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Outline and Aims

Dynamical Network Systems via Contraction Theory
@ structure and function of dynamical network systems
@ contractivity of dynamical systems

© perspectives into artificial & biological neural networks

et




Structure and function for dynamical network systems

D:-c?%\ @)ﬁ

averaging compartmental flows mutualism virus spread coupled oscillators social power

network structure — function = dynamic behavior




Structure and function for dynamical network systems

function = dynamic behavior
highly-ordered transient and asymptotic behavior:

@ unique globally exponential stable equilibrium
& two natural Lyapunov functions
@ robustness properties
bounded input, bounded output (iss)
robustness margin wrt unmodeled dynamics
robustness margin wrt delayed dynamics

periodic input, periodic output
modularity and interconnection properties

©0©00

accurate numerical integration and equilibrium point computation

contracting dynamical systems



Contraction theory: historical notes

@ Origins

S. Banach. Sur les opérations dans les ensembles abstraits et leur application

aux équations intégrales. Fundamenta Mathematicae, 3(1):133-181, 1922.
d

S. M. Lozinskii. Error estimate for numerical integration of ordinary differ-
ential equations. |. [zvestiya Vlysshikh Uchebnykh Zavedenii. Matematika,
5:52-90, 1958. URL http://mi.mathnet.ru/eng/ivm2980. (in Russian)

C. A. Desoer and H. Haneda. The measure of a matrix as a tool to ana-
lyze computer algorithms for circuit analysis. /[EEE Transactions on Circuit
Theory, 19(5):480-486, 1972. 4

@ Application in dynamics and control: W. Lohmiller and J.-J. E. Slotine. On contraction analysis for
non-linear systems. Automatica, 34(6):683-696, 1998. @

@ Reviews:
M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of
complex networks via contraction theory. In J. Lii, X. Yu, G. Chen, and W. Yu, editors, Complex Systems
and Networks, pages 313-339. Springer, 2016. ISBN 978-3-662-47824-0. @

P. Giesl, S. Hafstein, and C. Kawan. Review on contraction analysis and computation of contraction
metrics, 2022. URL https://arxiv.org/abs/2203.01367. To appear in Journal of Computational Dynamics


http://dx.doi.org/10.4064/fm-3-1-133-181
http://mi.mathnet.ru/eng/ivm2980
http://dx.doi.org/10.1109/TCT.1972.1083507
http://dx.doi.org/10.1016/S0005-1098(98)00019-3
http://dx.doi.org/10.1007/978-3-662-47824-0_12
https://arxiv.org/abs/2203.01367

The Banach Contraction Theorem is also referred to as the Picard-Banach-Caccioppoli,
because of the earlier work by Picard (1890) on the “method of successive approximations”
and the later independent work by Renato Caccioppoli (1930).

Figure: Renato Caccioppoli (Napoli, 20 gennaio 1904 — Napoli, 8
maggio 1959) was an ltalian mathematician

1921-1932 student and researcher @ Napoli
1931-1934 professor @ Padova
1934-1959 professor @ Napoli

R. Caccioppoli. Un teorema generale sull’esistenza di elementi
uniti in una trasformazione funzionale. Rendiconti
dell’Accademia Nazionale dei Lincei, 11:794-799, 1930




Q@ Lotka-Volterra population dynamics (Lotka, 1920; Volterra, 1928):
¢1-weakly contracting (after a rescaling change of coordinates)

@ Matrosov-Bellman interconnected stable systems (Bellman, 1962; Matrosov, 1962):
strongly contracting wrt composite norm

© Kuramoto coupled oscillators (Kuramoto, 1975):

strongly semicontracting wrt ({5, 1I,,) norm, in neighb'd of each phase-cohesive
equilibrium

Q Yorke multigroup SIS epidemic model (Lajmanovich and Yorke, 1976):
equilibrium contracting wrt weighted ¢ //, norms (at disease-free and endemic eq.)

© Hopfield and cellular neural networks (Hopfield, 1982):
{1 /{~-strongly contracting

O Daganzo cell transmission model for traffic networks (Daganzo, 1994):
{1-weakly contracting, when the dynamics is monotone

@ Chua’s diffusively-coupled dynamical systems (Wu and Chua, 1995):
strongly semi-contracting wrt (2,p) tensor norm on R" ® R¥

o ..



Contraction Theory
for Dynamical Systems

Francesco Bullo

Contraction Theory for Dynamical Systems, Francesco Bullo,
KDP, 1.0 edition, 2022, ISBN 979-8836646806

1. Content:

(i) Banach contraction theorem and fixed point theory,
(i) induced norms and induced log norms of matrices

(iii) strongly contracting dynamics over normed spaces,
(iv) weakly-contracting dynamics and monotone dynamics,
(v) semicontracting and partially contracting systems,

(vi) examples: Hopfield neural networks, systems in Lure’ form, inter-
connected systems, gradient and primal dual flows of convex functions,
Lotka-Volterra population dynamics, Daganzo traffic models, averag-
ing flows, and diffusively-coupled synchronizing systems.

2. " Continuous improvement is better than delayed perfection”
Mark Twain

— Self-Published and Print-on-Demand at:
https://www.amazon.com/dp/B0B4K1BTF4
— PDF Freely available at
http://motion.me.ucsb.edu/book-ctds


https://www.amazon.com/dp/B0B4K1BTF4
http://motion.me.ucsb.edu/book-ctds

© Contractivity of dynamical systems
@ From discrete-time to continuous-time dynamics
@ From closed to open systems
@ From single systems to networks of systems



Linear algebra: induced norms

Vector norm

Induced matrix norm

Induced matrix log norm

n
el = 3" o

n
_ 2
lall = /S a3

[#lloo = max |z
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{1,...,n}
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Discrete-time dynamics and Lipschitz constants

Tp+1 = F(zg) on R™ with norm || - || and induced norm || - ||

Lipschitz constant

Lip(F) = inf{¢ > 0 such that ||F(z) — F(y)|| < {||lz —y| for all z,y}
sup,, || DF (z)

For scalar map f, Lip(f) = sup, |f'()|
For affine map F4(z) = Az +a

|z]o.p = (x" Px)*/? Lipy p(Fa) = [|A]l2,p < ¢ — ATPA=<2P
12/l ooy = max |z:] /1 Lips y(Fa) = | Allccy < € = n'|Al < n'



Banach contraction theorem for discrete-time dynamics:
If p:= Lip(F) < 1, then
@ F is contracting = distance between trajectories decreases exp fast (o)

@ F has a unique, glob exp stable equilibrium z*

,,,,,,,,,,,,,,,

ball centered at x(k) with radius p*



From induced norms to induced log norms

The induced log norm of A € R™ ™ wrt to || - |:

. | I+ RhA|| -1
A):= lim ———
HA) = B
Basic properties:
subadditivity: u(A+ B) < p(A) + pu(B)
scaling: u(bA) = bu(A), Vb >0
convexity: @A+ (1—0)B) <0u(A)+ (1 —0)u(B), Vo € [0,1]

spectral radius < induced norm

spectral abscissa < induced log norm



Example induced log norms

Vector norm Induced matrix norm Induced matrix log norm
et =307 Joid Al = max 3T Jayl A= max (o 4307 lag)
= max column “absolute sum” of A
n A+ AT
lall = /> 72 Al = Amax(AT4) p2(4) = Amar (Z5)
n n
l#lloo = max fail  flAlloo = max ST fas poo(A) = max (it 327 las])

= max row “absolute sum" of A




Continuous-time dynamics and one-sided Lipschitz constants

& =F(x) on R™ with norm || - || and induced log norm pu(-)

One-sided Lipschitz constant

osLip(F) = inf{b € R such that [F(z) — F(y),z —y] < bz —y||*> for all z,y}
= sup, p(DF(z))

For scalar map f, osLip(f) = sup, f'(z)
For affine map F4(z) = Az + a
= ATP+ AP < 2P

— ai; + Z |aijni/n; < €
J#i

osLipy p(Fa) = p2,p(4) <

14
OSLipoo,n(FA) = /J’OOJ)(A) ¢

IN



Banach contraction theorem for continuous-time dynamics:
If —c:= osLip(F) < 0, then

@ F is infinitesimally contracting = distance between trajectories decreases exp fast (e ™)

@ F has a unique, glob exp stable equilibrium z*

ct




From inner products to weak pairings

A weak pairing is [-,-] : R® x R" — R satisfying
Q [z1 + z2,y] < [z1,y] + [x2,y] and z — [z, y] is continuous,
Q [bx,y] = [z,by] = b[z,y] for b > 0 and [—z, —y] = [z, y],
Q [z,z] >0, for all z # 0,

O [[z.y]| < [ 2] [y, ]"",
Given norm || - ||, compatibility: [z, z] = ||=||? for all x

Key properties

Curve norm derivative formula: %DJer(t)H2 = [2(t), z(t)]
Sup of non-Euclidean numerical range: w(A) = sup [Az,x]
llll =1

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. /EEE
Transactions on Automatic Control, 2022a. &


http://dx.doi.org/10.1109/TAC.2022.3183966

Example weak pairings

Norms From inner products to From LMls to
sign and max pairings log norms
||95||§7p1/2 =a' Pz [z, 4]y pr/2 = z' Py fig p1/2(A) = min{b | ATP 4+ PA < 2bP}
]l = Z | 2,51 = Iyllisign(y) e pn(4) = max (a“ + Z laig )
(2
lalloe = max|ai| [yl = max wizi () = max (aq + Y layl)

where I (z) = {i € {1,...,n} such that |z;| = ||z||c }



Log Norm Demidovich One-sided Lipschitz

bound condition condition

jo,p(DF(2)) b PDF(x)+ DF(2)T P = 2bP (x —y)TP(F(@) — F(y)) < bllz — yllZ0/2

pi(DF(z)) < b sign(v) " DF(z)v < bl|v]|; sign(z —y) " (F(z) — F(y)) < bllz — g1

too(DF(2)) < b max v; (DF(z)v); < blv|% max (z; —;)(Fi() — Fi(y)) < bllz —yl%
i€1 (v) i€l (z—y)

Equivalent contractivity conditions

J. A. Jacquez and C. P. Simon. Qualitative theory of compartmental systems. SIAM Review, 35(1):43-79, 1993. ¢

H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. /[EEE Transactions
on Neural Networks, 12(2):360-370, 2001. 4

G. Como, E. Lovisari, and K. Savla. Throughput optimality and overload behavior of dynamical flow networks under monotone distributed routing. /EEE
Transactions on Control of Network Systems, 2(1):57767, 2015. 4


http://dx.doi.org/10.1137/1035003
http://dx.doi.org/10.1109/72.914530
http://dx.doi.org/10.1109/TCNS.2014.2367361

Background on one-sided Lipschitz continuity

contraction conditions without Jacobians have been studied under many different names:

o

uniformly decreasing maps in: L. Chua and D. Green. A qualitative analysis of the behavior of

dynamic nonlinear networks: Stability of autonomous networks. /EEE Transactions on Circuits and
Systems, 23(6):355-379, 1976. ¢

@ no-name in: A. F. Filippov. Differential Equations with Discontinuous Righthand Sides. Kluwer,

1988. ISBN 902772699X (Chapter 1, page 5)

© one-sided Lipschitz maps in: E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary

Differential Equations |. Nonstiff Problems. Springer, 1993. @ (Section 1.10, Exercise 6)

© maps with negative nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear

o
o

o

measures: A new approach to exponential stability analysis for Hopfield-type neural networks.
IEEE Transactions on Neural Networks, 12(2):360-370, 2001. @

dissipative Lipschitz maps in: T. Caraballo and P. E. Kloeden. The persistence of
synchronization under environmental noise. Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences, 461(2059):2257-2267, 2005. @

maps with negative lub log Lipschitz constant in: G. Soderlind. The logarithmic norm. History
and modern theory. BIT Numerical Mathematics, 46(3):631-652, 2006. 4

QUAD maps in: W. Lu and T. Chen. New approach to synchronization analysis of linearly
coupled ordinary differential systems. Physica D: Nonlinear Phenomena, 213(2):214-230, 2006. 4

incremental quadratically stable maps in: L. D'Alto and M. Corless. Incremental quadratic
stability. Numerical Algebra, Control and Optimization, 3:175-201, 2013. ¢


http://dx.doi.org/10.1109/TCS.1976.1084228
http://dx.doi.org/10.1007/978-3-540-78862-1
http://dx.doi.org/10.1109/72.914530
http://dx.doi.org/10.1098/rspa.2005.1484
http://dx.doi.org/10.1007/s10543-006-0069-9
http://dx.doi.org/10.1016/j.physd.2005.11.009
http://dx.doi.org/10.3934/naco.2013.3.175

© Contractivity of dynamical systems
@ From discrete-time to continuous-time dynamics
@ From closed to open systems
@ From single systems to networks of systems



From closed to open systems 1/3

Fot time and input-dependent vector F,

& = F(t,z,u(t)), z(0) =x9 € X, u(t) el (1)

Given norms || - || x and || - ||z, assume constants ¢, ¢ > 0 s.t.
@ osLip wrt z: osLip,(F) < —c < 0, uniformly in t,u

o Lip wrt u: Lip,(F) < ¢, uniformly in ¢,z



Incremental ISS and gain of contracting systems 2/3

Then
Q any soltns: x(t) with input u, and y(t) with input u,

Df||lz(t) —y(®)llx < —clla() —y@®llx + Clua(t) — uy(t)|lu

@ F is incrementally ISS, that is, for all xg, yo

e (1—e
le@®) —y®lx < elao—golx + " sup Jup(r) - uy(rll

T€[0,¢]

© F has incremental LY, ,, gain equal to //c, for g € [1, ],

() —y()llxg < é [ (-) = uy(lleeg  (for o = yo)




Signal norms and system gains 3/3

Given norm || - ||x on R™ (or || - |lx on R¥),

° Eg\,, q € [1, 0], is vector space of continuous signals, z : R>o — R™, with well-defined

bounded norm
R q 1/q
(] le@lgde) ™ ifae ool

supy>o [ ()]l x if ¢ = o0

[2()llx.q = ()

@ Input-state system has EqX_u—induced gain upper bounded by v > 0 if, for all u € £},
the state x from zero initial state satisfies

() llxg < v llul)leq (3)



From nominal to uncertain systems

Given a norm || - ||, consider
& =F(t,x) + G(t,x) (4)

Assume:

@ osLip,(F) < —c<0
@ osLip,(G) <d

Then

© (contractivity under perturbations) if d < c,
then F + G is strongly contracting with rate ¢ — d,

@ (equilibria under perturbations) if additionally F and G are time-invariant, then the
unique equilibrium points z* of F and z** of F 4 G satisfy

e < 16

- (5)

[z




From time-invariant to periodic systems

\W“

For time-varying vector field F and norm || - ||
Q osLip,(F) < —c<0

@ F is T-periodic

N\

Then
© there exists a unique periodic solution z* : R>g — R™ with period T’

@ for every initial condition x,

|l2(t, ) — 2" (t)|| < e™|lzo — 2" (0)] (6)

G. Russo, M. Di Bernardo, and E. D. Sontag. Global entrainment of transcriptional systems to periodic inputs. PLoS Computational
Biology, 6(4):¢1000739, 2010. @


http://dx.doi.org/10.1371/journal.pcbi.1000739

© Contractivity of dynamical systems
@ From discrete-time to continuous-time dynamics
@ From closed to open systems
@ From single systems to networks of systems



B |

n subsystems

@ n local norms || - ||; on RYi
@ an aggregating norm || - ||agg on R™
© composite norm

G. Russo, M. Di Bernardo, and E. D. Sontag. A contraction approach to the hierarchical analysis and design of networked systems. /EEE
Transactions on Automatic Control, 58(5):1328-1331, 2013. @


http://dx.doi.org/10.1109/TAC.2012.2223355

Networks of contracting systems

Interconnected subsystems: x; € RN and z_; € RN—Ni;

j?i:Fi(l‘i,CL‘_i), for i € {1,...,1’L}

Network contraction theorem

e oslLip wrt z;: osLip,, (F;) < —c;, uniformly in z_;
o Lip wrt to z;: Lip, (F;) < 4, uniformly in z_;
=€l ooo gln

@ the Lipschitz constants matrix | : . | is Hurwitz

gnl oo —Cp

— the interconnected system is infinitesimally contracting




The network science of Metzler Hurwitz matrices

—C1 ... gln
is Metzler (so that Perron-Frobenius Theorem applies)

Enl ... —Cp

Hurwitzness depends upon both topology and edge weights
@ directed acyclic interconnections of contracting systems are strongly contracting

@ For n = 2, Hurwitz if and only if small gain condition

b1z £
C1 C2

cycle gain := <1

@ For n > 3, Hurwitz if and only if network small-gain theorem for Metzler matrices




Hurwitz Metzler Theorem
Q@ M is Hurwitz,
@ there exists 7 € R%, such that " M < 0, or, equivalently, i, (M) <0,

© there exists £ € RY such that M¢ < 0, or, equivalently, ,U/oo’[é']—l(M) <0, and

O there exists a diagonal P = P" > 0 satisfying M ' P + PM < 0 or, equivalently,
fig p1/2(M) < 0.




Input: a Metzler matrix M € R™*™

Output: polynomials {vc,,...,7c,} in entries of M
1: C := set of simple cycles of digraph associated to M
2: 74 := gain of cycle p € C
3: for ¢ from 2 to n

4. C; := cycles in C passing through only nodes 1,...,%
5 e = Z’V¢> —Z VoV T Z YoV Vp — "
$€C; $peC; é,9,p€C;

L oLy, ¢Lp, P Llp

Network small-gain theorem for Metzler matrices
Metzler M is Hurwitz <= Yo, < 1,--- e, <1

@ not unique: distinct/equivalent conditions after renumbering, redundancy

@ computational efficiency: after precomputation of simple cycles

X. Duan, S. Jafarpour, and F. Bullo. Graph-theoretic stability conditions for Metzler matrices and monotone systems. SIAM Journal on
Control and Optimization, 59(5):3447-3471, 2021. ¢


http://dx.doi.org/10.1137/20M131802X

—C1 0 0 f14

0 —co floz loy ?®
M = )
0 l32 —c3 Ln Qg/d)g
by lyo  lyz —ca

Figure: associated digraph and simple cycles

14047 _ l34l43 _ lo3lay _ laylin
° ’}/¢1 cicqg ! ’y 2 - czcq ! /7 3 — cac3 and ’7 4 = “yca

0 Co=10
° C3={#3}: Y3 = Vg3 < 1 (redundant)
© Co=1{1,. ., da} ey = Z?:l Voi = Vo Vs < 1



—C1 0 0 0 515 £16
0 —C2 0 524 625 0
0 0 —C3 634 0 €36
0 542 643 —C4q 0 0

€51 452 0 0 —Cs 0

Ll 0 fe3 O 0 —cg]

@ Co, C3 empty
o Cy = {¢3}: v3 <1 (redundant)

¢2 o5

Figure: associated digraph and simple cycles

0 Cs ={d1,02,P3}: ves =71 +72 +73 — 1173 — Y23 < 1

° Cs=A{¢1,...

5
JO5Y VCs = Doy Vi — Y13 — Y2Y3 — V34 — Y2 Y4 + Y2374 < 1



© Perspectives into artificial & biological neural networks



Artificial and biological neural networks

artificial neural network AlexNet '12 C. elegans connectome ’'17

Aim: understand the dynamics and functionality of neural networks, so that
o reproducible behavior, i.e., equilibrium response as function of stimuli
@ robust behavior in face of uncertain stimuli and dynamics
e functional/learning models, efficient computational tools, periodic behaviors ...

A. Krizhevsky, |. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. Advances in Neural Information Processing Systems, 25, 2012

G. Yan, P. E. Vértes, E. K. Towlson, Y. L. Chew, D. S. Walker, W. R. Schafer, and A.-L. Barabdsi. Network control principles predict neuron function in the Caenorhabditis
elegans connectome. Nature, 550(7677):519-523, 2017. 4


http://dx.doi.org/10.1038/nature24056

Artificial and biological neural networks — mathematization

Feedforward NN Implicit/Recurrent NN
O
@)
. 8 -y

O
O

r1 T2 T3 T

Tit1 = (I)(szz + bi), To = U,
y=Cxr+d

Aim:
@ well-posedness of the static model
@ dynamic input/output models
@ highly-ordered transient4asymptotic dynamic behavior

@ biologically-plausible optimization




From continuous-time contracting dynamics to discrete-time computation

x = G(x)
Banach contraction theorem

If Lip(G) < 1 that is ||G(u) — G(v)|| < Lip(G)]|ju — v],
then Picard iteration x4+ = G(zy) is a Banach contraction

e

For Lip(G) > 1, define the average iteration

Tpr1 = (1 — a)xg + aG(zy)

Infinitesimal Contraction Theorem
@ there exists 0 < o < 1 such that the average iteration is a Banach contraction
@ the map G satisfies osLip(G) < 1
@ the dynamics & = —z + G(z) is infinitesimally contracting




Average iteration on the inner product space (R", ¢5)

Given F: R — R"™

x* € zero(F) < " € fixed(G), where G =Id+F
consider forward step = Euler integration for I = average iteration for G:
Tip+1 = (ld+aF)z, =z + aF (z) =(1—a)ld+aG

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = {/c > 1

@ the map Id +aF is a contraction map with respect to || - ||, p1/2 for
2
O<a< —
CcK

@ the optimal step size minimizing and minimum contraction factor:

1




{~-contracting recurrent neural networks

x = ®(Waz + Bu) (fixed point)

& =—x+ ®(Wz + Bu) (recurrent NN)

Tpr1 = (1 — @)z + a®(Wzy + Bu) (average iter.n)

v

Maximizing a convex function over polytope:

osLipy (=2 + ®(Wz + Bu)) = Sup pioo(—Ipy + DO - W) = —1 + f1oo (W)«

If poo(W) < 1 (i.e., aii + > |aij| <1 for all 1)
e dynamics is contracting with rate 1 — oo (W) 4

1_I’LOO(W)+ S — 1

@ average iteration is Banach with factor 1 - ————— T
1 — min;(as;)— 1 — min;(a;;)—




Coupled neural-synaptic networks with Hebbian learning
Qc\\é Q
@ i = —cpxi + ¢(Zj w;; ;)

wij = hijo(x:)d(x;) — cswij
O
o O

coupled neural-synaptic dynamics

n
Tj = —Cn®i + (I)<Zj:1 Wi x5 + Ui):

wij = hij®(z;) () — cswij + Ui

network small gain condition:

cnCs > interconnection strength

V. Centorrino, F. Bullo, and G. Russo. Contraction analysis of Hopfield neural networks with Hebbian learning. In /EEE Conf. on Decision
and Control, Dec. 2022. % To appear


http://dx.doi.org/10.48550/arXiv.2204.05382

© On structure and function of dynamical network systems

© Contractivity of dynamical systems
@ From discrete-time to continuous-time dynamics
@ From closed to open systems
@ From single systems to networks of systems

© Perspectives into artificial & biological neural networks
@ Conclusions and future research

© Advanced topics
@ Advanced Topic: Optimization and Fixed Point Theory
@ Advanced Topic: Contractivity with respect to Euclidean vs. nonEuclidean norms
@ Advanced Topic: Semicontraction Theory and Dual Seminorms
@ Advanced Topic: Indirect Optimal Control
@ Advanced Topic: Network contraction theory with delays
@ Advanced Topic: Riemannian manifolds



Conclusions and future research

Contraction theory for dynamical system
© from discrete-time to continuous-time
@ from single system to networks of systems
© Metzler Hurwitz, fixed point computation, ...

© applications to neural networks

Future work

© open problems
@ local contractivity in multistable systems
@ network theory of Metzler Hurwitz matrices
@ contractivity of Lyapunov-diagonally-stable neural networks

@ applications to networks, control and optimization

© learning strategies in neuroscience and ML



References

Contraction theory on normed spaces:
@ A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. /EEE
Transactions on Automatic Control, 2022a.
@ S. Jafarpour, A. Davydov, and F. Bullo. Non-Euclidean contraction theory for monotone and positive systems. |[EEE
Transactions on Automatic Control, 2023. 9. To appear

Contracting neural networks:

@ S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean
contractions. In Advances in Neural Information Processing Systems, Dec. 2021. 9

@ A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks. In
American Control Conference, pages 1527-1534, Atlanta, USA, May 2022c. g

@ A. Davydov, S. Jafarpour, A. V. Proskurnikov, and F. Bullo. Non-Euclidean monotone operator theory with
applications to recurrent neural networks. In IEEE Conf. on Decision and Control, Dec. 2022b. 4. To appear

@ V. Centorrino, F. Bullo, and G. Russo. Contraction analysis of Hopfield neural networks with Hebbian learning. In
IEEE Conf. on Decision and Control, Dec. 2022. 4. To appear

Tutorial, text and extensions:
@ K. D. Smith and F. Bullo. Contractivity of the method of successive approximations for optimal control. /EEE
Control Systems Letters, Nov. 2022. 4. To appear
@ F. Bullo, P. Cisneros-Velarde, A. Davydov, and S. Jafarpour. From contraction theory to fixed point algorithms on
Riemannian and non-Euclidean spaces. In /EEE Conf. on Decision and Control, Dec. 2021. d
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Optimization and Fixed Point Theory

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean
contractions. In Advances in Neural Information Processing Systems, Dec. 2021. 4
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Contraction theory on inner product space (R, ¢5)

For differentiable V' : R™ — R, equivalent statements:
@ V is strongly convex with parameter m

@ —gradV is m-strongly infinitesimally contracting, that is

(- gradV (z) + gradV(y)) ' (¢ — ) < —mllz — y|3

For map F : R® — R"™, equivalent statements:
© F is a monotone operator? (or a coercive operator) with parameter m,

@ -—F is m-strongly contracting

?F : R® — R™ is a monotone operator if (F(z) — F(y),z—y)) >0




On fixed point algorithms and Banach contractions

x = G(x)
Banach Contraction Theorem

If Lip(G) < 1 that is ||G(u) — G(v)|| < Lip(G)]|ju — v],
then Picard iteration x4+ = G(zy) is a Banach contraction

e

For Lip(G) > 1, define the average iteration

Tpr1 = (1 — a)xg + aG(zy)

Infinitesimal Contraction Theorem
@ there exists 0 < o < 1 such that the average iteration is a Banach contraction
@ the map G satisfies osLip(G) < 1
© the dynamics & = —z + G(«) is infinitesimally strongly contracting




Robustness of fixed point algorithms

Robustness based upon Contraction
x} is a fixed point of z = G(z,u) and Lip, G < 1, then

u

Lip, G
ot — 23l < Pl o]

— Lipr||

e

Robustness based upon Infinitesimal Contraction
x} is a fixed point of z = G(z,u)

x} is a fixed point of x = G(x,v) + D(z,v), and
osLip, (G + D) < 1, then

1

* *
— <
o —zull < 1 — osLip,(G+ D

5 (Lipu( 4 D) Ju— ol + (e, )]




Average iteration on the inner product space (R", ¢5)

Given F: R — R"™

x* € zero(F) < " € fixed(G), where G =Id+F
consider forward step = Euler integration for I = average iteration for G:
Tip+1 = (ld+aF)z, =z + aF (z) =(1—a)ld+aG

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = {/c > 1

@ the map Id +aF is a contraction map with respect to || - ||, p1/2 for
2
O<a< —
CcK

@ the optimal step size minimizing and minimum contraction factor:

1




Average iteration on the normed vector spaces (R", {1 /()

Consider a norm || - || with compatible weak pairing [-, ]
Recall forward step method x4 = (Id +aF)z, = z + oF (z)

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = {/c > 1

© the map Id +aF is a contraction map with respect to || - || for

0 -
<a<cm(1+;@)

@ the optimal step size minimizing and minimum contraction factor:

iem ke 0l )

. 1 1 1
e =1- 53+ 5o+ ()




Application: /.-contracting neural networks

x = ®(Ax + Bu+b) (INN fixed point)
&t =—z+ ®(Az + Bu+1b) (Recurrent NN)
Tpr1 = (1 — a)xg + a®(Axy + Bu+b) (Average iter.n)

Hoo(A) < 1 (i.e., ai; + Z la;j| < 1 for all 72)
J

@ dynamics is contracting with rate 1 — p1o(A4)+

1— A 1
@ average iteration is Banach with factor 1 — w ata=———-—+——
1 — min;(as;)— 1 — min;(as;) -
_ 1BllsollCllso

o input-output Lipschitz constant Lip,_,, =
1- NW(A)+




Background on Infinitesimal Contraction Theorem

@ there exists 0 < o < 1 such that the average iteration is a Banach contraction
@ the map G satisfies osLip(G) < 1

© the dynamics & = F(z) := —z + G(x) is infinitesimally contracting

@ the equivalence (2) <= (3) is just a transcription:
o F = —1d+G contracting with rate ¢ <= osLip(F) < —¢ < osLip(G) <1 —¢, for
c>0
e in ({3, P), osLip(F) < —c is usual Krasovskii: PJ(z)+ J(z)" P < —2¢P for all z and J = DF
@ (2) = (1): known in monotone operator theory (page 15 “forward step method” in?)
e vector field F is contracting with rate ¢ <= —F is strongly monotone with parameter ¢
@ Theorem 1 in? proves the equivalence (1) <= (2) for any norm, i.e., the implication (2)
= (1) for any norm (with proper osLip definitions) and the converse direction (1) =
(2) for £3, P. Theorem 3 in? proves partly the “Robustness based upon infinitesimal
contraction” .

1E. K. Ryu and S. Boyd. Primer on monotone operator methods. Applied Computational Mathematics, 15(1):3-43, 2016
S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in Neural Information

Processing Systems, Dec. 2021. 4
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Euclidean vs. non-Euclidean contractions

Most foundational results in systems theory are based on /5 linear-quadratic theory;
their ¢1 /¢ analogs are yet to be worked out.

NonEuclidean contractions: biological transcriptional systems (Russo et al., 2010), Hopfield
neural networks (Fang and Kincaid, 1996; Qiao et al., 2001), chemical reaction

networks (Al-Radhawi and Angeli, 2016), traffic networks (Coogan and Arcak, 2015; Como
et al., 2015; Coogan, 2019), multi-vehicle systems (Monteil et al., 2019), and coupled
oscillators (Russo et al., 2013; Aminzare and Sontag, 2014)



Advantages of non-Euclidean approaches

© 0

especially well suited for certain class of systems

computational advantages: non-Euclidean log-norm constraints lead to LPs, whereas ¢
constraints leads to LMIs. Parametrization of log-norm constrained matrices is polytopic.
A. Rantzer. Scalable control of positive systems. European Journal of Control, 24:72-80, 2015. ¢

guaranteed robustness to structural perturbations: £, contractivity ensures:

@ absolute contractivity = with respect to a class of activation functions
@ total contractivity = remove any node and all its incident connections
@ connective contractivity = remove any set of edges

adversarial input-output analysis

{o better suited for the analysis of adversarial examples than £5: in high dimensions, large
inner product between two vectors is possible even when one vector has small £, norm

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In International Conference on Learr
Representations (ICLR), 2015. URL https://arxiv.org/abs/1412.6572

fully asynchronous distributed model: £, contractions

D. P. Bertsekas. Distributed asynchronous computation of fixed points. Mathematical Programming, 27(1):107-120, 1983. 4


http://dx.doi.org/10.1016/j.ejcon.2015.04.004
https://arxiv.org/abs/1412.6572
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Semicontraction Theory, Dual Seminorms and Ergodicity

A. A. Markov. Extensions of the law of large numbers to dependent quantities. /zvestiya
Fiziko-matematicheskogo obschestva pri Kazanskom universitete, 15, 1906. (in Russian)

S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.
Fundamenta Mathematicae, 3(1):133-181, 1922. @

W. Wang and J. J. Slotine. On partial contraction analysis for coupled nonlinear oscillators. Biological
Cybernetics, 92(1):38-53, 2005. @

S. Jafarpour, P. Cisneros-Velarde, and F. Bullo. Weak and semi-contraction for network systems and
diffusively-coupled oscillators. IEEE Transactions on Automatic Control, 67(3):1285-1300, 2022. 4

G. De Pasquale, K. D. Smith, F. Bullo, and M. E. Valcher. Dual seminorms, ergodic coefficients, and
semicontraction theory. Technical Report, 2022. d
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Semicontraction: history and setup

For row-stochastic A, consider averaging and dynamical flow systems:

z(k+1) = Ax(k) (averaging flow, consensus algorithm)
m(k+1)=ATn(k) (dynamical flow system, Markov chain)

Similarly, let L be a Laplacian matrix and consider the continuous-time counterparts:

z(t) = —Lax(t) (Laplacian flow)

#(t) = =L n(t) (continuous-time Markov chain, routing dynamics)

For row-stochastic A, define the Markov-Dobrushin ergodic coefficient:

T1(A) == max ||ATzH1

Izlli=1,2T1,=0



Simple calculations and remarkable similarity

For m(k + 1) = ATn(k), Markov showed any two solutions 7(k), o (k) satisfy

dry (m(k) — o(k)) < m1(A)* drv (7(0) — 0(0)) (9)

dry(m,0) = 5 Z |mi — o (total variation distance)

For z(k + 1) = Az(k), it is known in the consensus literature that

(k) llaist.co < 71(A)* [2(0)laist.oo (10)

[ ——— %(m?x{xi} - mjin{xj}) (disagreement seminorm)



Open questions

@ Why is the same ergodic coefficient 71 relevant for the contraction properties of both
dynamical flows and averaging? Is it the tightest such bound?

@ What is the relationship between dry and || - [|dist,c? How does one generalize
bounds (9) and (10) to 7, ergodic coefficients defined wrt £, norms (instead of ¢,
in (62))7

© What are canonical Lyapunov functions for both systems, whose discrete-time variation
along the flow is described by 7,(A)?

@ How does one define ergodic coefficients for continuous-time systems?

O Is there a contraction theoretic framework that applies to time-varying and nonlinear
systems with generalized invariance or conservation properties?



Seminorms

A function || - || : R® — R>¢ is a seminorm on R™ if, for all z,y € R™ and a € R:

(homogeneity): |[|ax|| = |al[|z]|, and
(subadditivity): [z + yll| < [|=|| + [lyll-

The kernel of || - ||| is the vector subspace K = ker(|| - ||) = {z € R" : ||z|| = 0}

@ dual seminorm is the function ||| - |||« : V* — R defined by

A
yllx = max (y,x
sl 2 s (9.2
zlKC

@ induced matrix seminorm on R™*™ || - || : n x n = R>q is

Al £ max || Az
flzfl<1
zlC



e On R?, the function (v1,vs) = +/(v1 — v2)2 = |v1 — va] is seminorm
o K = {(v1,v2) such that v; = va} =span{(1,1)"} and K+ = span{(1,-1)"}.

@ The orthogonal projection matrices onto K and K are

Lt o[-
H”_x/i[l oA =55y )



Projection and distance seminorms

Given any subspace IC, let

II, € R™"™ := orthogonal projection onto K+

For each p € [1, 00|, define the projection seminorm
I llproj.p = ITLL]lp
and the distance seminorm

2 laist p = dist, (2, ) = min ||z — ul|,.
uell



Consensus seminorm = a seminorm with kernel K = span{1,}

O define 245 = 21} a:

n
e llpros = D ks = ] 2 llpros oo = M2 |27 — Favg
=1

1 2\ 1/2
lelloros = (D, (@i = )?)

@ sort the entries of x according to (1) > T(9) > -+ = T(y:

[5] n
1
lzllase: =Y z@y — >, za), 2 lasst.o0 = 5 (za) — 2(n)) -
i1 =274

1 5\ 1/2
lellase = (5, (@i =)

Total variation drv and ¢; projection seminorm: dpy(x,y) = %|Hx — Ylllproj,1 for z,y € A,



p=1 p=2

7 2 El 0 1 2

Figure: Two-dimensional sections of three-dimensional unit disks of projection (solid contours) and distance (dashed
contours) consensus seminorms. We plot the sections corresponding to (z1,z2,z3 = 0).



Q /, and ¢, norms are dual, for 1/p+1/¢ =1

Il = (Il ). -l = ClIF- M)

@ dual norm satisfies (sharp) Holder inequality: "y < ||z|l,/|yllq
© dual norm induces duality: ||All, = ||AT|l,
Q induced norm is submultiplicative: || AB|| < || A||||B]|




Key theorems about dual and induced seminorms

Projection and distance seminorms are dual

I~ Maist.o = (Il - Mloros.a). I~ Mpros.a = (Il - Mlaist.p)..

Properties of dual and induced seminorms

O dual seminorm satisfies (sharp) Markov inequality: = 11y < ||2]distp|

[9lllproj.q
@ dual seminorm induces duality: || Al[laist,p = [ AT lprojiq

© induced seminorm is submultiplicative: [|ABJ| < ||A[|||B]| if AKX C K or BCT C KT

v

Ergodic coefficients are induced seminorms

A C K, then [l Allaiep = AT o = 7o(K, 4) = | max AT
z||q=1, z




How Markov and Banach's results meet

Given K C R™ and p, ¢ € [1,00] with p~! 4 ¢~! = 1, consider {A(k) }rezs, C R™*" satisfying:

AK)K C K forall k € Z>, (invariance)
p= sup 7,(K,A(k)) < 1. (semicontraction)
k‘GZZO

© the averaging system
z(k+1)=Ak)z(k)+b, beR",

is strongly semicontracting with rate p wrt || - ||| gist.q

(k) = y(k)llaist.q < P 12(0) = y(0) laist.q

@ the dynamical flow system
z(k+1)=A"(k)z(k)+b, beR™,
is strongly semicontracting with rate p wrt || - || ,r05,, and, for any z(0) — y(0) € K+,

Il (k) = y (&) llprojp < " 12(0) = (0 lprojs



Continuous-time semicontraction theory

The induced log seminorm of A € R™*™ is

M+ RA 1
e g I
pyy(4) = lim 3

Theorem (Dual logarithmic seminorms)

Let p,q € [1,00] such that p~ + ¢~ = 1. For any matrix M € R™ ", and any kernel K,

,Lbdist,p(M) = ﬂprOJ',q(MT)

Formulas for induced log seminorm of Laplacian matrices
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Indirect optimal control via contraction theory and ilSS

K. D. Smith and F. Bullo. Contractivity of the method of successive approximations for optimal control. /[EEE

Control Systems Letters, Nov. 2022. . To appear


http://dx.doi.org/10.48550/arXiv.2209.10046

Optimal control problem:
{ T = F(z,u)
Ju] = fOT running cost + final cost
Pontryagin minimum principle
& =F(z,u)

A = Adjoint(z, u, \)

u = argming H(x, a, \)

Method of successive approximations

Input: initial guess «(?), init value z
:forie{l,...,N} do

2: 2 « forward with w(i=1

3: A9 < backward with (¥ and »(—1)
4: u® « argming H(z®, A7)
5

6

[ay

: end for
- return u®)

Contractivity of adjoint dynamics and MSA

O osLipy.«(Adjoint™) = osLip.(F)

@ Lip(MSA) — 0 as T — 07 or osLip(F) — —oc
© MSA is a contraction for (short 7" or highly contracting F)
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Incremental ISS for strongly contracting delay ODEs

i(t) = f(x(t), x(t — ), u(t)),0 < s < S, I laes I e (11)

assume there exist positive constants ¢, £4, £ x such that, for all variables,

osL x : [f(z,d,u) — f(y,d,u),z —y]x < —3”33—9”%( (12)
Lip z(t — s) : [[f(z,z1,u) = f(z,z2,u)[|lx < Lxllzy —x2|lx (13)
Lip u : If(z,dyu) = f(z,d, v)lx < Lyllu — vy (14)

By the curve norm derivative formula, subadditivity, and Cauchy-Schwarz inequality,

le@®)—y®llxDF2t) =y lx = [f@(t), a(t — 5),uz(t)) — FY(E), y(t — 8),uy (1)), 2(8) — y(D)]
S (@), z(t = s), ua(t)) — f(y(@), z(t — 8), uaz (?), 2(t) —y(O)]x
+ [y (), (t — ), uz(t) = FY(), y(t — 8), uz (t), z(t) —y(H)]»
+ [Fw®), y(t = 5), ua () = Fy®), y(t — 5), uy (1)), 2(t) — y(H)] »

< —clla(t) — yI% + Lxllat — ) — y(t — llulle) — yOlx,
+ lyllua () — uy () llull=(t) —y(@)llx-

Thus, with m(t) = ||z (t) — y(t)|| x, delay differential inequality:

D¥m(t) < —em(t) + La supg<acs Mt — 8) + by 1w () — uy (8l (15)

Halanay inequality is applicable. If ¢ > £, then
—p(t—tg) to—p(t—7)
m(t) < moe 07 + 0y e [l (7) = uy () lleedT, (16)
to

where p > 0 is the unique positive root of p = ¢ — éxe"s and mg = supg<s<s m(tg — s).



Networks of contracting systems with time delays

Interconnected subsystems i € {1,...,n}

& = fi(zi, o, ot — s),ui),  0<s<S, |-l lliu (17)
Assume there exist positive constants st
osL z; : [fi(ziy. o) = fiyiy )i — vl < —cillws — vill?
Lipao—i: fileesmmge) = fileoyymin-- )i < Z::L#i il =yl
Lip 275 : il s o) = filey=s, )|l < Z::L#i Tiglle =y
Lip u; : N fi(ooows) — fileo o vi)lli < ligellws — villiu

With m;(t) = ||zi(t) — yi(t)||;, delay differential inequality:
D¥m(t) < —=Cm(t) + I'm(t) + T supoccs m(t — 5) + ullua () — uy (1) |

and, if the Metzler matrix —C + T + I is Hurwitz, then (17) is incremental ISS

F. Mazenc, M. Malisoff, and M. Krstic. Vector extensions of Halanay's inequality. /EEE Transactions on Automatic Control, 67(3):1453—
1459, 2022. 4
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Contraction theory on Riemannian manifolds

Contraction theory on Riemannian manifolds originates in
W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):683-696,
1998. @

A formal coordinate-free analysis (with connection to monotone operators) is given in
J. W. Simpson-Porco and F. Bullo. Contraction theory on Riemannian manifolds. Systems & Control Letters,
65:74-80, 2014. ¢

In the differential geometry literature, geodesically monotonic vector fields are studied by

S. Z. Németh. Geodesic monotone vector fields. Lobachevskii Journal of Mathematics, 5:13-28, 1999. URL
http://mi.mathnet.ru/eng/ljm145

J. X. Da Cruz Neto, O. P. Ferreira, and L. R. Lucambio Pérez. Contributions to the study of monotone vector
fields. Acta Mathematica Hungarica, 94(4):307-320, 2002. @

J. H. Wang, G. Lépez, V. Martin-Mérquez, and C. Li. Monotone and accretive vector fields on Riemannian

manifolds. Journal of Optimization Theory and Applications, 146(3):691-708, 2010. ¢


http://dx.doi.org/10.1016/S0005-1098(98)00019-3
http://dx.doi.org/10.1016/j.sysconle.2013.12.016
http://mi.mathnet.ru/eng/ljm145
http://dx.doi.org/10.1023/A:1015643612729
http://dx.doi.org/10.1007/s10957-010-9688-z

Contraction theory on Riemannian manifold (M, G)

F contracting if geodesic distances from x to y diminishes along the flow of F

integral test: the inner product between F and the geodesic velocity vector 'ygy at x and y
differential test: condition on covariant differential of F

G(x)DFz(x) + DFz(z) ' G(z) 4+ G(z) < —2¢G(x)



Strong infinitesimal contraction on a Riemannian manifold

Given a time-independent vector field X on a Riemannian manifold (M,G) and ¢ > 0, the
following statements are equivalent:

© for any z,y € M and geodesic curve vz, : [0,1] = M with v,,(0) = z, 7.4(1) =y,
(X W) Yoy (DN — (X (@), 72y (0))) < —cda(z,y)?

Q for all v, € T,M
(Ax (2)vz, va)g < —cllvall3,

where the covariant differential Ax(x) : T;M — T;M is defined by Ax(z)vy = V,, X(z)

© Dde(xz(t),y(t)) < —cdg(x(t), y(t

(
)

), for all solutions z(-), y(-)
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