Acknowledgments

Perspectives on Coupled Oscillators:

Geometry, Analysis and Computation

Francesco Bullo
Saber Jafarpour
Department of Mechanical Engineering GeorgiaTech
Center for Control, Dynamical Systems & Computation
University of California at Santa Barbara

http: //motion.me.ucsb.edu

Synchronization in Natural and Engineering Systems: Robin Delabays Kevin D. Smith Pedro Cisneros-Velarde
Open Problems in Modeling, Analysis, and Control Ucse ucse uluc
ARO-Sponsored Workshop, March 30, 2022

Partial support by DOE Solar Energy Technologies Office, Contract DE-EE0000-1583, 2016-19

Outline #1: Elastic and flow networks on the torus

w; = ijl a;jsin(6; — 0;) J

@ Recent progress

@ Elastic and flow networks on the torus .
Spring network

@ Cutset spaces ) Power network
@ Geometric graph theory on the n-torus ® w; =T; : torque at ¢ - iected
o Convexity, monotonicity, and contraction theory ® a;j = k;j : spring stiffness 4, j ® Wi =Ppi - Injected power
@ Multistability in phase-coupled oscillators o sin(6; — 6;) : modulation @ ajj : max power flow i, j
@ Sync threshold: Approximate inverse via series methods o elastic ener e sin(#; — 6;) : modulation
@ Sync threshold: gap between necessary and sufficient conditions E=Y (lgycos(ﬁ 0;)) o KCL flow conservation and Ohm’s
: i = 2uij (L T o\ = 05

@ State-space oscillators TS flow law

Fsa O

s < )
\ P fij

© Open Problems




#2: Cutset spaces #2: Cutset spaces

ve=[0 0 +1 +1 -1 +1 0]

#3: Winding numbers and partitions

B Given a cycle o0 = (1,...,n,) and orientation
. . 3 ‘>. © winding number of § € T" along o

= number of times the shortest-arc path wraps around torus

R™ = Im(B") @ Ker(B.A)
—~— N ’ ——
edge space cutset space weighted cycle space
flow vectors cycle vectors
. e e
P=B'L'BA = cutset projection operator — onto Im(B ") parallel to Ker(B.A) .M
@ if G unweighted, then P is orthogonal and ||P|l2 =1 w=0 w=+1 w=-1
@ if G acyclic, then P = I,,, and ||P|, =1
@ if G uniform complete or ring, then |P|jecc = 2(n — 1)/n < 2 @ given basis 01, ..., 0, for cycles, winding vector of ¢ is
@ if 6 is the minimal angle between the cutset space and the cycle space of G, then sin(6) = ||P||5*
. o - w(0) = (wo, (0), - .., wo,(0))

© if Rer € R"*™ are effective resistances, then P = —3B " ResBA

0 .. J




Theorem: Kirchhoff angle law on T"

winding number is at most =+ [n,/2| — 1

>

Theorem: Winding partition For each possible winding vector u, define

WindingCell(u) := {0 € T" | w(f) = u}

T" = U, WindingCell(u)

el03,02)

3-Cycle, Winding Number —

w=+1

Theorem: Reduced cell is convex polytope

@ each winding cell is connected and invariant under rotation
@ bijection:

clf2,05)

reduced winding cell <— open convex polytope

@ V is strongly convex with parameter m

@ —gradV is m-strongly contracting, that is

(- grad V(z) + grad V(y)) ' (z — y) < —mllz — y|3

O F is a monotone operator (or a coercive operator) with parameter m,

© —F is m-strongly contracting




#5: Multistable Sync = global partition + local contraction

search for contraction properties
design engineering systems to be contracting J

éi = W; — Z Qg sin(@i — 9]')
j=1

in each winding cell
Q 0= —grad £(0), where

Highly ordered transient and asymptotic behavior:

| o — _ _p. T
@ time-invariant F: unique globally exponential stable equilibrium £(0) = Zij(l cos(t; —0;)) +w 0

two natural Lyapunov functions . . .
@ Hessian £(0) = —Cosine-Laplacian(f) < 0

© Hessian £(f) =< 0 on the cohesive subset |0; — 0;| < 7/2

© modulo the symmetry, the dynamics is strongly contracting

@ periodic F: contracting system entrain to periodic inputs
© accurate numerical integration and equilibrium computation

Q contractivity rate is natural measure/indicator of robust stability
input-to-state stability

finite input-state gain Theorem:
contraction margin wrt unmodeled dynamics @ each winding cell has at most one cohesive equilibrium
input-to-state stability under delayed dynamics @ contraction algorithm to decide/compute in each winding cell
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same properties, by robustness of contracting dynamics
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#6: Sync threshold: Approximate inverse via series methods

Projection onto to cutset space: z = B' Ltw and x = B9
synchrony equilibrium equation is
z = Psin(z)

Given input z, unique solution is

B = Zi:o Agit1(2),

10°

Test case:
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#7: Sync threshold: gap between necessary and sufficient conditions

z = Psin(x)
given a norm, define

a(P) := min amplification factor of (P diag[sinc(z)]) < ||P||

Theorem: Sufficient Cohesive equilibrium angles exist if, in some norm,

IBT Llw]| < o(P)

Necessary Equilibrium angles do not exist if, in some norm

IPIl < |BT Liw]

Considering only first order term in expansion <= s (P) ~ 1 (PNAS '13)

State of the Art Empirical Results on IEEE Test Cases

Test Case ratio of test prediction to numerical computation
T 17 axP)~I
approximate
IEEE 9 165% 73.7 % 92.1 %
IEEE 14 83% 59.4% 83.1 %
IEEERTS 24 39% 534 % 89.5 %
IEEE 30 27 % 557 % 85.5 %
IEEE 118 03% 43.7% 85.9 %
IEEE 300 02% 403 % 99.8 %
Polish 2383 01% 29.1% 82.8 %

t fmincon with 100 randomized initial conditions
* fmincon does not converge

Coupled networks of:
@ Stuart-Landau oscillator
@ FitzHugh—Nagumo neurons
© Rossler chaotic oscillators
@ Lienard oscillators (Van Der Pol)
© Biological Goodwin models

o ..

semi-contraction theory

#8: State-space oscillators



T; Zf(t,.l‘i) —Z;LZI aij(xi—xj), 1€ {1,...,71} J

synchronization as function of
© growth rate of the internal dynamics

@ strength of the diffusive coupling

© heterogeneity of oscillators

Theorem: semi-contraction sufficient condition
If in some norm

osLip(f) < Aa(L)

then
@ semi-contraction rate Ao(L) — osLip(f),

@ synchronization lim o ||2; — 2;]| =0 for every i, j

Our recent work Outline
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o Recent progress
@ Elastic and flow networks on the torus
Cutset spaces
Geometric graph theory on the n-torus
Convexity, monotonicity, and contraction theory
Multistability in phase-coupled oscillators
Sync threshold: Approximate inverse via series methods
@ Sync threshold: gap between necessary and sufficient conditions
@ State-space oscillators

© Open Problems

© Open Problems




Future research Fundamental theory of phased-coupled oscillators

@ outside cohesive set: signed graphs, symbolic dynamics, ...
@ non-monotone phase couplings and and higher-order dynamics

© analysis and computation of cluster sync and bifurcation diagram

@ Fundamental theory of phased-coupled oscillators P
@ Fundamental theory of state-space-coupled oscillators [ -~ N -_\4 &
© Applications in energy systems .
@ Applications in machine learning and scientific computing > 50 Node Frequencies
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B. Gilg. Critical Coupling and Synchronized Clusters in Arbitrary Networks of
Kuramoto Oscillators.
PhD thesis, Arizona State University, 2018

Fundamental theory of state-space-coupled oscillators Applications in energy systems
© sharpest sync conditions for benchmarks © understanding multi-stability in power flows
© transverse contraction @ thick torus conjecture for active/reactive power flow and for OPF

© fractal attractors via a-contraction theory © paradoxes in lossy networks

Practical observations:
sometimes undesirable power flows around loops
sometimes sizable difference between predicted and actual power flows

Figure 8: Average unscheduled flows for the years 2011 and 2012, MWh/h®
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Generalization of the multiplicative and additive compounds of
square matrices and contraction in the Hausdorff dimension.

IEEE Transactions on Automatic Control, 2022. N . - . . .
doi:10.1109/TAC.2022. 3162547 New York Independent System Operator, Lake Erie Loop Flow ~ THEMA Consulting Group, Loop-flows - Final advice, Technical

Mitigation, Technical Report, 2008 Report prepared for the European Commission, 2013

[l Average counter-clockwise direction of Lake Erie Loop Flow




Applications in machine learning and scientific computing Conclusions

@ oscillator-based computing @ Recent progress

@ nanotech allows contruction of massively-parallel analog fast low-power devices

@ Elastic and flow networks on the torus
CMOS, spin torque nano-oscillators (spintronics), MEMS resonators, optomechanical o Cutset spaces
crystal cavities, ... @ Geometric graph theory on the n-torus
© Example applications: o Convexity, monotonicity, and contraction theory
© NP-complete computing @ Multistability in phase-coupled oscillators
@ associative memory @ Sync threshold: Approximate inverse via series methods

@ reservoir computing @ Sync threshold: gap between necessary and sufficient conditions
@ State-space oscillators
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