

DESIGN of performance metrics

- how to cover a region with *n* minimum-radius overlapping disks?
- how to design a minimum-distortion (fixed-rate) vector quantizer?
- where to place mailboxes in a city / cache servers on the internet?

ANALYSIS of cooperative distributed behaviors

how do animals share territory? how do they decide foraging ranges?

29jun10 @ Baltimore, ACC

how do they decide nest locations?

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8)

j

- What if each robot goes to "center" of own dominance region?
- What if each robot moves away from closest vehicle?

Optimal partitioning

The Voronoi partition $\{V_1, \ldots, V_n\}$ generated by points (p_1, \ldots, p_n)

$$V_i(p) = \{x \in \mathcal{Q} | ||x - p_i|| \le ||x - p_j||, \forall j \neq i\}$$

= $\mathcal{Q} \bigcap$ (half plane between *i* and *j*, containing *i*)

Descartes 1644, Dirichlet 1850, Voronoi 1908, Thiessen 1911, Fortune 1986 (sweepline algorithm $O(n \log(n))$)

Multi-center functions

Expected wait time (in light load)

$$\mathcal{H}(p, v) = \int_{V_1} \|x - p_1\| dx + \dots + \int_{V_n} \|x - p_n\| dx$$

- *n* robots at $p = \{p_1, ..., p_n\}$
- environment is partitioned into $v = \{v_1, \ldots, v_n\}$

$$\mathcal{H}(p, v) = \sum_{i=1}^{n} \int_{V_i} f(\|x - p_i\|)\varphi(x)dx$$

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8)

- $\varphi: \mathbb{R}^2 \to \mathbb{R}_{>0}$ density • $f : \mathbb{R}_{>0} \to \mathbb{R}$ penalty function
 - F. Bullo, J. Cortés, and S. Martínez. Distributed Control of Robotic Networks. Applied Mathematics Series. Princeton University Press, 2009. Available at http://www.coordinationbook.info

Optimal centering (for region v with density φ)

function of p

 $p \mapsto \int_{\mathcal{X}} \|x - p\|\varphi(x)dx\|$ $p\mapsto \int_{\mathcal{X}} \|x-p\|^2 \varphi(x) dx$

 $p \mapsto \operatorname{area}(v \cap \operatorname{disk}(p, r))$

- $p \mapsto$ radius of largest disk centered at p enclosed inside v
- $p \mapsto$ radius of smallest disk cen- circumcenter tered at p enclosing v

median (or Fermat–Weber point)

29jun10 @ Baltimore, ACC

centroid (or center of mass)

r-area center

incenter

Encyclopedia of

Triangle Centers

online

From

From optimality conditions to algorithms

For convex planar set $\mathcal Q$ with strictly positive density φ ,

$$\mathcal{H}_{\mathsf{FW}}(p) = \int_{\mathcal{Q}} \|p - x\|\varphi(x)dx$$

1 \mathcal{H}_{FW} is strictly convex

FB, EF, MP, KS, SLS (UCSB, MIT)

- 2 the global minimum point is in ${\cal Q}$ and is called median of ${\cal Q}$
- S compute median via gradient flow with

$$rac{d}{dp}\mathcal{H}_{\mathsf{FW}}(p) = \int_{\mathcal{Q}} rac{p-x}{\|p-x\|} arphi(x) dx$$

$$\mathcal{H}(p, v) = \sum_{i=1}^{n} \int_{v_i} f(\|x - p_i\|) \varphi(x) dx$$

Theorem (Alternating Algorithm, Lloyd '57)

- **1** at fixed positions, optimal partition is Voronoi
- **2** at fixed partition, optimal positions are "generalized centers"
- alternate v-p optimization

⇒ local optimum = center Voronoi partition

Gradient algorithm for multicenter function

After assuming v is Voronoi partition,

$$\mathcal{H}(p) = \sum_{j=1}^n \int_{V_j(p)} f(\|x - p_j\|)\varphi(x)dx$$

Dynamic Vehicle Routing (Lecture 4/8)

29iun10 @ Baltimore, ACC

9 / 27

For f smooth, note simplifications for boundary terms

$$\frac{\partial \mathcal{H}}{\partial p_i}(p) = \int_{V_i(p)} \frac{\partial}{\partial p_i} f\left(\|x - p_i\| \right) \varphi(x) dx$$

Gradient algorithm for multicenter function

After assuming v is Voronoi partition,

$$\mathcal{H}(p) = \sum_{j=1}^n \int_{V_j(p)} f(\|x - p_j\|)\varphi(x)dx$$

For f smooth, note simplifications for boundary terms

$$\begin{aligned} \frac{\partial \mathcal{H}}{\partial p_i}(p) &= \int_{V_i(p)} \frac{\partial}{\partial p_i} f\left(\|x - p_i\| \right) \varphi(x) dx \\ &+ \int_{\partial V_i(p)} f\left(\|x - p_i\| \right) \langle n_i(x), \frac{\partial x}{\partial p_i} \rangle \varphi(x) dx \end{aligned}$$

Gradient algorithm for multicenter function

Gradient algorithm for multicenter function

After assuming v is Voronoi partition,

$$\mathcal{H}(p) = \sum_{j=1}^n \int_{V_j(p)} f(\|x - p_j\|)\varphi(x)dx$$

For *f* smooth, note simplifications for boundary terms

$$\frac{\partial \mathcal{H}}{\partial p_{i}}(p) = \int_{V_{i}(p)} \frac{\partial}{\partial p_{i}} f(\|x - p_{i}\|) \varphi(x) dx$$
$$+ \int_{\partial V_{i}(p)} f(\|x - p_{i}\|) \langle n_{i}(x), \frac{\partial x}{\partial p_{i}} \rangle \varphi(x) dx$$
$$+ \sum_{j \text{ neigh } i} \int_{\partial V_{j}(p) \cap \partial V_{i}(p)} f(\|x - p_{j}\|) \langle n_{ji}(x), \frac{\partial x}{\partial p_{i}} \rangle \varphi(x) dx$$

After assuming v is Voronoi partition,

$$\mathcal{H}(p) = \sum_{j=1}^n \int_{V_j(p)} f(\|x - p_j\|)\varphi(x)dx$$

For f smooth, note simplifications for boundary terms

$$\begin{split} \frac{\partial \mathcal{H}}{\partial p_{i}}(p) &= \int_{V_{i}(p)} \frac{\partial}{\partial p_{i}} f\left(\|x - p_{i}\|\right) \varphi(x) dx \\ &+ \int_{\partial V_{i}(p)} f\left(\|x - p_{i}\|\right) \langle n_{i}(x), \frac{\partial x}{\partial p_{i}} \rangle \varphi(x) dx \\ &- \int_{\partial V_{i}(P)} f\left(\|x - p_{i}\|\right) \langle n_{i}(x), \frac{\partial x}{\partial p_{i}} \rangle \varphi(x) dx \end{split}$$

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29jun10 @ Baltimore, ACC 11 / 27	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29jun10 @ Baltimore, ACC 11 / 27
Example optimal partition	Lecture outline
	 Territory Partitioning The multi-vehicle DVR problem Multi-vehicle DVR policies based on partitioning D. J. Bertsimas and G. J. van Ryzin. Stochastic and dynamic vehicle routing with general interarrival and service time distributions. Advances in Applied Probability, 25:947–978, 1993

Multi-vehicle DVR problem

- results on single-vehicle DVR generalize easily to the multi-vehicle case
- previous methodology (locational optimization, theory, combinatorics) applicable to this case

Dynamic Vehicle Routing (Lecture 4/8)

• main new idea: partitioning

FB, EF, MP, KS, SLS (UCSB, MIT)

Heavy-load lower bound

Heavy-load lower bound

• for stability with *m* vehicles:

Light-load lower bound

Multi - Median

• minimizer
$$p^* = \{p_1^*, ..., p_m^*\}$$
 of

$$p \mapsto \mathbb{E}_{\varphi}[\min_{i} ||X - p_{i}||] = \sum_{i=1}^{m} \int_{V_{i}} ||x - p_{i}||\varphi(x)dx$$

case
• previous methodology (locational optimization, queueing and control theory, combinatorics) applicable to this case
• main new idea: partitioning
• T
$$= \frac{1}{2}$$

• Cover bound (most useful when $\lambda \to 0^+$)
For all policies $\pi: T_{\pi} \ge \mathbb{E}_{\varphi}[\min|X - p_1^+|]/v + \overline{s}$
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location to reach a newly arrived demand
• multi-median: best a priori location

Dynamic Vehicle Routing (Lecture 4/8) 29jun10 @ Baltimore, ACC 16 / 27

An optimal light-load policy

An optimal light-load policy

Lecture outline

3 Multi-vehicle DVR policies based on partitioning

M. Pavone, E. Frazzoli, and F. Bullo. Distributed and adaptive algorithms for vehicle routing in a stochastic and dynamic environment. IEEE Transactions on Automatic Control, May 2010. (Submitted, Apr 2009) to appear

Dynamic Vehicle Routing (Lecture 4/8) 29jun10 @ Baltimore, ACC

Partitioning policies

Definition (π -partitioning policy)

Given *m* vehicles and single-vehicle policy π :

- Workspace divided into *m* subregions
- One-to-one correspondence vehicles/subregions
- **3** Each agent executes the single-vehicle policy π within its own subregion

20 / 27

Motivation

FB, EF, MP, KS, SLS (UCSB, MIT)

Performance:

- light load: problem reduces to locational optimization
- heavy load:
 - **1** delay of optimal single vehicle policy scales as $\lambda |Q|$
 - 2 by (equitably) partitioning, delay reduces to $\frac{\lambda}{m} \frac{|Q|}{m} = \frac{\lambda |Q|}{m^2}$ 3 \Rightarrow delay scales as m^{-2} , as in the lower bound

- systematic approach to lift adaptive single-vehicle policies to
- coupled with **distributed** partitioning algorithms, provides distributed

Motivation

19 / 27

21 / 27

Performance:

- light load: problem reduces to locational optimization
- heavy load:
 - **1** delay of optimal single vehicle policy scales as $\lambda |Q|$
 - 2 by (equitably) partitioning, delay reduces to $\frac{\lambda}{m} \frac{|\dot{Q}|}{m} = \frac{\lambda |Q|}{m^2}$ 3 \Rightarrow delay scales as m^{-2} , as in the lower bound

Implementation:

- systematic approach to lift adaptive single-vehicle policies to multi-vehicle policies
- coupled with distributed partitioning algorithms, provides distributed multi-vehicle policies

Motivation

Performance:

- light load: problem reduces to locational optimization
- heavy load:
 - **1** delay of optimal single vehicle policy scales as $\lambda |Q|$
 - 2 by (equitably) partitioning, delay reduces to $\frac{\lambda}{m} \frac{|\dot{Q}|}{m} = \frac{\lambda |Q|}{m^2}$ 3 \Rightarrow delay scales as m^{-2} , as in the lower bound

Implementation:

- systematic approach to lift adaptive single-vehicle policies to multi-vehicle policies
- coupled with distributed partitioning algorithms, provides distributed multi-vehicle policies

distributed multi-vehicle policy = single-vehicle policy + optimal partitioning + distributed algorithm for partitioning

Dynamic Vehicle Routing (Lecture 4/8)

29jun10 @ Baltimore, ACC

Optimal partitioning in heavy load

Intuition

- per-vehicle workload is $\propto \lambda \int_{\mathcal{O}_L} \varphi(x) dx$
- per-vehicle service capacity is $\propto \lambda \int_{\mathcal{O}_{L}} \varphi^{1/2}(x) dx$
- optimal partitioning = equalizing per-vehicle workload and service capacity

- equitable if $\int_{\Omega} \varphi(x) dx = \int_{\Omega} \varphi(x) dx/m$
- simultaneously equitable if

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29jun10 @ Baltimore, ACC

Optimal partitioning in heavy load

Intuition

- per-vehicle workload is $\propto \lambda \int_{O_L} \varphi(x) dx$
- per-vehicle service capacity is $\propto \lambda \, \int_{\mathcal{Q}_k} \, arphi^{1/2}(x) dx$
- optimal partitioning = equalizing per-vehicle workload and service capacity

Definition

A partition $\{Q_k\}_{k=1}^m$ is:

FB FF MP KS SIS (UCSB MIT)

- equitable if $\int_{\mathcal{O}_{L}} \varphi(x) dx = \int_{\mathcal{O}} \varphi(x) dx/m$
- simultaneously equitable if

 - 2 $\int_{\mathcal{O}_{1}} \varphi^{1/2}(x) dx = \int_{\mathcal{O}_{1}} \varphi^{1/2}(x) dx / m$

Optimal partitioning in heavy load

Intuition

- per-vehicle workload is $\propto \lambda \int_{\mathcal{O}_L} \varphi(x) dx$
- per-vehicle service capacity is $\propto \lambda \int_{\mathcal{O}_{\mu}} \varphi^{1/2}(x) dx$
- optimal partitioning = equalizing per-vehicle workload and service capacity

Definition

- A partition $\{Q_k\}_{k=1}^m$ is:
 - equitable if $\int_{\mathcal{O}_L} \varphi(x) dx = \int_{\mathcal{O}} \varphi(x) dx/m$
 - simultaneously equitable if

 - 2 $\int_{\Omega_{1}} \varphi^{1/2}(x) dx = \int_{\Omega} \varphi^{1/2}(x) dx/m$

Simultaneously equitable partitions exist for any Q and φ

(S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink, 2000)

22 / 27

Optimal partitioning in heavy load

Theorem

Given single-vehicle optimal policy π^* , a π^* -partitioning policy using a simultaneously equitable partition is an optimal unbiased policy

Proof sketch

FB, EF, MP, KS, SLS (UCSB, MIT)

Comments

- \mathbb{P} [demand arrives in \mathcal{Q}_k] = $\int_{\mathcal{Q}_k} \varphi(x) \, dx = 1/m$
- arrival rate in region k: $\lambda_k = \lambda/m$
- $\Rightarrow \varrho_k = \lambda_k \bar{s} = \lambda \bar{s}/m = \varrho < 1 \Rightarrow$ system is stable
- conditional density for region k: $\varphi(x)/\left(\int_{\mathcal{Q}_k} \varphi(x) \, dx\right) = m \, \varphi(x)$

•
$$\overline{T} = \sum_{k=1}^{m} \left(\int_{\mathcal{Q}_k} \varphi(x) \, dx \, \frac{\beta_{\text{TSP}}^2}{2} \, \frac{\lambda_k}{v^2 \, (1-\varrho_k)^2} \, \left[\int_{\mathcal{Q}_k} \sqrt{\frac{\varphi(x)}{\int_{\mathcal{Q}_k} \varphi(x) \, dx}} \, dx \right]^2 \right)$$

= $\sum_{k=1}^{m} \, \frac{1}{m} \, \overline{T}_{\pi^*} \, \frac{1}{m^2}$

Dynamic Vehicle Routing (Lecture 4/8)

29jun10 @ Baltimore, ACC

Comments

- If $\{\mathcal{Q}_k\}_{k=1}^m$ is only equitable wrt to $\varphi^{1/2}$...
 - $\exists \bar{k}$ such that $\varrho_{\bar{k}} = \lambda \left(1/m + \varepsilon \right) \bar{s} = \varrho + \varepsilon \lambda \bar{s}$
 - potentially, policy unstable for $\rho < 1!$

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8)

If $\{\mathcal{Q}_k\}_{k=1}^m$ is only equitable wrt to arphi...

- per-vehicle service capacity is unbalanced \Rightarrow policy stable but not optimal
- guaranteed to be within *m* of optimal unbiased performance

Special cases

Case $\overline{s} = 0$:

• stability not an issue:

$$\underbrace{\lambda}_{\text{generation rate}} - \underbrace{m \cdot \frac{n}{\text{TSPlength}(n)}}_{\text{service rate}} = \text{demand growth rate}$$

29jun10 @ Baltimore, ACC

- since TSPlength(n) $\propto \sqrt{n} \Rightarrow$ stability for all λ, m
- \bullet equitability only wrt to $\varphi^{1/2}$ provides optimal performance

Case φ = uniform:

- equitable wrt to $\varphi \Rightarrow$ equitable wrt to $\varphi^{1/2}$
- no need to use algorithms for simultaneous equitability

If $\{Q_k\}_{k=1}^m$ is only equitable wrt to $\varphi^{1/2}$...

- $\exists \bar{k}$ such that $\varrho_{\bar{k}} = \lambda \left(1/m + \varepsilon \right) \bar{s} = \varrho + \varepsilon \lambda \bar{s}$
- potentially, policy unstable for $\rho < 1!$

If $\{\mathcal{Q}_k\}_{k=1}^m$ is only equitable wrt to φ ...

- per-vehicle service capacity is unbalanced ⇒ policy stable but not optimal
- guaranteed to be within m of optimal unbiased performance

Special cases			Lecture outline
Special cases Case $\bar{s} = 0$: • stability not an issue: $\lambda_{generation rate} - m \cdot \frac{n}{TSPlength(n)} = demand growth rate$ • since TSPlength $(n) \propto \sqrt{n} \Rightarrow$ stability for all λ, m • equitability only wrt to $\varphi^{1/2}$ provides optimal performance Case $\varphi =$ uniform: • equitable wrt to $\varphi \Rightarrow$ equitable wrt to $\varphi^{1/2}$ • no need to use algorithms for simultaneous equitability			 Territory Partitioning The multi-vehicle DVR problem Multi-vehicle DVR policies based on partitioning
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29jun10 @ Baltimore, ACC 25 / 27 Workshop Structure and Schedule			FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29jun10 @ Baltimore, ACC 26 / 27
8:00-8:30am8:30-9:00am9:05-9:50am9:55-10:40am10:40-11:00am11:00-11:45pm11:45-1:10pm1:10-2:10pm2:15-3:00pm3:00-3:20pm3:20-4:20pm4:25-4:40pm4:45-5:00pm	Coffee Break Lecture #1: Lecture #2: Lecture #3: Break Lecture #4: Lunch Break Lecture #5: Lecture #5: Lecture #6: Coffee Break Lecture #7: Lecture #8:	Intro to dynamic vehicle routing Prelims: graphs, TSPs and queues The single-vehicle DVR problem The multi-vehicle DVR problem Extensions to vehicle networks Extensions to different demand models Extensions to different vehicle models Extensions to different task models Final open-floor discussion	