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Graph Theory Review Graph Theory Review

@ An undirected graph G = (V, E). @ An undirected graph G = (V, E).
@ a in G is a sequence vy, €1, Vo, ..., Vk, €, Vkt1, With @ a in G is a sequence vy, €1, Vo, ..., Vk, €k, Vk+1, With
o e # e for i #j. o e #£ e fori#j.
o v; # vj forall i # j. o v; £ v forall i # .
o A or has vi = Vky1. e A or has vi = vk41.
o A is a path that contains all vertices. o A is a path that contains all vertices.
@ Similarly define a or @ Similarly define a or
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Graph Theory Review Weighted Graphs

An undirected graph G = (V, E).

a in G is a sequence vi, €1, Vo, ..
o e # e for i #j.
o v; # vj forall i # j.

-y Vi, €k, Vk+1, With

o A or has vi = Vky1.
o A is a path that contains all vertices.
@ Similarly define a or
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o A G = (V, E,c) has edge weights ¢ : E — Rx.

@ Ina  E=V xV.

Special classes of
° if
c({vi, va}) + c({v2, v3}) > c({v1, v3}) for all vi,va,v3 € V.
° if

V cRY and c({vi, vi}) = lvi = vjl|2-
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Minimum Spanning Tree Minimum Spanning Tree

o A is a graph with no cycles
o A of G is a subgraph
that
@ is a tree

@ connects all vertices together

Minimum Spanning Tree Problem

Given: a weighted graph G — (V, E, c)
Task: find a spanning tree T = (E7, V1) such that 3_ g c(e) is
minimum.

Can be solved in using
@ Recursively adds shortest edge that does not create a cycle

@ Runsin O(n?) time (where |V| = n)

o A is a graph with no cycles
e A of G is a subgraph
that
@ is a tree

@ connects all vertices together

Minimum Spanning Tree Problem

Given: a weighted graph G — (V, E, c)

Task: find a spanning tree T = (Et, V1) such that 3" g c(e) is
minimum.

Can be solved in using
@ Recursively adds shortest edge that does not create a cycle

@ Runsin O(n?) time (where |V| = n)
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Homilionian Cycle Decision Problem

Hamiltonian Cycle

Given: An undirected graph G.

Question: Does G contain a Hamiltonian cycle?

Hamiltonian Cycle is
(One of Karp's 21 NP-complete problems)

in polynomial time (NP).
to it.

@ Every solution can be

@ Every problem in NP can be
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© The Traveling Salesman Problem
@ Approximation Algorithms
@ Metric TSP
@ Euclidean TSP

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29junl0 @ Baltimore, ACC 9 /29

Traveling Salesman Problem Approximation Algorithms for the TSP

Traveling Salesman Problem (TSP)
Given: A complete graph G, = (V,, E,) and weights ¢ : E, — R-o.
Task: Find a Hamiltonian cycle with minimum weight.

@ TSP is
@ To show NP-hard: Reduce Hamiltonian Cycle to TSP.

Given an undirected graph G = (V, E) with |V| =n:
@ Construct complete graph G, with weight 1 for each edge in E and
weight 2 for all other edges.
@ Then G is Hamiltonian < optimum TSP tour has length n.

29jun10 @ Baltimore, ACC 10 / 29
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Theorem (Sahni and Gonzalez, 1976)
Unless P = NP, there is no k-factor approx alg for the TSP for any k > 1.

k-factor approx would imply poly time algorithm for
Hamiltonian Cycle.

for metric and non-metric problems:
@ Heuristic: Lin-Kernighan based solvers (Lin and Kernighan, 1973)
o Empirically ~ 5% of optimal in O(n?2) time.
@ Exact: Concorde TSP Solver (Applegate, Bixby, Chvatal, Cook, 2007)
e Exact solution of Euclidean TSP on 85,900 points!
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Metric TSP Eulerian Graphs

Given: A complete metric graph G, = (Vi Ep)
Task: Find a Hamiltonian cycle with minimum weight.

@ The Metric TSP is

@ There exist approximation algorithms!
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° : degree of each vertex is even

° : Closed walk containing every edge.
@ Graph has Eulerian walk < Eulerian.
°

Eulerian walk can be computed in O(|V| + |E]) time.
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Double-Tree Algorithm Double-Tree Algorithm

1: Find a minimum spanning tree T of graph G,.
2: G := graph containing two copies of each edge in T.
3: Compute Eulerian walk in Eulerian graph G.
4: Walk gives ordering, ignore all but first occurrence
of vertex.
[ ]
* ®
' °
[ ]
[ ]
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Find a minimum spanning tree T of graph G,.

G:= graph containing two copies of each edge in T.
Compute Eulerian walk in Eulerian graph G.

Walk gives ordering, ignore all but first occurrence
of vertex.

Sw N e
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Double-Tree Algorithm Double-Tree Algorithm

1: Find a minimum spanning tree T of graph G,.
2: G:= graph containing two copies of each edge in T.
3: Compute Eulerian walk in Eulerian graph G. Double-Tree Algorithm is a 2-approx algorithm for the Metric TSP. Its
4: Walk gives ordering, ignore all but first occurrence running time is O(n?).
of vertex.

Deleting one edge from a tour gives a spanning tree.

Thus minimum spanning tree is shorter than optimal tour.

°
o

@ Each edge is doubled.

@ Spanning tree can be computed in O(n?) time.
°

Eulerian walk computed in O(n) time.
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Christofides’ Algorithm Christofides’ Algorithm
1: Find a minimum spanning tree T of G. 1: Find a minimum spanning tree T of G.
2: Let W be the set of vertices with odd degree in T. 2: Let W be the set of vertices with odd degree in T.
3: Find the minimum weight perfect matching M in 3: Find the minimum weight perfect matching M in
subgraph generated by W. subgraph generated by W.
4: Find an Eulerian path in G = (V,,E(T) U M), (skip 4: Find an Eulerian path in G = (V,,E(T) U M), (skip
vertices already seen). vertices already seen).
L
¢ °
' °
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Christofides’ Algorithm Christofides’ Algorithm

1: Find a minimum spanning tree T of G. 1: Find a minimum spanning tree T of G.
2: Let W be the set of vertices with odd degree in T. 2: Let W be the set of vertices with odd degree in T.
3: Find the minimum weight perfect matching M in 3: Find the minimum weight perfect matching M in
subgraph generated by W. subgraph generated by W.
4: Find an Eulerian path in G = (V,,E(T) U M), (skip 4: Find an Eulerian path in G = (V,,E(T) U M), (skip
vertices already seen). vertices already seen).
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Christofides’ Algorithm Christofides’ Algorithm

: Find a minimum spanning tree T of G.

[

1: Find a minimum spanning tree T of G.

2: Let W be the set of vertices with odd degree in T. 2: Let W be the set of vertices with odd degree in T.

3: Find the minimum weight perfect matching M in 3: Find the minimum weight perfect matching M in
subgraph generated by W. subgraph generated by W.

4: Find an Eulerian path in G = (V,,E(T) U M), (skip 4: Find an Eulerian path in G = (V,,E(T) U M), (skip
vertices already seen). vertices already seen).
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Christofides’ Algorithm Euclidean TSP

Christofides’ Algorithm gives a 3/2-approx algorithm for the Metric TSP.
Its running time is O(n3).

Theorem (Arora, 1998; Mitchell, 1999)

For each fixed € > 0, a (1 + €)-approximate solution can be found in
O(n*(log n)°) time.

o [(Christofides) = L(MST) + L(M).

e But, L(MST) < L(TSP), and

o L(M) < L(M) < L(TSP)/2.
Where M’ is the minimum perfect matching of W using edges that
are part of TSP.
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Length Bounds for Euclidean TSP Worst-case TSP Length Upper Bound (Intuition)
e Consider Q, := {x1,...,xn} of n points in unit square.
How long is the TSP tour through n points in unit square? @ There exists ¢ > 0 such that
: c
min {HXi = x|l xi, X € Qn} < ﬁ
Theorem (Few, 1955) @ Let ¢, denote worst-case TSP length through n pts.

@ Then ¢, </{,_1+2c/\/n.
@ Summing we get £(n) < Cy/n.

For every set Qp of n points in the unit square

ETSP(Qn) < V2n+7/4.
o © ¢
L
e Equally space n points on a grid o
e Then ETSP(Q,) = Cy/n. ¢
@ So, worst-case length > C+/n. [ ®
o
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Worst-case TSP Length Upper Bound (Intuition) Worst-case TSP Length Upper Bound (Intuition)

e Consider Q, := {x1,...,xn} of n points in unit square. e Consider Q, := {x1,...,xn} of n points in unit square.
@ There exists ¢ > 0 such that @ There exists ¢ > 0 such that
. c _ c
min {[[x; — x;|| : xi,xj € Qn} < N3 min {|[x; — x;[| : xi, xj € Qn} < NG

Let ¢, denote worst-case TSP length through n pts.
Then ¢, < {,_1+ 2c/+/n.
Summing we get ¢(n) < Cy/n.

Let ¢, denote worst-case TSP length through n pts.
Then ¢, < {,_1+ 2c/+/n.
Summing we get £(n) < Cy/n.
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Worst-case TSP Length Upper Bound (Intuition) Worst-case TSP Length Upper Bound (Intuition)

e Consider Q, := {x1,...,xn} of n points in unit square.
@ There exists ¢ > 0 such that

Consider Qp, := {x1,...,x,} of n points in unit square.
There exists ¢ > 0 such that

c
%.
@ Let /, denote worst-case TSP length through n pts.
@ Then ¢, < /{,_1+2c/\/n.

@ Summing we get £(n) < Cy/n.

o © ./'

c
%.
Let ¢, denote worst-case TSP length through n pts.
Then ¢, < {l,_1 +2c/+\/n.

Summing we get £(n) < Cy/n.

min {||x,- —xj|| : xi, xj € Qn} < min {Hx,- —xj|| : xi,xj € Qn} <
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TSP Length for Random Points Summary of Traveling Salesman Problem

Theorem (Beardwood, Halton, and Hammersley, 1959)

Let Q, be a set of n i.i.d. random variables with compact support in R?
and distribution ¢(x). Then, with prob. 1

im ETSP(Q,)

_ - d—1)/d

where (Btsp g is a constant independent of , and ¢ is absolutely
continuous part of .

For uniform distribution in square of area A
ETSP(Q)
Vn

Best estimate of Btsp > is Percus and Martin, 1996

— ﬁ-rsp,zx//_4 as n — +oo.

5TSP,2 ~ (0.7120.

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8)

Solving TSP is , and no approx algorithms exist.

e For , still NP-hard but good

For Euclidean TSP, very good heuristics exist.

Length of tour through n points in unit square:

o Worst-case is ©(1/n).
o Uniform random is ©(+/n).
e For all density functions O(+/n).

29jun10 @ Baltimore, ACC 21 /29

© Queueing Theory
@ Kendall's Notation
o Little's Law and Load Factor
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Basic Queueng Model

o Customers arrive, wait in a queue, and are then processed

29jun10 @ Baltimore, ACC 22 /29

@ Queue length builds up when arrival rate is larger than service rate

> server

A

incoming customers S

outgoing customers

N

queue length

modeled as stochastic process with rate A

of each customer is a r.v. with finite mean 5 and
second moment s2.

° is 1/5.
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itle's Law and Load Foctor

@ A = the arrival process Define:

@ B = the service time distribution e average wait-time in queue as W

@ C = the number of servers @ average system as T := W +5.
Little's Law/Theorem

@ D = Deterministic For a stable queue N = AW

@ M = Markovian
o for arrivals: Poisson process

o for service times: Exponential distribution e For m servers, define as
e G (or GI) = General distribution (independent among customers) \2
0= m
@ Poisson arrivals with rate A ° for stable queue is o < 1.

@ General service times with mean 3

@ m servers
, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 25 / 29 FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29junl0 @ Baltimore, ACC 26 / 29

Wait-time examples Lecture outline

For M/D/1 queue:

. 05 @ Graph Theory
W= m @ Weighted Graphs
@ Minimum Spanning Tree
For M/G/1 queue:
. g2 © The Traveling Salesman Problem
W= m @ Approximation Algorithms
@ Metric TSP

For G/G/1 queue (Kingman, 1962): ® Euclidean TSP
o2+ 02) © Queueing Theory

2(1-0p) @ Kendall's Notation
@ Little’s Law and Load Factor

W<

and the upper bound becomes exact as p — 17.
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Workshop Structure and Schedule

8:00-8:30am
8:30-9:00am
9:05-9:50am
9:55-10:40am
10:40-11:00am
11:00-11:45pm
11:45-1:10pm
1:10-2:10pm
2:15-3:00pm
3:00-3:20pm
3:20-4:20pm
4:25-4:40pm
4:45-5:00pm

Coffee Break
Lecture #1:
Lecture #2:
Lecture #3:
Break
Lecture #4:
Lunch Break
Lecture #b5:
Lecture #6:
Coffee Break
Lecture #7:
Lecture #8:

Intro to dynamic vehicle routing
Prelims: graphs, TSPs and queues
The single-vehicle DVR problem

The multi-vehicle DVR problem

Extensions to vehicle networks
Extensions to different demand models

Extensions to different vehicle models
Extensions to different task models
Final open-floor discussion
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