
(discrete) Weber function in the facility location literature [22],
[23] (modulo normalization by card(B)), is not strictly convex
only when the point set B is empty—in which case we set
W (·) = 0 by convention— or contains an even number of
collinear points. In such cases, the minimizer nearest to pi in
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Algorithms

No sensor policy

For all time t, each vehicle moves towards:

the nearest outstanding task; else,

the (nearest) point minimizing the average
distance to tasks serviced in the past

Sensor-based policy

For all time t, each vehicle moves towards:

the nearest among outstanding tasks that
is closest to it than other vehicles; else,

the (nearest) point minimizing the average
distance to tasks serviced in the past

3
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Differences with the MacQueen algorithm

At each iteration, the no-communication algorithm computes the
”Fermat-Weber (FW) point” with respect to the set of tasks serviced
by a vehicle; MacQueen algorithm computes the mean

FWi = argminpi∈Q
∑

q∈past tasksi

‖q − pi‖

Meani =
1

|past tasksi |
∑

q∈past tasksi

q

The Fermat-Torricelli point

If n = 2, then any point on the segment joining q1 and q2 is a F-T point.
If n = 3, and q1, q2, q3 form a triangle with no internal angle greater than 120 degrees,
then the point can be found as the intersection of lines from the vertices of the triangle
with the far vertex of an equilateral triangle drawn externally on the opposite side. If
there is an internal angle of at least 120 degrees, that is the F-T point.
If n = 4, the F-T point coincides with the intersection of the diagonals.
If n ≥ 5, the F-T point is not an algebraic point (in general).
A mechanical contraption, called the Varignon frame, illustrates another method to find
the F-T point.

E. Frazzoli (MIT) Lecture 04: Dynamic Vehicle Routing I June 6, 2008 18 / 38

No simple recursion like the MacQueen algorithm → need to store
locations of all the tasks serviced in the past

Sequence of FW points exhibit more complex behavior than the
sequence of means.
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Analysis of the algorithm

pi (t): loitering location of agent i at time t

Sufficient to study convergence of (p1(t), . . . , pm(t))

Convergence result

p(t) converges to a critical point of H(p) with probability one.

Key steps in the proof

Convergence of the sequence of Fermat-Weber points:

Ci (t) := {y ∈ Q | ‖
∑

q∈past tasksi
vers(y − q)‖ ≤ 1}

By the properties of the Fermat-Weber point, pi (tj) ∈ Ci (tj)
Prove that pi (tj+1) ∈ Ci (tj)
Prove that limj→∞ diam(Ci (tj)) = 0 with prob. 1; this implies
pi (tj)→ p∗i with prob 1

p∗i is the median of its own Voronoi cell
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Lecture outline

1 Motivation and inspiration from biology

2 Intro to comm models, multi-agent networks and distributed algorithms

3 Partitioning with synchronous proximity-graphs communication

4 Partitioning with gossip (asynchronous pair-wise) communication

5 Partitioning with no explicit inter-vehicle communication
No explicit communication policy
Game-theoretic interpretation
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Coverage as a geometric game

Strategies

p = (p1, . . . , pm) ∈ Qm

When a new task is generated, every vehicle move towards its location

Utility Function

Upon its generation, each task offers continuous reward at rate unity

A task expires as soon as two vehicles are present at its location or
after diam(Q) time, whichever occurs first.

Utility function: expected time spent alone at the next task location

Ui (pi , p−i ) = Eϕ[Ri (p, q)] = Eϕ

[
max

{
0,min

j 6=i
‖pj − q‖ − ‖pi − q‖

}]
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Properties of the Game

Potential function: ψ(p) = −
∑m

i=1

∫
Vi (p) ‖pi − q‖ϕ(q)dq

The coverage spatial game is a potential game
(Ui (p) = ψ(p)− ψ(p−i ))

U is a Wonderful Life utility function

Characterization of Equilibria

critical point of H ⇐⇒ pure Nash equilibrium
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No communication policy as a learning algorithm

Complete Information

ṗi = ∂
∂pi
Ui (p) = −

∫
Vi (p)

pi−q
‖pi−q‖ϕ(q)dq =⇒ gradient descent policy

Limited information

No knowledge of ϕ

No inter-agent communication

Approximations

Empirical Utility Maximization:
pi (t) = argmaxx∈Q

∑
q∼ϕ Ri (x , p−i , q)

R̂i (x , p−i , q) = diam(Q)− ‖x − q‖ if vehicle i reaches task located at
q first, else R̂i (x , p−i , q) = 0.
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Workshop Structure and Schedule

8:00-8:30am Coffee Break
8:30-9:00am Lecture #1: Intro to dynamic vehicle routing
9:05-9:50am Lecture #2: Prelims: graphs, TSPs and queues
9:55-10:40am Lecture #3: The single-vehicle DVR problem
10:40-11:00am Break
11:00-11:45pm Lecture #4: The multi-vehicle DVR problem
11:45-1:10pm Lunch Break
1:10-2:10pm Lecture #5: Extensions to vehicle networks
2:15-3:00pm Lecture #6: Extensions to different demand models
3:00-3:20pm Coffee Break
3:20-4:20pm Lecture #7: Extensions to different vehicle models
4:25-4:40pm Lecture #8: Extensions to different task models
4:45-5:00pm Final open-floor discussion
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