Load balancing in DVR via territory partitioning

Dynamic Vehicle Routing for Robotic Networks

Lecture #4: The multi-vehicle DVR problem
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©® Resource allocation in DVR is transcribed into partitioning!

Workshop at the 2010 American Control Conference ©® Focus of this lecture is mutivehicle DVR via optimal partitioning

Baltimore, Maryland, USA, June 29, 2010, 8:30am to 5:00pm
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@ Territory Partitioning

Ocean Park Paintings, by Richard Diebenkorn (1922-1993)
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Territory partitioning: optimality and behaviors

o
2]
o

how to cover a region with n minimum-radius overlapping disks?
how to design a minimum-distortion (fixed-rate) vector quantizer?

where to place mailboxes in a city / cache servers on the internet?

how do animals share territory?

how do they decide foraging
ranges? |
how do they decide nest locations? &

@ what if each robot goes to “center” of own dominance region?

© what if each robot moves away from closest vehicle?
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Multi-center functions

Expected wait time (in light load)

H(p,v>=/ I — puldx 4 - -
Vi

+/ |x — pnlldx
Vn

,Vn}

7pn}
@ environment is partitioned into v = {vy, ...

@ nrobots at p = {p1, ...

H(p,v) = Z / F(x — pillolx) e

o ¢ :R2 — R>g density
e f :R>¢ — R penalty function

F. Bullo, J. Cortés, and S. Martinez. Distributed Control of Robotic Networks. Applied Mathematics
Series. Princeton University Press, 2009. Available at http://www.coordinationbook.info
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Optimal partitioning

The {V1,..., V,,} generated by points (p1, ..., pn)
Vi(p) = {x € Q| IIx —pill < lIx —psll, Vi # i}
= Qﬂ(half plane between i and j, containing i)

Descartes 1644, Dirichlet 1850, Voronoi 1908, Thiessen 1911,
Fortune 1986 (sweepline algorithm O(nlog(n)))

Optimal centering (for region v with density )

function of p minimizer = center

pr [ = pliotxds (or )

p / Ix = plPe(x)dx (or )
p — area(v Ndisk(p, r))

p — radius of largest disk centered
at p enclosed inside v

p — radius of smallest disk cen-
tered at p enclosing v

From online
Encyclopedia of
Triangle Centers
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How to compute the median of a convex set From optimality conditions to algorithms
=3 [ #llx = piletxds
=1V

For convex planar set Q with strictly positive density ¢,

Hrw(p) :/ P — x||¢(x)dx Theorem (Alternating Algorithm, Lloyd '57)
e @ at fixed positions, optimal partition is Voronoi

© Hew is strictl @ at fixed partition, optimal positions are ‘generalized centers”
Fw is strictly convex

© alternate v-p optimization

@ the global minimum point is in Q and is called median of Q ) _ o
= local optimum = center Voronoi partition

© compute median via gradient flow with

HFW / P <P(X)dX
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Gradient algorithm for multicenter function Gradient algorithm for multicenter function
After assuming v is Voronoi partition, After assuming v is Voronoi partition,

H(p) = Z/ Fllx = pjll)(x)dx Z/ Fllx = pill)e(x)dx

j=1 Vi(p)
For f smooth, note simplifications for boundary terms For f smooth, note simplifications for boundary terms
) OH 0
= —f(|x — p; x)dx —p:/ —f(||x — p; x)dx
5= [ gt el o P = [, gyt (= pi) o)

- /av,-(p) f(llx = pill) (ni(x), 8p,-><’9(x)dx
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Gradient algorithm for multicenter function Gradient algorithm for multicenter function

After assuming v is Voronoi partition,
n
M) =Y [ Hlx- Do)
j=1 VJ(P)

For f smooth, note simplifications for boundary terms

OH / 0
—1f (||x — p; x)dx
5P = [, g (i) o)

Ox
# o Pl = e () 55t

+ >

J neigh i

ox
F (I = pil) (i), 5 x)d
aV;(p)naVi(p)

/

Vv
contrib from neighbors
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‘ Example optimal partition
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After assuming v is Voronoi partition,

Z / F(Ix — pyll)(x)dx

For f smooth, note simplifications for boundary terms

OH / 0
—f(||x — pj x)dx
DR e S CRPTIE

Ox
# L = p) () 5ot

Ox
-/ (xR 0. 5 )

i
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Lecture outline

e The multi-vehicle DVR problem

D. J. Bertsimas and G. J. van Ryzin. Stochastic and dynamic vehicle routing with general interar-
rival and service time distributions. Advances in Applied Probability, 25:947-978, 1993
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Multi-vehicle DVR problem Light-load lower bound

@ results on single-vehicle DVR generalize easily to the multi-vehicle
case

@ previous methodology (locational optimization, queueing and control
theory, combinatorics) applicable to this case

@ main new idea:
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Multi - Median

e minimizer p* = {p5,..., p},} of

prEolmin|X = pil] = 3 [ 1x— pillelx)as
i=1 i

Lower bound (most useful when A — 0T)

For all policies m: T, > Ey,[min; | X — pf|]]/v +5

@ multi-median: best a priori location
to reach a newly arrived demand
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Heavy-load lower bound Heavy-load lower bound

Heavy-load lower bound

3 (Jo@t2(x)dx)”

2
spatially-unbiased policies: T, > BT;P (1= o as o — 17
3
_ 2 A (f <p2/3(x)dx>
spatially-biased policies: T, > Prsp 2 asop— 17

2 m2v2 (1 — p)?
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Heavy-load lower bound

2
B%SP A (fQ 4701/2(X)dX>
2 m?v? (1 — )?

3
By A ( Jo ¢2/3(x)dx>
2 m2 v2 (1 — p)?

as o — 1~

spatially-unbiased policies: T, >

as o — 1~

spatially-biased policies: T, >

. . — 1/2(x)d
@ Recall inter-demand distance D > (rsp &’%, as o — 1™
2N

o for stability with m vehicles:
fQ 901/2(X)dx
S5+ 0rsp ——F—=—<
vv2N

. 2 1/2(x)dx )
T > G Mg 00%)

m/\

—

e N=AWand T=W-+35 =
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An optimal light-load policy An optimal light-load policy

Compute multi-median p* and

assign one vehicle at each N f
median point. Then: * *
1: Assign demand that falls - 0
in V; to vehicle i N
2: each vehicles service - °
demands in FCFS order o ° K

3: each vehicle returns to
pi after each service is
completed
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An optimal spatially-unbiased heavy-load policy

Partition Q into r subregions Q with [, ¢(x)dx =

Then:

1: within each subregion form sets of size n/r

2: deposit sets in a queue

3: service sets FCFS with the first available vehicle by
following a TSP tour

1/r.

Optimize over n.
Optimality of UTSP policy

lim Tyrse(r)/Ty < 1+1/r
o—1—
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Compute multi-median p* and

assign one vehicle at each A f
median point. Then: * *
1: Assign demand that falls - 3
in V; to vehicle i °
2: each vehicles service - °
demands in FCFS order o ° %

3: each vehicle returns to
pi after each service is
completed

@ As A — 07, P[demand generated when system is empty] — 1

@ = all demands are generated with the vehicles at p*
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An optimal spatially-unbiased heavy-load policy

Partition Q into r subregions Qk with [, ¢(x)dx =

Then:

1: within each subregion form sets of size n/r

2: deposit sets in a queue

3: service sets FCFS with the first available vehicle by
following a TSP tour

Optimize over n.

Optimality of UTSP policy

lim Tyrse(r)/Ty < 14+1/r

o—1—

@ reduction to GI/G/m

18 / 27
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Lecture outline Partitioning policies

Definition (w-partitioning policy)

Given m vehicles and single-vehicle policy 7:
@ Workspace divided into m subregions
@ One-to-one correspondence vehicles/subregions

© Each agent executes the single-vehicle policy 7 within its own
subregion

e Multi-vehicle DVR policies based on partitioning

M. Pavone, E. Frazzoli, and F. Bullo. Distributed and adaptive algorithms for vehicle routing
in a stochastic and dynamic environment. |[EEE Transactions on Automatic Control, May 2010.
(Submitted, Apr 2009) to appear
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@ light load: problem reduces to locational optimization @ light load: problem reduces to locational optimization
@ heavy load: @ heavy load:
@ delay of optimal single vehicle policy scales as A |Q)| @ delay of optimal single vehicle policy scales as A | Q|
@ by (equitably) partitioning, .delay reduces to % ‘%' = ’\,‘n%' @ by (equitably) partitioning,.delay reduces to % % = A,‘n%l
© = delay scales as m~2, as in the lower bound © = delay scales as m~—2, as in the lower bound
@ systematic approach to lift adaptive single-vehicle policies to
multi-vehicle policies
@ coupled with partitioning algorithms, provides distributed
multi-vehicle policies
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Optimal paritoning in heavy ot

@ light load: problem reduces to locational optimization ® per-vehicle workload is oc A ka p(x)dx

@ heavy load: @ per-vehicle service capacity is o A ka ©1/?(x)dx

@ delay of optimal single vehicle policy scales as A\ |Q| @ optimal partitioning = per-vehicle workload service
@ by (equitably) partitioning, delay reduces to 2 12l — A<l capacity

2

© = delay scales as m—*, as in the lower bound

@ systematic approach to lift adaptive single-vehicle policies to
multi-vehicle policies

@ coupled with partitioning algorithms, provides distributed
multi-vehicle policies
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Optimal partitioning in heavy load Optimal partitioning in heavy load

@ per-vehicle workload is oc A ka o(x)dx @ per-vehicle workload is o< A ka o(x)dx
o per-vehicle service capacity is o< A [o, ©1/2(x)dx o per-vehicle service capacity is oc A [o, ©'/2(x)dx
@ optimal partitioning = per-vehicle workload service @ optimal partitioning = per-vehicle workload service
capacity capacity
A partition {Q}7, is: A partition {Qy}7, is:
@ equitable if ka o(x)dx = fQ o(x)dx/m @ equitable if ka o(x)dx = fQ o(x)dx/m
@ simultaneously equitable if @ simultaneously equitable if
(1) ka p(x)dx = fQ w(x)dx/m, (1) ka o(x)dx = fQ o(x)dx/m,
0 o, ¢M*(x)dx = [ 0!/ (x)dx/m 0 [y, ¥ 2(x)dx = [ '/ (x)dx/m
(S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink, 2000)
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Optimalpartiining in heavy oo

Given single-vehicle optimal policy 7, a 7*-partitioning policy using a
simultaneously equitable partition is an optimal unbiased policy

o Jk such that oz = A (1/m+¢)5=o+¢e)3

@ potentially, policy for p < 1!
e P[demand arrives in Q4] = ka o(x)dx =1/m

@ arrival rate in region k: Ay = A/m

@ = 0k = M5 =A5/m = p < 1= system is stable

e conditional density for region k: go(x)/(fgk o(x) dx) = my(x)

2
- m 52 X
°o T=30L <fgk p(x) dx SR Sk [fgk \ fgfso((x))_dxdx} )

= ZT:l % Tﬂ*

EN|.-A
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Comments Special cases

@ stability not an issue:

o Jk such that oz = A\ (1/m+¢€)5=p+eAs n
: : A — m-—————— = demand growth rate
@ potentially, policy for o < 1! ~~ TSPlength(n)
generation rate -

-~

service rate

e since TSPlength(n) x +/n = stability for all A\, m

@ per-vehicle service capacity is unbalanced = policy stable but °

@ guaranteed to be within m of optimal unbiased performance
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Special cases Lecture outline

A
=~

generation rate

FB, EF, MP, KS, SLS (UCSB, MIT)

Workshop Structure and Schedule

8:00-8:30am
8:30-9:00am
9:05-9:50am
9:55-10:40am
10:40-11:00am
11:00-11:45pm
11:45-1:10pm
1:10-2:10pm
2:15-3:00pm
3:00-3:20pm
3:20-4:20pm
4:25-4:40pm
4:45-5:00pm
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stability not an issue:

m TSPlength(n)

(.

n
= demand growth rate

-~

service rate

Coffee Break
Lecture #1:
Lecture #2:
Lecture #3:
Break
Lecture #4:
Lunch Break
Lecture #5:
Lecture #6:
Coffee Break
Lecture #7:
Lecture #8:

Dynamic Vehicle Routing (Lecture 4/8)

Dynamic Vehicle Routing (Lecture 4/8)

since TSPlength(n) o< v/n = stability for all \, m

equitable wrt to ¢ = equitable wrt to ¢!/?
no need to use algorithms for simultaneous equitability
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Intro to dynamic vehicle routing
Prelims: graphs, TSPs and queues
The single-vehicle DVR problem

The multi-vehicle DVR problem

Extensions to vehicle networks
Extensions to different demand models

Extensions to different vehicle models
Extensions to different task models
Final open-floor discussion
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@ Territory Partitioning

© The multi-vehicle DVR problem

© Multi-vehicle DVR policies based on partitioning

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8)

29jun10 @ Baltimore, ACC



