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Key references for this lecture

Graph Theory Basics:
R. Diestel. Graph Theory, volume 173 of Graduate Texts in Mathematics. Springer,
2 edition, 2000

Combinatorial Optimization:
B. Korte and J. Vygen. Combinatorial Optimization: Theory and Algorithms, vol-
ume 21 of Algorithmics and Combinatorics. Springer, 4 edition, 2007

Stochastic TSP:
J. M. Steele. Probability Theory and Combinatorial Optimization. SIAM, 1987

Basic Queueing Theory:
L. Kleinrock. Queueing Systems. Volume I: Theory. Wiley, 1975
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Graph Theory Review

An undirected graph G = (V ,E ).

a path in G is a sequence v1, e1, v2, . . . , vk , ek , vk+1, with

ei 6= ej for i 6= j .
vi 6= vj for all i 6= j .

A circuit or cycle has v1 = vk+1.

A Hamiltonian path is a path that contains all vertices.

Similarly define a Hamiltonian cycle or tour.
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Weighted Graphs

A weighted graph G = (V ,E , c) has edge weights c : E → R>0.

In a complete graph, E = V × V .

Special classes of complete weighted graphs:

Metric if

c({v1, v2}) + c({v2, v3}) ≥ c({v1, v3}) for all v1, v2, v3 ∈ V .

Euclidean if

V ⊂ Rd and c({vi , vj}) = ‖vi − vj‖2.

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 6 / 29

Minimum Spanning Tree

A tree is a graph with no cycles

A spanning tree of G is a subgraph
that

1 is a tree
2 connects all vertices together

Minimum Spanning Tree Problem

Given: a weighted graph G − (V ,E , c)
Task: find a spanning tree T = (ET ,VT ) such that

∑
e∈ET

c(e) is
minimum.

Can be solved in greedy fashion using Kruskal’s algorithm:

Recursively adds shortest edge that does not create a cycle

Runs in O(n2) time (where |V | = n)
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Hamiltonian Cycle Decision Problem

Hamiltonian Cycle

Given: An undirected graph G .

Question: Does G contain a Hamiltonian cycle?

Hamiltonian Cycle is NP-complete
(One of Karp’s 21 NP-complete problems)

Recall, a problem is NP-complete if

Every solution can be verified in polynomial time (NP).

Every problem in NP can be reduced to it.
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Traveling Salesman Problem

Traveling Salesman Problem (TSP)

Given: A complete graph Gn = (Vn,En) and weights c : En → R>0.

Task: Find a Hamiltonian cycle with minimum weight.

TSP is NP-hard

To show NP-hard: Reduce Hamiltonian Cycle to TSP.

Given an undirected graph G = (V ,E ) with |V | = n:

1 Construct complete graph Gn with weight 1 for each edge in E and
weight 2 for all other edges.

2 Then G is Hamiltonian ⇔ optimum TSP tour has length n.
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Approximation Algorithms for the TSP

Theorem (Sahni and Gonzalez, 1976)

Unless P = NP, there is no k-factor approx alg for the TSP for any k ≥ 1.

Proof Idea: k-factor approx would imply poly time algorithm for
Hamiltonian Cycle.

In practice for metric and non-metric problems:

Heuristic: Lin-Kernighan based solvers (Lin and Kernighan, 1973)

Empirically ∼ 5% of optimal in O(n2.2) time.

Exact: Concorde TSP Solver (Applegate, Bixby, Chvatal, Cook, 2007)

Exact solution of Euclidean TSP on 85, 900 points!
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Metric TSP

Metric TSP

Given: A complete metric graph Gn = (Vn,En)
Task: Find a Hamiltonian cycle with minimum weight.

The Metric TSP is NP-hard.

There exist approximation algorithms!
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Eulerian Graphs

Eulerian graph: degree of each vertex is even

Eulerian walk: Closed walk containing every edge.

Graph has Eulerian walk ⇔ Eulerian.

Eulerian walk can be computed in O(|V |+ |E |) time.
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Double-Tree Algorithm

Double-Tree Algorithm

1: Find a minimum spanning tree T of graph Gn.
2: G := graph containing two copies of each edge in T.
3: Compute Eulerian walk in Eulerian graph G.
4: Walk gives ordering, ignore all but first occurrence

of vertex.
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Double-Tree Algorithm

Theorem

Double-Tree Algorithm is a 2-approx algorithm for the Metric TSP. Its
running time is O(n2).

Deleting one edge from a tour gives a spanning tree.

Thus minimum spanning tree is shorter than optimal tour.

Each edge is doubled.

Spanning tree can be computed in O(n2) time.

Eulerian walk computed in O(n) time.

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 2/8) 29jun10 @ Baltimore, ACC 15 / 29

Christofides’ Algorithm

Christofides’ Algorithm

1: Find a minimum spanning tree T of G.
2: Let W be the set of vertices with odd degree in T.
3: Find the minimum weight perfect matching M in

subgraph generated by W .
4: Find an Eulerian path in G := (Vn,E (T ) ∪ M), (skip

vertices already seen).
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Christofides’ Algorithm

Theorem

Christofides’ Algorithm gives a 3/2-approx algorithm for the Metric TSP.
Its running time is O(n3).

L(Christofides) = L(MST) + L(M).

But, L(MST) < L(TSP), and

L(M) ≤ L(M ′) ≤ L(TSP)/2.
Where M ′ is the minimum perfect matching of W using edges that
are part of TSP.

Best known approx algorithm for Metric TSP
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Euclidean TSP

Theorem (Arora, 1998; Mitchell, 1999)

For each fixed ε > 0, a (1 + ε)-approximate solution can be found in
O

(
n3(log n)c

)
time.

Practical value limited to due c’s dependence on ε.
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Length Bounds for Euclidean TSP

How long is the TSP tour through n points in unit square?

Theorem (Few, 1955)

For every set Qn of n points in the unit square

ETSP(Qn) ≤
√

2n + 7/4.

Worst-case lower bound matches:

Equally space n points on a grid

Then ETSP(Qn) = C
√

n.

So, worst-case length ≥ C
√

n.
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Worst-case TSP Length Upper Bound (Intuition)

Consider Qn := {x1, . . . , xn} of n points in unit square.
There exists c > 0 such that

min
{
‖xi − xj‖ : xi , xj ∈ Qn

}
≤ c√

n
.

Let `n denote worst-case TSP length through n pts.
Then `n ≤ `n−1 + 2c/

√
n.

Summing we get `(n) ≤ C
√

n.
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TSP Length for Random Points

Theorem (Beardwood, Halton, and Hammersley, 1959)

Let Qn be a set of n i.i.d. random variables with compact support in Rd

and distribution ϕ(x). Then, with prob. 1

lim
n→+∞

ETSP(Qn)

n(d−1)/d
= βTSP,d

∫
Rd

ϕ̄(x)(d−1)/ddx ,

where βTSP,d is a constant independent of ϕ, and ϕ̄ is absolutely
continuous part of ϕ.

For uniform distribution in square of area A

ETSP(Qn)√
n

→ βTSP,2

√
A as n → +∞.

Best estimate of βTSP,2 is Percus and Martin, 1996

βTSP,2 ' 0.7120.
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Summary of Traveling Salesman Problem

Solving TSP is NP-hard, and no approx algorithms exist.

For metric TSP, still NP-hard but good approx algs exist.

For Euclidean TSP, very good heuristics exist.

Length of tour through n points in unit square:

Worst-case is Θ(
√

n).

Uniform random is Θ(
√

n).

For all density functions O(
√

n).
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Basic Queueing Model

Customers arrive, wait in a queue, and are then processed

Queue length builds up when arrival rate is larger than service rate

λ
incoming customers outgoing customers

queue length

server
s̄

N

Arrivals modeled as stochastic process with rate λ

Service time of each customer is a r.v. with finite mean s̄ and
second moment s̄2.

Service rate is 1/s̄.
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Queueing Notation

Kendall’s Queueing notation A/B/C :

A = the arrival process

B = the service time distribution

C = the number of servers

Main codes:

D = Deterministic

M = Markovian
for arrivals: Poisson process
for service times: Exponential distribution

G (or GI ) = General distribution (independent among customers)

Example M/G/m queue:

Poisson arrivals with rate λ

General service times with mean s̄

m servers
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Little’s Law and Load Factor

Define:

average wait-time in queue as W

average system as T := W + s̄.

Little’s Law/Theorem

For a stable queue N = λW

For m servers, define load factor as

% :=
λs̄

m

Necessary condition for stable queue is % < 1.
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Wait-time examples

For M/D/1 queue:

W =
%s̄

2(1− %)

For M/G/1 queue:

W =
λs̄2

2(1− %)

For G/G/1 queue (Kingman, 1962):

W ≤ λ(σ2
a + σ2

s )

2(1− %)

and the upper bound becomes exact as % → 1−.
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Workshop Structure and Schedule

8:00-8:30am Coffee Break
8:30-9:00am Lecture #1: Intro to dynamic vehicle routing
9:05-9:50am Lecture #2: Prelims: graphs, TSPs and queues
9:55-10:40am Lecture #3: The single-vehicle DVR problem
10:40-11:00am Break
11:00-11:45pm Lecture #4: The multi-vehicle DVR problem
11:45-1:10pm Lunch Break
1:10-2:10pm Lecture #5: Extensions to vehicle networks
2:15-3:00pm Lecture #6: Extensions to different demand models
3:00-3:20pm Coffee Break
3:20-4:20pm Lecture #7: Extensions to different vehicle models
4:25-4:40pm Lecture #8: Extensions to different task models
4:45-5:00pm Final open-floor discussion
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