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Load balancing in DVR via territory partitioning

1 Resource allocation in DVR is transcribed into partitioning!

2 Focus of this lecture is mutivehicle DVR via optimal partitioning

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 4/8) 29jun10 @ Baltimore, ACC 2 / 27

Lecture outline

1 Territory Partitioning

2 The multi-vehicle DVR problem

3 Multi-vehicle DVR policies based on partitioning
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Territory partitioning is ... art

Ocean Park Paintings, by Richard Diebenkorn (1922-1993)
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Territory partitioning: optimality and behaviors

DESIGN of performance metrics

1 how to cover a region with n minimum-radius overlapping disks?

2 how to design a minimum-distortion (fixed-rate) vector quantizer?

3 where to place mailboxes in a city / cache servers on the internet?

ANALYSIS of cooperative distributed behaviors

how do animals share territory?
how do they decide foraging
ranges?
how do they decide nest locations?

4 what if each robot goes to “center” of own dominance region?

5 what if each robot moves away from closest vehicle?
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Multi-center functions

Expected wait time (in light load)

H(p, v) =

∫
v1

‖x − p1‖dx + · · ·+
∫
vn

‖x − pn‖dx

n robots at p = {p1, . . . , pn}
environment is partitioned into v = {v1, . . . , vn}

H(p, v) =
n∑

i=1

∫
vi

f (‖x − pi‖)ϕ(x)dx

ϕ : R2 → R≥0 density

f : R≥0 → R penalty function

F. Bullo, J. Cortés, and S. Mart́ınez. Distributed Control of Robotic Networks. Applied Mathematics
Series. Princeton University Press, 2009. Available at http://www.coordinationbook.info
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Optimal partitioning

The Voronoi partition {V1, . . . ,Vn} generated by points (p1, . . . , pn)

Vi (p) = {x ∈ Q| ‖x − pi‖ ≤ ‖x − pj‖ , ∀j 6= i}

= Q
⋂
j

(half plane between i and j , containing i)

Descartes 1644, Dirichlet 1850, Voronoi 1908, Thiessen 1911,
Fortune 1986 (sweepline algorithm O(n log(n)))
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Optimal centering (for region v with density ϕ)

function of p minimizer = center

p 7→
∫

v
‖x − p‖ϕ(x)dx median (or Fermat–Weber point)

p 7→
∫

v
‖x − p‖2ϕ(x)dx centroid (or center of mass)

p 7→ area(v ∩ disk(p, r)) r-area center

p 7→ radius of largest disk centered
at p enclosed inside v

incenter

p 7→ radius of smallest disk cen-
tered at p enclosing v

circumcenter

From online
Encyclopedia of
Triangle Centers
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How to compute the median of a convex set

For convex planar set Q with strictly positive density ϕ,

HFW(p) =

∫
Q
‖p − x‖ϕ(x)dx

1 HFW is strictly convex

2 the global minimum point is in Q and is called median of Q
3 compute median via gradient flow with

d

dp
HFW(p) =

∫
Q

p − x

‖p − x‖
ϕ(x)dx
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From optimality conditions to algorithms

H(p, v) =
n∑

i=1

∫
vi

f (‖x − pi‖)ϕ(x)dx

Theorem (Alternating Algorithm, Lloyd ’57)

1 at fixed positions, optimal partition is Voronoi

2 at fixed partition, optimal positions are “generalized centers”

3 alternate v-p optimization
=⇒ local optimum = center Voronoi partition
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Gradient algorithm for multicenter function

After assuming v is Voronoi partition,

H(p) =
n∑

j=1

∫
Vj (p)

f (‖x − pj‖)ϕ(x)dx

For f smooth, note simplifications for boundary terms

∂H
∂pi

(p) =

∫
Vi (p)

∂

∂pi
f (‖x − pi‖) ϕ(x)dx
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Example optimal partition
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Lecture outline

1 Territory Partitioning

2 The multi-vehicle DVR problem

3 Multi-vehicle DVR policies based on partitioning

D. J. Bertsimas and G. J. van Ryzin. Stochastic and dynamic vehicle routing with general interar-
rival and service time distributions. Advances in Applied Probability, 25:947–978, 1993
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Multi-vehicle DVR problem

results on single-vehicle DVR generalize easily to the multi-vehicle
case

previous methodology (locational optimization, queueing and control
theory, combinatorics) applicable to this case

main new idea: partitioning
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Light-load lower bound

Multi - Median

minimizer p∗ = {p∗1 , . . . , p∗m} of

p 7→ Eϕ[min
i
‖X − pi‖] =

m∑
i=1

∫
Vi

‖x − pi‖ϕ(x)dx

Lower bound (most useful when λ → 0+)

For all policies π: Tπ ≥ Eϕ[mini ‖X − p∗i ‖]/v + s̄

Proof sketch:

multi-median: best a priori location
to reach a newly arrived demand

p
∗

1

p
∗

2

p
∗

3
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Heavy-load lower bound

Heavy-load lower bound

spatially-unbiased policies: Tπ ≥
β2

TSP

2

λ
(∫
Q ϕ1/2(x)dx

)2

m2 v2 (1− %)2
as % → 1−

spatially-biased policies: Tπ ≥
β2

TSP

2

λ
(∫
Q ϕ2/3(x)dx

)3

m2 v2 (1− %)2
as % → 1−

Proof sketch (for unbiased policies):

Recall inter-demand distance D ≥ βTSP

R
Q ϕ1/2(x)dx√

2 N
, as % → 1−

for stability with m vehicles:

s̄ +
D

v
≤ m

λ
=⇒ s̄ + βTSP

∫
Q ϕ1/2(x)dx

v
√

2 N
≤ m/λ

N = λW and T = W + s̄ =⇒ T
∗ ≥ β2

TSP
2

λ (
R
Q ϕ1/2(x)dx)

2

m2 v2 (1−%)2
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An optimal light-load policy

m Stochastic Queueing Median
(mSQM)

Compute multi-median p∗ and
assign one vehicle at each
median point. Then:

1: Assign demand that falls
in Vi to vehicle i

2: each vehicles service
demands in FCFS order

3: each vehicle returns to
p∗k after each service is
completed

Proof sketch of optimality

As λ → 0+, P [demand generated when system is empty] → 1

⇒ all demands are generated with the vehicles at p∗
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An optimal spatially-unbiased heavy-load policy

Unbiased TSP (UTSP)

Partition Q into r subregions Qk with
∫
Qk

ϕ(x)dx = 1/r.
Then:

1: within each subregion form sets of size n/r
2: deposit sets in a queue
3: service sets FCFS with the first available vehicle by

following a TSP tour

Optimize over n.

Optimality of UTSP policy

lim
%→1−

TUTSP(r)/T
∗
U ≤ 1 + 1/r

Proof sketch of optimality (r=1)

reduction to GI/G/m
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Lecture outline

1 Territory Partitioning

2 The multi-vehicle DVR problem

3 Multi-vehicle DVR policies based on partitioning

M. Pavone, E. Frazzoli, and F. Bullo. Distributed and adaptive algorithms for vehicle routing
in a stochastic and dynamic environment. IEEE Transactions on Automatic Control, May 2010.
(Submitted, Apr 2009) to appear
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Partitioning policies

Definition (π-partitioning policy)

Given m vehicles and single-vehicle policy π:

1 Workspace divided into m subregions

2 One-to-one correspondence vehicles/subregions

3 Each agent executes the single-vehicle policy π within its own
subregion
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Motivation

Performance:

light load: problem reduces to locational optimization

heavy load:
1 delay of optimal single vehicle policy scales as λ |Q|
2 by (equitably) partitioning, delay reduces to λ

m
|Q|
m = λ|Q|

m2

3 ⇒ delay scales as m−2, as in the lower bound

Implementation:

systematic approach to lift adaptive single-vehicle policies to
multi-vehicle policies

coupled with distributed partitioning algorithms, provides distributed
multi-vehicle policies

distributed multi-vehicle policy = single-vehicle policy + optimal
partitioning + distributed algorithm for partitioning
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Optimal partitioning in heavy load

Intuition

per-vehicle workload is ∝ λ
∫
Qk

ϕ(x)dx

per-vehicle service capacity is ∝ λ
∫
Qk

ϕ1/2(x)dx

optimal partitioning = equalizing per-vehicle workload and service
capacity

Definition

A partition {Qk}m
k=1 is:

equitable if
∫
Qk

ϕ(x)dx =
∫
Q ϕ(x)dx/m

simultaneously equitable if
1
∫
Qk

ϕ(x)dx =
∫
Q ϕ(x)dx/m, and

2
∫
Qk

ϕ1/2(x)dx =
∫
Q ϕ1/2(x)dx/m

Simultaneously equitable partitions exist for any Q and ϕ
(S. Bespamyatnikh, D. Kirkpatrick, and J. Snoeyink, 2000)
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Optimal partitioning in heavy load

Theorem

Given single-vehicle optimal policy π∗, a π∗-partitioning policy using a
simultaneously equitable partition is an optimal unbiased policy

Proof sketch

P [demand arrives in Qk ] =
∫
Qk

ϕ(x) dx = 1/m

arrival rate in region k: λk = λ/m

⇒ %k = λk s̄ = λs̄/m = % < 1 ⇒ system is stable

conditional density for region k: ϕ(x)/
(∫
Qk

ϕ(x) dx
)

= m ϕ(x)

T =
∑m

k=1

(∫
Qk

ϕ(x) dx
β2
TSP
2

λk
v2 (1−%k )2

[∫
Qk

√
ϕ(x)R

Qk
ϕ(x) dx

dx

]2
)

=
∑m

k=1
1
m Tπ∗

1
m2
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Comments

If {Qk}m
k=1 is only equitable wrt to ϕ1/2...

∃ k̄ such that %k̄ = λ (1/m + ε) s̄ = % + ελs̄

potentially, policy unstable for % < 1!

If {Qk}m
k=1 is only equitable wrt to ϕ...

per-vehicle service capacity is unbalanced ⇒ policy stable but not
optimal

guaranteed to be within m of optimal unbiased performance
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Special cases

Case s̄ = 0:

stability not an issue:

λ︸︷︷︸
generation rate

− m · n

TSPlength(n)︸ ︷︷ ︸
service rate

= demand growth rate

since TSPlength(n) ∝
√

n ⇒ stability for all λ, m

equitability only wrt to ϕ1/2 provides optimal performance

Case ϕ = uniform:

equitable wrt to ϕ ⇒ equitable wrt to ϕ1/2

no need to use algorithms for simultaneous equitability
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Workshop Structure and Schedule

8:00-8:30am Coffee Break
8:30-9:00am Lecture #1: Intro to dynamic vehicle routing
9:05-9:50am Lecture #2: Prelims: graphs, TSPs and queues
9:55-10:40am Lecture #3: The single-vehicle DVR problem
10:40-11:00am Break
11:00-11:45pm Lecture #4: The multi-vehicle DVR problem
11:45-1:10pm Lunch Break
1:10-2:10pm Lecture #5: Extensions to vehicle networks
2:15-3:00pm Lecture #6: Extensions to different demand models
3:00-3:20pm Coffee Break
3:20-4:20pm Lecture #7: Extensions to different vehicle models
4:25-4:40pm Lecture #8: Extensions to different task models
4:45-5:00pm Final open-floor discussion
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