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Autonomy and Networking Technologies

Individual members in the group can

sense its immediate environment

communicate with others

process the information gathered

take a local action in response

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 4 / 18



Lecture outline

1 Acknowledgements

2 Autonomy and Networking Technologies

3 Prototypical DVR problem

4 Literature review

5 Contributions

6 Comparison with alternative approaches
Re-optimization
Online algorithms

7 Workshop Structure and Schedule

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 5 / 18

Prototypical Dynamic Vehicle Routing Problem

Given:

a group of vehicles, and

a set of service demands

Objective:
provide service in minimum time
service = take a picture at location

Vehicle routing (All info known ahead of time, Dantzig ’59)

Determine a set of paths that allow vehicles to service the demands

Dynamic vehicle routing (New info in real time, Psaraftis ’88)

New demands arise in real-time

Existing demands evolve over time
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Light and heavy load regimes
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From coordination and static routing to
Dynamic Vehicle Routing

Simple coordination problems arise in static environments

1 motion coordination: rendezvous, deployment, flocking

2 task allocation, target assignment
3 static vehicle routing (P. Toth and D. Vigo ’01)

Routing policies vs planning algorithms

dynamic, stochastic and adversarial events take place

1 design policies (in contrast to pre-planned routes or motion planning
algorithms) to specify how to react to events

2 dynamic demands add queueing phenomena to the combinatorial
nature of vehicle routing
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Literature on DVR and queueing for robotic networks

Shortest path through randomly-generated and worst-case points
(Beardwood, Halton and Hammersly, 1959 — Steele, 1990)

Traveling salesman problem solvers (Lin, Kernighan, 1973)

DVR formulation on a graph (Psaraftis, 1988)

DVR on Euclidean plane (Bertsimas and Van Ryzin, 1990–1993)

Unified receding-horizon policy (Papastavrou, 1996)

Recent developments in DVR for robotic networks:

Adaptation and decentralization

Vehicles with dynamics, nonholonomic vehicles, Dubins UAVs

Pickup & delivery tasks

Heterogeneous vehicles and team forming

Distinct-priority and impatient demands

Moving demands
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Contributions of our recent works

Comprehensive framework for DVR in robotic systems

1 adaptive DVR policies for single vehicles in light and heavy load

2 cooperative DVR policies via partitioning

3 scalable distributed partitioning policies under a variety of
communication/interaction scenarios

4 (models, algorithms and analysis of) service vehicles with dynamics
& stochastic and combinatorics of nonholonomic Dubins vehicles
performing Traveling Salesman Problems and DVR tasks

5 (models, algorithms and analysis of) service vehicles with time
constraints and heterogeneous priorities

6 (models, algorithms and analysis of) demands requiring service by
multiple heterogeneous vehicles simultaneously.
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Plain-vanilla re-optimization?

Example: DVR on segment

Objective: minimize average
waiting time

Strategy: re-optimize at each
event

10 0.5

1 For adversarial target generation, vehicle travels forever without ever
servicing any request =⇒ unstable queue of outstanding requests

2 Even if queue remains bounded, what about performance? how far
from the optimal?
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Online algorithms?

Online algorithms (Jaillet and M. R. Wagner ’06)

online algorithm operates based on input information up to the
current time

online algorithm is (worst-case) r -competitive if

Costonline(I ) ≤ rCostoptimal offline(I ), ∀ problem instances I .

Disadvantages

1 cumulative cost

2 worst-case analysis

3 not possible to include a-priori information (e.g., arrival rate)

4 not as clear what competitive ratio means

5 so far, only few simple DVR problems admit online algorithms

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 16 / 18

Lecture outline

1 Acknowledgements

2 Autonomy and Networking Technologies

3 Prototypical DVR problem

4 Literature review

5 Contributions

6 Comparison with alternative approaches
Re-optimization
Online algorithms

7 Workshop Structure and Schedule

FB, EF, MP, KS, SLS (UCSB, MIT) Dynamic Vehicle Routing (Lecture 1/8) 29jun10 @ Baltimore, ACC 17 / 18

Workshop Structure and Schedule

8:00-8:30am Coffee Break
8:30-9:00am Lecture #1: Intro to dynamic vehicle routing
9:05-9:50am Lecture #2: Prelims: graphs, TSPs and queues
9:55-10:40am Lecture #3: The single-vehicle DVR problem
10:40-11:00am Break
11:00-11:45pm Lecture #4: The multi-vehicle DVR problem
11:45-1:10pm Lunch Break
1:10-2:10pm Lecture #5: Extensions to vehicle networks
2:15-3:00pm Lecture #6: Extensions to different demand models
3:00-3:20pm Coffee Break
3:20-4:20pm Lecture #7: Extensions to different vehicle models
4:25-4:40pm Lecture #8: Extensions to different task models
4:45-5:00pm Final open-floor discussion
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