	Lecture outline
<section-header><section-header><section-header><section-header><section-header><text><image/><image/><text><text><text></text></text></text></text></section-header></section-header></section-header></section-header></section-header>	 Graph Theory Weighted Graphs Minimum Spanning Tree The Traveling Salesman Problem Approximation Algorithms Approximation Algorithms Metric TSP Euclidean TSP Queueing Theory Kendall's Notation Little's Law and Load Factor FB. EF. MP. KS, SLS (UCSB, MIT) Memory Memory
Key references for this lecture	Outline
 Graph Theory Basics: R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer, 2 edition, 2000 Combinatorial Optimization: B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms, volume 21 of Algorithmics and Combinatorics. Springer, 4 edition, 2007 	 Graph Theory Weighted Graphs Minimum Spanning Tree

Г

Graph Theory Review

Graph Theory Review

- An undirected graph G = (V, E).
- a path in G is a sequence $v_1, e_1, v_2, \ldots, v_k, e_k, v_{k+1}$, with
 - $e_i \neq e_j$ for $i \neq j$.
 - $v_i \neq v_i$ for all $i \neq j$.
- A circuit or cycle has $v_1 = v_{k+1}$.
- A Hamiltonian path is a path that contains all vertices.
- Similarly define a Hamiltonian cycle or tour.

- An undirected graph G = (V, E).
- a path in G is a sequence $v_1, e_1, v_2, \ldots, v_k, e_k, v_{k+1}$, with
 - $e_i \neq e_j$ for $i \neq j$.
 - $v_i \neq v_i$ for all $i \neq j$.
- A circuit or cycle has $v_1 = v_{k+1}$.
- A Hamiltonian path is a path that contains all vertices.
- Similarly define a Hamiltonian cycle or tour.

Graph Theory Review

- An undirected graph G = (V, E).
- a path in G is a sequence $v_1, e_1, v_2, \ldots, v_k, e_k, v_{k+1}$, with
 - $e_i \neq e_j$ for $i \neq j$.
 - $v_i \neq v_i$ for all $i \neq j$.
- A circuit or cycle has $v_1 = v_{k+1}$.
- A Hamiltonian path is a path that contains all vertices.
- Similarly define a Hamiltonian cycle or tour.

Weighted Graphs

• A weighted graph G = (V, E, c) has edge weights $c : E \to \mathbb{R}_{>0}$. • In a complete graph, $E = V \times V$.

Special classes of complete weighted graphs:

• Metric if

$$c(\{v_1, v_2\}) + c(\{v_2, v_3\}) \ge c(\{v_1, v_3\})$$
 for all $v_1, v_2, v_3 \in V$.

• Euclidean if

FB, EF, MP, KS, SLS (UCSB, MIT)

$$V \subset \mathbb{R}^d$$
 and $c(\{v_i, v_j\}) = ||v_i - v_j||_2.$

Dynamic Vehicle Routing (Lecture 2/8)

Minimum Spanning Tree

FR FF MP KS SLS (UCSB MIT)

1 is a tree

• A spanning tree of G is a subgraph that

29iun10 @ Baltimore, ACC

2 connects all vertices together

Minimum Spanning Tree Problem

Given: a weighted graph G - (V, E, c)Task: find a spanning tree $T = (E_T, V_T)$ such that $\sum_{e \in E_T} c(e)$ is minimum.

Dynamic Vehicle Routing (Lecture 2/8)

Can be solved in greedy fashion using Kruskal's algorithm:

- Recursively adds shortest edge that does not create a cycle
- Runs in $O(n^2)$ time (where |V| = n)

- A tree is a graph with no cycles • A spanning tree of G is a subgraph
 - that
 - is a tree
 - 2 connects all vertices together

Minimum Spanning Tree Problem

Given: a weighted graph G - (V, E, c)Task: find a spanning tree $T = (E_T, V_T)$ such that $\sum_{e \in E_T} c(e)$ is minimum.

Can be solved in greedy fashion using Kruskal's algorithm:

- Recursively adds shortest edge that does not create a cycle
- Runs in $O(n^2)$ time (where |V| = n)

29jun10 @ Baltimore, ACC

Hamiltonian Cycle Decision Problem	Outline
Hamiltonian Cycle Given: An undirected graph G. Question: Does G contain a Hamiltonian cycle? Hamiltonian Cycle is NP-complete (One of Karp's 21 NP-complete problems) Recall, a problem is NP-complete if • Every solution can be verified in polynomial time (NP). • Every problem in NP can be reduced to it.	 Graph Theory The Traveling Salesman Problem Approximation Algorithms Metric TSP Euclidean TSP Queueing Theory
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 8 / 29	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 9 / 29
Traveling Salesman Problem	Approximation Algorithms for the TSP
 Traveling Salesman Problem (TSP) Given: A complete graph G_n = (V_n, E_n) and weights c : E_n → ℝ_{>0}. Task: Find a Hamiltonian cycle with minimum weight. TSP is NP-hard To show NP-hard: Reduce Hamiltonian Cycle to TSP. Given an undirected graph G = (V, E) with V = n: Construct complete graph G_n with weight 1 for each edge in E and weight 2 for all other edges. Then G is Hamiltonian ⇔ optimum TSP tour has length n. 	 Theorem (Sahni and Gonzalez, 1976) Unless P = NP, there is no k-factor approx alg for the TSP for any k ≥ 1. Proof Idea: k-factor approx would imply poly time algorithm for Hamiltonian Cycle. In practice for metric and non-metric problems: Heuristic: Lin-Kernighan based solvers (Lin and Kernighan, 1973) Empirically ~ 5% of optimal in O(n^{2.2}) time. Exact: Concorde TSP Solver (Applegate, Bixby, Chvatal, Cook, 2007) Exact solution of Euclidean TSP on 85, 900 points!

Metric TSP

Metric TSP

Given: A complete metric graph $G_n = (V_n, E_n)$ Task: Find a Hamiltonian cycle with minimum weight.

Eulerian Graphs

- Eulerian graph: degree of each vertex is even
- Eulerian walk: Closed walk containing every edge.
- Graph has Eulerian walk \Leftrightarrow Eulerian.
- Eulerian walk can be computed in O(|V| + |E|) time.

Double-Tree Algorithm

Double-Tree Algorithm

Double-Tree Algorithm

- 1: Find a minimum spanning tree T of graph G_n .
- 2: \overline{G} := graph containing two copies of each edge in T.
- 3: Compute Eulerian walk in Eulerian graph \overline{G} .
- 4: Walk gives ordering, ignore all but first occurrence of vertex.

Theorem

Double-Tree Algorithm is a 2-approx algorithm for the Metric TSP. Its running time is $O(n^2)$.

- Deleting one edge from a tour gives a spanning tree.
- Thus minimum spanning tree is shorter than optimal tour.
- Each edge is doubled.
- Spanning tree can be computed in $O(n^2)$ time.
- Eulerian walk computed in O(n) time.

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree ${\ensuremath{\mathcal{T}}}$ of ${\ensuremath{\mathcal{G}}}\,.$
- 2: Let W be the set of vertices with odd degree in \mathcal{T} .

Dynamic Vehicle Routing (Lecture 2/8)

29iun10 @ Baltimore, ACC

- 3: Find the minimum weight perfect matching M in subgraph generated by W.
- 4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

· · · · ·

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in T.
- 3: Find the minimum weight perfect matching M in subgraph generated by W.

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC

4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in T.
- 3: Find the minimum weight perfect matching M in subgraph generated by W.
- 4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in \mathcal{T} .
- 3: Find the minimum weight perfect matching M in subgraph generated by W.
- 4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree T of G.
- 2: Let W be the set of vertices with odd degree in \mathcal{T} .
- 3: Find the minimum weight perfect matching M in subgraph generated by W.
- 4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm

Christofides' Algorithm

- 1: Find a minimum spanning tree ${\ensuremath{\mathcal{T}}}$ of G.
- 2: Let W be the set of vertices with odd degree in \mathcal{T} .
- 3: Find the minimum weight perfect matching M in subgraph generated by W.
- 4: Find an Eulerian path in $G := (V_n, E(T) \cup M)$, (skip vertices already seen).

Christofides' Algorithm	Euclidean TSP
Theorem Christofides' Algorithm gives a $3/2$ -approx algorithm for the Metric TSP. Its running time is $O(n^3)$. • $L(Christofides) = L(MST) + L(M)$. • But, $L(MST) < L(TSP)$, and • $L(M) \le L(M') \le L(TSP)/2$. Where M' is the minimum perfect matching of W using edges that are part of TSP.	Theorem (Arora, 1998; Mitchell, 1999) For each fixed $\epsilon > 0$, a $(1 + \epsilon)$ -approximate solution can be found in $O(n^3(\log n)^c)$ time. Practical value limited to due c's dependence on ϵ .
Best known approx algorithm for Metric TSP	
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 17 / 29	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 18 / 29
Length Bounds for Euclidean TSP	Worst-case TSP Length Upper Bound (Intuition)
Length Bounds for Euclidean TSP How long is the TSP tour through <i>n</i> points in unit square?	Worst-case TSP Length Upper Bound (Intuition) • Consider $Q_n := \{x_1,, x_n\}$ of n points in unit square. • There exists $c > 0$ such that $\min \{ x_i - x_j : x_i, x_j \in Q_n \} \le \frac{c}{\sqrt{n}}.$
Length Bounds for Euclidean TSP How long is the TSP tour through <i>n</i> points in unit square? Theorem (Few, 1955)	Worst-case TSP Length Upper Bound (Intuition) • Consider $Q_n := \{x_1,, x_n\}$ of n points in unit square. • There exists $c > 0$ such that $\min \{ x_i - x_j : x_i, x_j \in Q_n \} \le \frac{c}{\sqrt{n}}.$ • Let ℓ_n denote worst-case TSP length through n pts. • Then $\ell_n < \ell_{n-1} + 2c/\sqrt{n}.$
Length Bounds for Euclidean TSP How long is the TSP tour through n points in unit square? Theorem (Few, 1955) For every set Q_n of n points in the unit square	Worst-case TSP Length Upper Bound (Intuition) • Consider $Q_n := \{x_1,, x_n\}$ of n points in unit square. • There exists $c > 0$ such that $\min \{ x_i - x_j : x_i, x_j \in Q_n \} \le \frac{c}{\sqrt{n}}.$ • Let ℓ_n denote worst-case TSP length through n pts. • Then $\ell_n \le \ell_{n-1} + 2c/\sqrt{n}.$ • Summing we get $\ell(n) \le C\sqrt{n}.$
Length Bounds for Euclidean TSPHow long is the TSP tour through n points in unit square?Theorem (Few, 1955)For every set Q_n of n points in the unit squareETSP $(Q_n) \le \sqrt{2n} + 7/4$.	Worst-case TSP Length Upper Bound (Intuition) • Consider $Q_n := \{x_1,, x_n\}$ of n points in unit square. • There exists $c > 0$ such that $\min \{ x_i - x_j : x_i, x_j \in Q_n \} \le \frac{c}{\sqrt{n}}.$ • Let ℓ_n denote worst-case TSP length through n pts. • Then $\ell_n \le \ell_{n-1} + 2c/\sqrt{n}.$ • Summing we get $\ell(n) \le C\sqrt{n}.$
Length Bounds for Euclidean TSP How long is the TSP tour through <i>n</i> points in unit square? Theorem (Few, 1955) For every set Q_n of <i>n</i> points in the unit square $ETSP(Q_n) \le \sqrt{2n} + 7/4.$ Worst-case lower bound matches:	Worst-case TSP Length Upper Bound (Intuition) • Consider $Q_n := \{x_1,, x_n\}$ of n points in unit square. • There exists $c > 0$ such that $\min \{ x_i - x_j : x_i, x_j \in Q_n \} \le \frac{c}{\sqrt{n}}.$ • Let ℓ_n denote worst-case TSP length through n pts. • Then $\ell_n \le \ell_{n-1} + 2c/\sqrt{n}.$ • Summing we get $\ell(n) \le C\sqrt{n}.$
Length Bounds for Euclidean TSP How long is the TSP tour through <i>n</i> points in unit square? Theorem (Few, 1955) For every set Q_n of <i>n</i> points in the unit square $ETSP(Q_n) \le \sqrt{2n} + 7/4.$ Worst-case lower bound matches: • Equally space <i>n</i> points on a grid The points of $Q_n = 0$	Worst-case TSP Length Upper Bound (Intuition) • Consider $Q_n := \{x_1,, x_n\}$ of n points in unit square. • There exists $c > 0$ such that $\min \{ x_i - x_j : x_i, x_j \in Q_n \} \le \frac{c}{\sqrt{n}}.$ • Let ℓ_n denote worst-case TSP length through n pts. • Then $\ell_n \le \ell_{n-1} + 2c/\sqrt{n}.$ • Summing we get $\ell(n) \le C\sqrt{n}.$
Length Bounds for Euclidean TSP How long is the TSP tour through <i>n</i> points in unit square? Theorem (Few, 1955) For every set Q_n of <i>n</i> points in the unit square $ETSP(Q_n) \le \sqrt{2n} + 7/4$. Worst-case lower bound matches: • Equally space <i>n</i> points on a grid • Then $ETSP(Q_n) = C\sqrt{n}$. • So, worst-case length $\ge C\sqrt{n}$.	Worst-case TSP Length Upper Bound (Intuition) • Consider $Q_n := \{x_1,, x_n\}$ of n points in unit square. • There exists $c > 0$ such that $\min \{ x_i - x_j : x_i, x_j \in Q_n \} \le \frac{c}{\sqrt{n}}.$ • Let ℓ_n denote worst-case TSP length through n pts. • Then $\ell_n \le \ell_{n-1} + 2c/\sqrt{n}.$ • Summing we get $\ell(n) \le C\sqrt{n}.$
Length Bounds for Euclidean TSP How long is the TSP tour through <i>n</i> points in unit square? Theorem (Few, 1955) For every set Q_n of <i>n</i> points in the unit square $ETSP(Q_n) \le \sqrt{2n} + 7/4$. Worst-case lower bound matches: • Equally space <i>n</i> points on a grid • Then $ETSP(Q_n) = C\sqrt{n}$. • So, worst-case length $\ge C\sqrt{n}$.	Worst-case TSP Length Upper Bound (Intuition) • Consider $Q_n := \{x_1,, x_n\}$ of n points in unit square. • There exists $c > 0$ such that $\min \{ x_i - x_j : x_i, x_j \in Q_n \} \le \frac{c}{\sqrt{n}}.$ • Let ℓ_n denote worst-case TSP length through n pts. • Then $\ell_n \le \ell_{n-1} + 2c/\sqrt{n}.$ • Summing we get $\ell(n) \le C\sqrt{n}.$

TSP Length for Random Points

Summary of Traveling Salesman Problem

Let Q_n be a set of n i.i.d. random variables with compact support in \mathbb{R}^d and distribution $\varphi(x)$. Then, with prob. 1

$$\lim_{n\to+\infty}\frac{\mathsf{ETSP}(Q_n)}{n^{(d-1)/d}}=\beta_{\mathsf{TSP},d}\int_{\mathbb{R}^d}\bar{\varphi}(x)^{(d-1)/d}dx,$$

where $\beta_{\text{TSP},d}$ is a constant independent of φ , and $\overline{\varphi}$ is absolutely continuous part of φ .

For uniform distribution in square of area A

The Traveling Salesman Problem

Little's Law and Load Factor

FB, EF, MP, KS, SLS (UCSB, MIT)

Outline

1 Graph Theory

3 Queueing Theory

Kendall's Notation

$$rac{\mathsf{ETSP}(Q_n)}{\sqrt{n}} o eta_{\mathsf{TSP},2} \sqrt{A} \quad ext{as} \ n o +\infty.$$

Best estimate of $\beta_{\text{TSP},2}$ is Percus and Martin, 1996

$$\beta_{\text{TSP},2} \simeq 0.7120.$$

Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC

- Solving TSP is *NP*-hard, and no approx algorithms exist.
- For metric TSP, still NP-hard but good approx algs exist.
- For Euclidean TSP, very good heuristics exist.
- Length of tour through *n* points in unit square:
 - Worst-case is $\Theta(\sqrt{n})$.
 - Uniform random is $\Theta(\sqrt{n})$.
 - For all density functions $O(\sqrt{n})$.

Basic Queueing Model

• Customers arrive, wait in a queue, and are then processed

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC

• Queue length builds up when arrival rate is larger than service rate

- Arrivals modeled as stochastic process with rate λ
- Service time of each customer is a r.v. with finite mean \bar{s} and second moment $\bar{s^2}$.
- Service rate is $1/\overline{s}$.

Queueing Notation	Little's Law and Load Factor
 Kendall's Queueing notation A/B/C: A = the arrival process B = the service time distribution C = the number of servers 	Define: • average wait-time in queue as \overline{W} • average system as $\overline{T} := \overline{W} + \overline{s}$.
 Main codes: D = Deterministic M = Markovian for arrivals: Poisson process for service times: Exponential distribution G (or GI) = General distribution (independent among customers) Example M/G/m queue: Poisson arrivals with rate λ General service times with mean s m servers 	Little's Law/Theorem For a stable queue $\overline{N} = \lambda \overline{W}$ • For <i>m</i> servers, define load factor as $\varrho := \frac{\lambda \overline{s}}{m}$ • Necessary condition for stable queue is $\varrho < 1$.
FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 25 / 29	FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 26 / 29
Wait-time examples	Lecture outline

Workshop Structure and Schedule

8:00-8:30am	Coffee Break	
8:30-9:00am	Lecture $#1$:	Intro to dynamic vehicle routing
9:05-9:50am	Lecture $#2$:	Prelims: graphs, TSPs and queues
9:55-10:40am	Lecture #3:	The single-vehicle DVR problem
10:40-11:00am	Break	
11:00-11:45pm	Lecture $#4:$	The multi-vehicle DVR problem
11:45-1:10pm	Lunch Break	
1:10-2:10pm	Lecture #5:	Extensions to vehicle networks
2:15-3:00pm	Lecture $#6$:	Extensions to different demand models
3:00-3:20pm	Coffee Break	
3:20-4:20pm	Lecture $#7$:	Extensions to different vehicle models
4:25-4:40pm	Lecture $#8:$	Extensions to different task models
4:45-5:00pm		Final open-floor discussion

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 29 / 29