

Graph Theory Review

- An undirected graph $G = (V, E)$.
- a path in G is a sequence $v_1, e_1, v_2, \ldots, v_k, e_k, v_{k+1}$, with
	- $e_i \neq e_j$ for $i \neq j$.
	- $v_i \neq v_j$ for all $i \neq j$.
- A circuit or cycle has $v_1 = v_{k+1}$.
- A Hamiltonian path is a path that contains all vertices.
- Similarly define a Hamiltonian cycle or tour.

Graph Theory Review

- An undirected graph $G = (V, E)$.
- a path in G is a sequence $v_1, e_1, v_2, \ldots, v_k, e_k, v_{k+1}$, with
	- $e_i \neq e_j$ for $i \neq j$.
	- $v_i \neq v_j$ for all $i \neq j$.
- A circuit or cycle has $v_1 = v_{k+1}$.
- A Hamiltonian path is a path that contains all vertices.
- Similarly define a Hamiltonian cycle or tour.

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 7 / 29

Metric TSP

Metric TSP

Given: A complete metric graph $G_n = (V_n, E_n)$ Task: Find a Hamiltonian cycle with minimum weight.

Eulerian Graphs

- Eulerian graph: degree of each vertex is even
- Eulerian walk: Closed walk containing every edge.
- Graph has Eulerian walk ⇔ Eulerian.
- Eulerian walk can be computed in $O(|V| + |E|)$ time.

Double-Tree Algorithm

Double-Tree Algorithm

- 1: Find a minimum spanning tree \overline{I} of graph G_n .
- 2: \overline{G} := graph containing two copies of each edge in T .
- 3: Compute Eulerian walk in Eulerian graph \overline{G} .
- 4: Walk gives ordering, ignore all but first occurrence of vertex.

Double-Tree Algorithm

Theorem

Double-Tree Algorithm is a 2-approx algorithm for the Metric TSP. Its running time is $O(n^2)$.

- Deleting one edge from a tour gives a spanning tree.
- Thus minimum spanning tree is shorter than optimal tour.
- **•** Each edge is doubled.
- Spanning tree can be computed in $O(n^2)$ time.
- Eulerian walk computed in $O(n)$ time.

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in T .

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC

- 3: Find the minimum weight perfect matching M in subgraph generated by W .
- 4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in T .
- 3: Find the minimum weight perfect matching M in subgraph generated by W .

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC

4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in T .
- 3: Find the minimum weight perfect matching M in subgraph generated by W .
- 4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in T .
- 3: Find the minimum weight perfect matching M in subgraph generated by W .
- 4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in T .
- 3: Find the minimum weight perfect matching M in subgraph generated by W .
- 4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in T .
- 3: Find the minimum weight perfect matching M in subgraph generated by W .
- 4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

TSP Length for Random Points

Summary of Traveling Salesman Problem

Theorem (Beardwood, Halton, and Hammersley, 1959)

Let Q_n be a set of n i.i.d. random variables with compact support in \mathbb{R}^d and distribution $\varphi(x)$. Then, with prob. 1

$$
\lim_{n\to+\infty}\frac{\text{ETSP}(Q_n)}{n^{(d-1)/d}}=\beta_{\text{TSP},d}\int_{\mathbb{R}^d}\bar{\varphi}(x)^{(d-1)/d}dx,
$$

where $\beta_{\text{TSP},d}$ is a constant independent of φ , and $\bar{\varphi}$ is absolutely continuous part of φ .

For uniform distribution in square of area A

Outline

1 Graph Theory

3 Queueing Theory

• Kendall's Notation

2 The Traveling Salesman Problem

Little's Law and Load Factor

$$
\frac{\mathsf{ETSP}(Q_n)}{\sqrt{n}} \to \beta_{\mathsf{TSP},2} \sqrt{A} \quad \text{as } n \to +\infty.
$$

Best estimate of $\beta_{\text{TSP},2}$ is Percus and Martin, 1996

$$
\beta_{\text{TSP},2} \simeq 0.7120.
$$

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC

- \bullet Solving TSP is NP -hard, and no approx algorithms exist.
- For metric TSP, still NP-hard but good approx algs exist.
- **•** For Euclidean TSP, very good heuristics exist.
- \bullet Length of tour through *n* points in unit square:
	- Worst-case is $\Theta(\sqrt{n})$.
	- Uniform random is $\Theta(\sqrt{n})$.
	- For all density functions $O(\sqrt{n})$.

Basic Queueing Model

Customers arrive, wait in a queue, and are then processed

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC

Queue length builds up when arrival rate is larger than service rate

- Arrivals modeled as stochastic process with rate λ
- \bullet Service time of each customer is a r.v. with finite mean \bar{s} and second moment $\bar{s^2}$.
- Service rate is $1/\overline{s}$.

Workshop Structure and Schedule

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 29 / 29