Dynamic Vehicle Routing for Robotic Networks
Lecture #1: Introduction

Francesco Bullo1 Emilio Frazzoli2 Marco Pavone2
Ketan Savla2 Stephen L. Smith2

1CCDC
University of California, Santa Barbara
bullo@engineering.ucsb.edu

2LIDS and CSAIL
Massachusetts Institute of Technology
{frazzoli,pavone,ksavla,slsmith}@mit.edu

Workshop at the 2010 American Control Conference
Baltimore, Maryland, USA, June 29, 2010, 8:30am to 5:00pm

Acknowledgements

Funded in part by
AFOSR grant no. FA 8650-07-2-3744 (Michigan/AFRL Collaborative Center on Control Sciences), ARO MURI “Swarms” W911NF-05-1-0219, ARO award DAAD19-03-D-0004 (Institute for Collaborative Biotechnologies), NSF awards #0705451 and #0705453, ONR award N00014-07-1-0721.

Collaborators
Alessandro Arsie (U. of Toledo), Shaunik D. Bopardikar (UCSB), Ruggero Carli (UCSB/Padova), Jorge Cortés (UCSD), Joey W. Durham (UCSB), John J. Enright (Kiva Systems), Paolo Frasca (Roma), Anurag Ganguli (Utopia Compression), João P. Hespanha (UCSB) Sonia Martínez (UCSD), Karl Obermeyer (UCSB), and Sara Susca (Honeywell).
Prototypical Dynamic Vehicle Routing Problem

Given:
- a group of vehicles, and
- a set of service demands

Objective:
provide service in minimum time
service = take a picture at location

Vehicle routing (All info known ahead of time, Dantzig '59)
Determine a set of paths that allow vehicles to service the demands

Dynamic vehicle routing (New info in real time, Psaraftis '88)
- New demands arise in real-time
- Existing demands evolve over time
Prototypical Dynamic Vehicle Routing Problem

Given:
- a group of vehicles, and
- a set of service demands

Objective:
provide service in minimum time
service = take a picture at location

Vehicle routing *(All info known ahead of time, Dantzig '59)*
Determine a set of paths that allow vehicles to service the demands

Dynamic vehicle routing *(New info in real time, Psaraftis '88)*
- New demands arise in real-time
- Existing demands evolve over time

Lecture outline
1. Acknowledgements
2. Autonomy and Networking Technologies
3. Prototypical DVR problem
4. Literature review
5. Contributions
6. Comparison with alternative approaches
 - Re-optimization
 - Online algorithms
7. Workshop Structure and Schedule

From coordination and static routing to Dynamic Vehicle Routing

Simple coordination problems arise in static environments
- motion coordination: rendezvous, deployment, flocking
- task allocation, target assignment
- static vehicle routing *(P. Toth and D. Vigo '01)*

Routing policies vs planning algorithms
dynamic, stochastic, and adversarial events take place
- design policies (in contrast to pre-planned routes or motion planning algorithms) to specify how to react to events
- dynamic demands add queueing phenomena to the combinatorial nature of vehicle routing
Literature on DVR and queueing for robotic networks

- Shortest path through randomly-generated and worst-case points (Beardwood, Halton and Hammersly, 1959 — Steele, 1990)
- Traveling salesman problem solvers (Lin, Kernighan, 1973)
- DVR formulation on a graph (Psaraftis, 1988)
- DVR on Euclidean plane (Bertsimas and Van Ryzin, 1990–1993)
- Unified receding-horizon policy (Papastavrou, 1996)

Recent developments in DVR for robotic networks:
- Adaptation and decentralization
- Vehicles with dynamics, nonholonomic vehicles, Dubins UAVs
- Pickup & delivery tasks
- Heterogeneous vehicles and team forming
- Distinct-priority and impatient demands
- Moving demands

Contributions of our recent works

Comprehensive framework for DVR in robotic systems

1. adaptive DVR policies for single vehicles in light and heavy load
2. cooperative DVR policies via partitioning
3. scalable distributed partitioning policies under a variety of communication/interaction scenarios
4. (models, algorithms and analysis of) service vehicles with dynamics & stochastic and combinatorics of nonholonomic Dubins vehicles performing Traveling Salesman Problems and DVR tasks
5. (models, algorithms and analysis of) service vehicles with time constraints and heterogeneous priorities
6. (models, algorithms and analysis of) demands requiring service by multiple heterogeneous vehicles simultaneously.
Plain-vanilla re-optimization?

Example: DVR on segment

- Objective: minimize average waiting time
- Strategy: re-optimize at each event

For adversarial target generation, vehicle travels forever without ever servicing any request \(\implies\) unstable queue of outstanding requests

Even if queue remains bounded, what about performance? how far from the optimal?
Plain-vanilla re-optimization?

Example: DVR on segment

- Objective: minimize average waiting time
- Strategy: re-optimize at each event

For adversarial target generation, vehicle travels forever without ever servicing any request \Rightarrow unstable queue of outstanding requests

Even if queue remains bounded, what about performance? how far from the optimal?

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 15 / 18
Online algorithms?

Online algorithms (Jaillet and M. R. Wagner '06)

- online algorithm operates based on input information up to the current time
- online algorithm is (worst-case) r-competitive if
 \[\text{Cost}_{\text{online}}(I) \leq r \text{Cost}_{\text{optimal offline}}(I), \quad \forall \text{ problem instances } I. \]

Disadvantages

- cumulative cost
- worst-case analysis
- not possible to include \textit{a-priori} information (e.g., arrival rate)
- not as clear what competitive ratio means
- so far, only few simple DVR problems admit online algorithms

Workshop Structure and Schedule

<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00-8:30am</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>8:30-9:00am</td>
<td>Lecture #1: Intro to dynamic vehicle routing</td>
</tr>
<tr>
<td>9:05-9:50am</td>
<td>Lecture #2: Prelims: graphs, TSPs and queues</td>
</tr>
<tr>
<td>9:55-10:40am</td>
<td>Lecture #3: The single-vehicle DVR problem</td>
</tr>
<tr>
<td>10:40-11:00am</td>
<td>Break</td>
</tr>
<tr>
<td>11:00-11:45pm</td>
<td>Lecture #4: The multi-vehicle DVR problem</td>
</tr>
<tr>
<td>11:45-1:10pm</td>
<td>Lunch Break</td>
</tr>
<tr>
<td>1:10-2:10pm</td>
<td>Lecture #5: Extensions to vehicle networks</td>
</tr>
<tr>
<td>2:15-3:00pm</td>
<td>Lecture #6: Extensions to different demand models</td>
</tr>
<tr>
<td>3:00-3:20pm</td>
<td>Coffee Break</td>
</tr>
<tr>
<td>3:20-4:20pm</td>
<td>Lecture #7: Extensions to different vehicle models</td>
</tr>
<tr>
<td>4:25-4:40pm</td>
<td>Lecture #8: Extensions to different task models</td>
</tr>
<tr>
<td>4:45-5:00pm</td>
<td>Final open-floor discussion</td>
</tr>
</tbody>
</table>

Lecture outline

1. Acknowledgements
2. Autonomy and Networking Technologies
3. Prototypical DVR problem
4. Literature review
5. Contributions
6. Comparison with alternative approaches
 - Re-optimization
 - Online algorithms
7. Workshop Structure and Schedule