Perspectives on Contraction Theory and Neural Networks

Francesco Bullo

Center for Control,
Dynamical Systems & Computation
University of California at Santa Barbara

http://motion.me.ucsb.edu

ECE Seminar Series, NYU, Feb 10, 2022

Acknowledgments

Alex Davydov PhD student UC Santa Barbara

Saber Jafarpour Postdoc GeorgiaTech

Anton Proskurnikov Politecnico Torino & Russian Academy of Sciences

- S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In *Advances in Neural Information Processing Systems*, Dec. 2021b. URL http://arxiv.org/abs/2106.03194
- A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability.
 IEEE Transactions on Automatic Control, July 2021. URL https://arxiv.org/abs/2103.12263. Submitted
- CDC 2021 tutorial (https://arxiv.org/abs/2110.03623), ACC 2022 (https://arxiv.org/abs/2110.08298), L4DC 2022 (https://arxiv.org/abs/2112.05310)

Biological and Artificial Neural Networks

artificial neural network (AlexNet '12)

human neocortical neuron

Aim: understand the dynamics of neural networks, so that

- reproducible behavior, i.e., equilibrium response as function of stimula
- robust behavior in face of uncertain stimuli
- robust behavior in face of uncertain dynamics
- learning models, efficient computational tools, periodic behaviors ...

Fixed point computation

y = Cx + d

Fixed point strategies in data science = simplifying and unifying framework to model, analyze, and solve advanced convex optimization methods, Nash equilibria, monotone inclusions, etc.

P. L. Combettes and J.-C. Pesquet. Fixed point strategies in data science. *IEEE Transactions on Signal*

Outline

- Scientific and engineering problems from neural networks
- 2 Contraction theory
 - Banach contractions and infinitesimal counterparts
 - Contraction on Euclidean and inner product spaces
 - Contraction on non-Euclidean normed vector spaces
- 3 Detour: Network systems
- 4 Application to recurrent neural networks and implicit ML models
 - Contractivity of recurrent neural networks
 - Implicit neural networks in machine learning
- 5 Conclusions and future research

Contraction theory: historical notes

Origins

- S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3(1):133–181, 1922.
- S. M. Lozinskii. Error estimate for numerical integration of ordinary differential equations. I. *Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika*, 5:52–90, 1958
- C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit analysis. *IEEE Transactions on Circuit Theory*, 19(5):480–486, 1972.
- Application in dynamics and control: W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. Automatica, 34(6):683–696, 1998.

Reviews:

- Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some open problems. In *IEEE Conf. on Decision and Control*, pages 3835–3847, Dec. 2014.
- M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of complex networks via contraction theory. In J. Lü, X. Yu, G. Chen, and W. Yu, editors, *Complex Systems and Networks*, pages 313–339. Springer, 2016. ISBN 978-3-662-47824-0.
- H. Tsukamotoa, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and learning-based control: A tutorial overview, 2021. URL https://arxiv.org/abs/2110.00675

- contraction conditions without Jacobians have been studied under many different names:
 - uniformly decreasing maps in: L. Chua and D. Green. A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of autonomous networks. *IEEE Transactions on Circuits and Systems*, 23(6):355–379, 1976.
 - autonomics networks. *IEEE Transactions on Circuits and Systems*, 23(0):333-313, 1910.

 one-sided Lipschitz maps in: E. Hairer, S. P. Nørsett, and G. Wanner. *Solving Ordinary Differential Equations I. Nonstiff Problems*. Springer, 1993.
 (Section 1.10, Exercise 6)
 - 3 maps with negative nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. *IEEE Transactions on Neural Networks*, 12(2):360–370, 2001.
 - dissipative Lipschitz maps in: T. Caraballo and P. E. Kloeden. The persistence of synchronization under environmental noise. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2059):2257-2267, 2005. State of the Science of Sciences, 461(2059):2257-2267, 2005. State of the Sciences of Sciences, 461(2059):2257-2267, 2005. State of the Science of Sciences of Sciences, 461(2059):2257-2267, 2005. State of the Science of Sciences of Sciences
 - 46(3):631–652, 2006. QUAD maps in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled ordinary differential systems. *Physica D*:
 - QUAD maps in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled ordinary differential systems. Physica D Nonlinear Phenomena, 213(2):214–230, 2006.
 - incremental quadratically stable maps in: L. D'Alto and M. Corless. Incremental quadratic stability. Numerical Algebra, Control and Optimization, 3:175–201, 2013.
- deep connections: infinitesimal contraction, fixed point and monotone operator theory
 - V. Berinde. Iterative Approximation of Fixed Points. Springer, 2007. ISBN 3-540-72233-5
 - H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, 2 edition, 2017. ISBN 978-3-319-48310-8
 - 3 E. K. Ryu and W. Yin. Large-Scale Convex Optimization via Monotone Operators. Cambridge, 2022

On fixed point algorithms and Banach contractions

$$x = \mathsf{G}(x)$$

Banach Contraction Theorem

If $\operatorname{Lip}(\mathsf{G}) < 1$ that is $\|\mathsf{G}(u) - \mathsf{G}(v)\| \leq \operatorname{Lip}(\mathsf{G}) \|u - v\|$, then $\operatorname{\it Picard\ iteration\ } x_{k+1} = \mathsf{G}(x_k)$ is a Banach contraction

For $Lip(G) \ge 1$, define the <u>average/damped/Mann-Krasnosel'skii iteration</u>

$$x_{k+1} = (1 - \alpha)x_k + \alpha \mathsf{G}(x_k)$$

Infinitesimal Contraction Theorem

- $oldsymbol{0}$ there exists $0<\alpha<1$ such that the average iteration is a Banach contraction
- 2 the map G satisfies osLip(G) < 1
- **3** the dynamics $\dot{x} = -x + G(x)$ is infinitesimally strongly contracting

Robustness of fixed point algorithms

Robustness via Lipschitz constants (Lim's Lemma)

 x_u^* is a fixed point of $x = \mathsf{G}(x,u)$ and $\operatorname{Lip}_x \mathsf{G} < 1$, then

$$||x_u^* - x_v^*|| \le \frac{\operatorname{Lip}_u \mathsf{G}}{1 - \operatorname{Lip}_u \mathsf{G}} ||u - v||$$

Robustness via one-sided Lipschitz constants

 x_u^* is a fixed point of $x = \mathsf{G}(x,u)$ x_v^* is a fixed point of $x = \mathsf{G}(x,v) + \mathsf{D}(x,v)$, and $\mathsf{osLip}_x(\mathsf{G}+\mathsf{D}) < 1$, then

$$||x_u^* - x_v^*|| \le \frac{1}{1 - \operatorname{oslip}(G + D)} \Big(\operatorname{Lip}_u(G + D) ||u - v|| + ||D(x_u^*, u)|| \Big)$$

On infinitesimal contraction theory

Given $\dot{x} = F(t,x)$, F is infinitesimally strongly contractive if its flow is a Banach contraction

Properties of contracting dynamical systems

Highly ordered **transient** and **asymptotic** behavior:

- time-invariant F: unique globally exponential stable equilibrium two natural Lyapunov functions
- 2 periodic F: contracting system entrain to periodic inputs
- Ocontractivity rate is natural measure/indicator of robust stability
- accurate numerical integration, and

• there exist efficient methods for their equilibrium computation

Scalar maps and vector field

 $F:\mathbb{R} \to \mathbb{R}$ is one-sided Lipschitz with $\mathrm{osLip}(F) = b$ if

$$F'(x) \le b,$$
 $\forall x$
 $\iff F(x) - F(y) \le b(x - y),$ $\forall x > y$
 $\iff (x - y)(F(x) - F(y)) \le b(x - y)^2,$ $\forall x, y$

- ullet F is osL with b=0 iff F weakly decreasing
- if F is Lipschitz with bound ℓ , then F is osL with $b \leq \ell$
- For

$$\dot{x} = F(x)$$

the Grönwall lemma implies $|x(t)-y(t)| \leq \mathrm{e}^{bt}|x(0)-y(0)|$

For $x \in \mathbb{R}^n$ and differentiable time-dep

$$\dot{x} = F(x)$$

For $P = P^\top \succ 0$, define $\|x\|_{2.P^{1/2}}^2 = x^\top P x$

Main equivalences: For
$$c>0$$
, map F is c -strongly contracting (i.e., $\operatorname{osLip}(\mathsf{F}) \leq -c$) if

- $\bullet \quad \text{osL} \quad : \quad (\mathsf{F}(x) \mathsf{F}(y))^\top P(x y) \leq -c \|x y\|_{2, P^{1/2}}^2 \qquad \text{ for all } x, y$

For differentiable $V: \mathbb{R}^n \to \mathbb{R}$, equivalent statements:

Contraction theory on inner product space (\mathbb{R}^n, ℓ_2)

- lacktriangledown V is strongly convex with parameter m
- **2** $-\operatorname{grad}V$ is m-strongly contracting, that is

$$\left(-\operatorname{grad}V(x)+\operatorname{grad}V(y)\right)^{\top}(x-y) \le -m\|x-y\|_2^2$$

For map $F: \mathbb{R}^n \to \mathbb{R}^n$, equivalent statements:

- **1** F is a monotone operator (or a coercive operator) with parameter m,
 - **②** −F is *m*-strongly contracting

Equilibria of contracting vector fields:

For a time-invariant F, c-strongly contracting with respect to $\|\cdot\|_{2.P^{1/2}}$

- flow of F is a contraction, i.e., distance between solutions exponentially decreases with rate c
- $oldsymbol{2}$ there exists an equilibrium x^* , that is unique, globally exponentially stable with global Lyapunov functions

$$x \mapsto \|x - x^*\|_{2,P^{1/2}}^2$$
 and $x \mapsto \|\mathsf{F}(x)\|_{2,P^{1/2}}^2$

 $x^* \in \text{zero}(\mathsf{F})$

 \iff $x^* \in \text{fixed}(G)$, where G = Id + F

consider forward step = Euler integration for F = averaged iteration for G:

$$x_{k+1} = (\operatorname{Id} + \alpha \operatorname{F}) x_k = x_k + \alpha \operatorname{F}(x_k)$$
 $= (1 - \alpha) \operatorname{Id} + \alpha \operatorname{G}$

Given contraction rate
$$c$$
 and Lipschitz constant ℓ , define condition number $\kappa = \ell/c \ge 1$
• the map $\operatorname{Id} + \alpha F$ is a contraction map with respect to $\|\cdot\|_{2,P^{1/2}}$ for

$$0 < \alpha < \frac{2}{c\kappa^2}$$

the optimal step size minimizing and minimum contraction factor:

$$lpha_{\sf E}^*=rac{1}{c\kappa^2}$$

$$\ell_{\sf E}^*=1-rac{1}{2\kappa^2}+\mathcal{O}\Big(rac{1}{\kappa^4}\Big)$$

Outline

- Scientific and engineering problems from neural networks
- 2 Contraction theory
 - Banach contractions and infinitesimal counterparts
 - Contraction on Euclidean and inner product spaces
 - Contraction on non-Euclidean normed vector spaces
- 3 Detour: Network systems
- 4 Application to recurrent neural networks and implicit ML models
 - Contractivity of recurrent neural networks
 - Implicit neural networks in machine learning
- Conclusions and future research

From inner products to

sign and max pairings

 $[x, y]_1 = ||y||_1 \operatorname{sign}(y)^{\top} x$

$ x _{2,P^{1/2}}^2 = x^\top P x$	$[\![x,y]\!]_{2,P^{1/2}} = x^\top P y$

Norms

 $||x||_1 = \sum |x_i|$

 $||x||_{\infty} = \max_{i} |x_i|$

From LMIs to log norms

 $[x, y]_{\infty} = \max_{i \in I_{\infty}(y)} y_i x_i$

 $\mu_1(A) = \max_{j} \left(a_{jj} + \sum_{i \neq j} |a_{ij}| \right)$ $\mu_{\infty}(A) = \max_{i} \left(a_{ii} + \sum_{i \neq j} |a_{ij}| \right)$

 $\mu_{2,P^{1/2}}(A) = \min\{b \mid A^{\top}P + PA \leq 2bP\}$

where $I_{\infty}(x) = \{i \in \{1, \dots, n\} \mid |x_i| = ||x||_{\infty} \}$

 $\forall b > 0$

 $\forall \theta \in [0,1]$

The \log norm of $A \in \mathbb{R}^{n \times n}$ wrt to $\|\cdot\|$:

$$\mu(A) := \lim_{h \to 0^+} \frac{\|I_n + hA\| - 1}{h}$$

 $\mu(A+B) \le \mu(A) + \mu(B)$ $\mu(bA) = b\mu(A),$

 $\mu_{\infty}(A) \leq -c \quad \Longleftrightarrow \quad a_{ii} + \sum |a_{ij}| \leq -c \ \ \text{for all} \ i$

Basic properties:

scaling:

subadditivity:

convexity:
$$\mu(\theta A + (1-\theta)B) \leq \theta \mu(A) + (1-\theta)\mu(B),$$

$$\mu_2(A) \leq -c \iff A + A^\top \preceq -2cI_n$$

A weak pairing is $[\![\cdot,\cdot]\!]:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ satisfying

②
$$[\![bx,y]\!] = [\![x,by]\!] = b[\![x,y]\!]$$
 for $b \ge 0$ and $[\![-x,-y]\!] = [\![x,y]\!]$,

Given norm $\|\cdot\|$, compatibility: $[x,x] = \|x\|^2$ for all x

$$\mu(A) = \sup_{\|x\|=1} [Ax, x]$$

$$\frac{1}{2}D^{+}\|x(t)\|^{2} = [\dot{x}(t), x(t)]$$

For $x \in \mathbb{R}^n$ and differentiable time-dep

$$\dot{x} = \mathsf{F}(x) \tag{1}$$

For norm $\|\cdot\|$ with log norm $\mu(\cdot)$ and compatible weak pairing $[\cdot,\cdot]$

Main equivalences: for
$$c > 0$$

- **osl** : $\|F(x) F(y), x y\| \le -c\|x y\|^2$ for all x, y
 - $\textbf{ d-osL} \; : \quad \mu(D\mathsf{F}(x)) \leq -c \qquad \text{ for all } x$
 - **o** d-IS : $D^+ ||x(t) y(t)|| \le -c||x(t) y(t)||$ for soltns $x(\cdot), y(\cdot)$

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. *IEEE Transactions on Automatic Control*, July 2021. URL https://arxiv.org/abs/2103.12263. Submitted

Consider a norm $\|\cdot\|$ with compatible weak pairing $[\cdot,\cdot]$ Recall **forward step method** $x_{k+1} = (\operatorname{Id} + \alpha \operatorname{F}) x_k = x_k + \alpha \operatorname{F}(x_k)$

Given contraction rate c and Lipschitz constant ℓ , define condition number $\kappa = \ell/c \ge 1$

• the map $\operatorname{Id} + \alpha \mathsf{F}$ is a contraction map with respect to $\|\cdot\|$ for

$$0 < \alpha < \frac{1}{c\kappa(1+\kappa)}$$

4 the optimal step size minimizing and minimum contraction factor:

$$\alpha_{\mathsf{nE}}^* = \frac{1}{c} \left(\frac{1}{2\kappa^2} - \frac{3}{8\kappa^3} + \mathcal{O}\left(\frac{1}{\kappa^4}\right) \right)$$
$$\ell_{\mathsf{nE}}^* = 1 - \frac{1}{4\kappa^2} + \frac{1}{8\kappa^3} + \mathcal{O}\left(\frac{1}{\kappa^4}\right)$$

Outline

- Scientific and engineering problems from neural networks
- Contraction theory
 - Banach contractions and infinitesimal counterparts
 - Contraction on Euclidean and inner product spaces
 - Contraction on non-Euclidean normed vector spaces
- 3 Detour: Network systems
- 4 Application to recurrent neural networks and implicit ML models
 - Contractivity of recurrent neural networks
 - Implicit neural networks in machine learning
- Conclusions and future research

Control theories: general Lyapunov theory, passivity/dissipativity, monotone dynamics ...

Networks of contracting systems

Interconnected subsystems: $x_i \in \mathbb{R}^{N_i}$ and $x_{-i} \in \mathbb{R}^{N-N_i}$:

$$\dot{x}_i = f_i(x_i, x_{-i}), \qquad \text{for } i \in \{1, \dots, n\}$$

- osL: $x_i \mapsto f_i(x_i, x_{-i})$ is infinitesimally strongly contracting with rate c_i
- Lip: $x_{-i}\mapsto f_i(x_i,x_{-i})$ is Lipschitz: $\|f_i(x_i,x_{-i})-f_i(x_i,y_{-i})\|_i\leq \sum_{j\neq i}\gamma_{ij}\|x_j-y_j\|_j$
- ullet the gain matrix $egin{bmatrix} -c_1 & \dots & \gamma_{1n} \\ \vdots & & \vdots \\ \gamma_{n1} & \dots & -c_n \end{bmatrix}$ is **Metzler Hurwitz**

⇒ the interconnected system is infinitesimally strongly contracting

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. *IEEE Transactions on Automatic Control*, July 2021. URL https://arxiv.org/abs/2103.12263. Submitted

Contraction theory for networks

Challenge: many real-world networks are not contracting.

For a vector field F and positive vectors $\eta, \xi \in \mathbb{R}^n_{>0}$,

$$\iff \qquad \eta^{\top} D \mathsf{F}(x) = 0 \ \, \forall x \in \mathcal{F}(x)$$

If F satisfies a conservation law or translation invariance, then

- \bullet osLip $(f) \geq 0$
- ② if additionally F is monotone, then $\operatorname{osLip}_{1,[n]}(f) = 0$ or $\operatorname{osLip}_{\infty,[\ell]^{-1}}(f) = 0$

Weakly contracting systems

$$\dot{x} = f(x)$$
 is weakly contracting wrt $\|\cdot\|$:

$$osLip(f) \leq 0$$

- Lotka-Volterra population dynamics (Lotka, 1920; Volterra, 1928) (ℓ₁-norm for mutualistic)
- 2 Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill, 1981) (ℓ_1 -norm and ℓ_∞ -norm)
- ⑤ Daganzo's cell transmission model for traffic networks (Daganzo, 1994), (ℓ₁-norm for non-FIFO intersection)
- **①** compartmental systems in biology, medicine, and ecology (Sandberg, 1978; Maeda et al., 1978). $(\ell_1\text{-norm})$
- \odot saddle-point dynamics for optimization of weakly-convex functions (Arrow et al., 1958). (ℓ_2 -norm)

Semi-contracting systems

 $\dot{x} = f(x)$ is **semi-contracting** wrt the semi-norm $\|\cdot\|$ with rate c > 0:

$$\operatorname{osLip}_{\|\cdot\|}(f) \leq -c$$

or, for differentiable systems, $\mu_{\parallel \cdot \parallel}(D\mathsf{F}(x)) \leq -c$

- Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill, 1981), (ℓ_1 -norm)
- ② Chua's diffusively-coupled circuits (Wu and Chua, 1995), (ℓ_2 -norm)
- **3** morphogenesis in developmental biology (Turing, 1952), (ℓ_1 -norm, over some param ranges)
- Goodwin model for oscillating auto-regulated gene (Goodwin, 1965). (

 ℓ₁-norm, over some param ranges)

S. Jafarpour, P. Cisneros-Velarde, and F. Bullo. Weak and semi-contraction for network systems and diffusively-coupled oscillators. *IEEE Transactions on Automatic Control*, 2021a. ©. To appear

k and α -contracting systems

- M. Y. Li and J. S. Muldowney. A geometric approach to global-stability problems. *SIAM Journal on Mathematical Analysis*, 27(4):1070–1083, 1996.
- C. Wu, I. Kanevskiy, and M. Margaliot. *k*-contraction: Theory and applications. *Automatica*, 136:110048, 2022.
- C. Wu, R. Pines, M. Margaliot, and J.-J. E. Slotine. Generalization of the multiplicative and additive compounds of square matrices and contraction in the Hausdorff dimension, Dec. 2020. Available at https://arxiv.org/abs/2012.13441

Outline

- Scientific and engineering problems from neural networks
- Contraction theory
 - Banach contractions and infinitesimal counterparts
 - Contraction on Euclidean and inner product spaces
 - Contraction on non-Euclidean normed vector spaces
- 3 Detour: Network systems
- 4 Application to recurrent neural networks and implicit ML models
 - Contractivity of recurrent neural networks
 - Implicit neural networks in machine learning
- Conclusions and future research

Applications to recurrent neural networks

Continuous-time recurrent neural networks:

$$\dot{x} = -x + A\Phi(x) + u$$
 (Hopfield)
 $\dot{x} = -x + \Phi(Ax + u) =: f_{\mathsf{FR}}(x)$ (Firing rate \sim Implicit NNs)
 $\dot{x} = A\Phi(x)$ (Persidskii-type)
 $\dot{x} = Ax - \Phi(x)$ (...)

$$\operatorname{ReLU} = \max\{x,0\} = (x)_+$$

activation functions are locally-Lip and slope-restricted: for all i $d_{\min} := \operatorname{ess\,inf}_{y \in \mathbb{R}} \frac{\partial \Phi_i(y)}{\partial u} \geq 0$ and $d_{\max} := \operatorname{ess\,sup}_{y \in \mathbb{R}} \frac{\partial \Phi_i(y)}{\partial u} < \infty$

Tight transcription. $Df_{FR}(x) = -I_n + (D\Phi(x))A$ a.e., and so

$$\operatorname{osLip}_{\infty}(f_{\mathsf{FR}}) = \operatorname{ess\,sup}_{x \in \mathbb{R}^n} \mu_{\infty} \left(-I_n + (D\Phi(x))A \right) = -1 + \max_{d \in [d_{\mathsf{min}}, d_{\mathsf{max}}]^n} \mu_{\infty}(\mathsf{dg}(d)A)$$

Max log norms over hypercubes. For
$$A \in \mathbb{R}^{n \times n}$$
 and $0 \leq d_{\min} \leq d_{\max}$

$$\max_{d \in [d_{\mathsf{min}}, d_{\mathsf{max}}]^n} \mu_1(\mathsf{dg}(d)A) = \max\{\mu_1(d_{\mathsf{max}}A), \mu_1(d_{\mathsf{max}}A - (d_{\mathsf{max}} - d_{\mathsf{min}})(I_n \circ A))\}$$

$$\max_{d \in [d_{\min}, d_{\max}]^n} \mu_{\infty}(\deg(d)A) = \max\left\{\mu_{\infty}(d_{\min}A), \mu_{\infty}(d_{\max}A)\right\}$$
 Recall: max convex function over polytope achieved at a vertex; here $2^n \to 2$ vertices only.

Trecain. That convex function over polytope defined at a vertex, here 2 1/2 vertices only

NonEuclidean contractivity of firing rate model

$$\dot{x} = -Cx + \Phi(Ax + u) =: f_{\mathsf{FR}}(x)$$

1 for arbitrary $\eta \in \mathbb{R}^n_{>0}$

$$\mathsf{osLip}_{\infty,[\eta]^{-1}}(f_{\mathsf{FR}}) = \max\{\mu_{\infty,[\eta]^{-1}}(-C + d_{\mathsf{min}}A), \mu_{\infty,[\eta]^{-1}}(-C + d_{\mathsf{max}}A)\}$$

② optimal weight η and minimim value of $\operatorname{osLip}_{\infty,[\eta]^{-1}}(f_{\mathsf{FR}})$ from quasiconvex opt:

$$\inf_{\in \mathbb{R}, \eta \in \mathbb{R}^n_{\geq 0}} b$$
s.t. $(-C + d_{\mathsf{min}} |A|_{\mathsf{M}}) \eta \leq b \eta$
 $(-C + d_{\mathsf{max}} |A|_{\mathsf{M}}) \eta \leq b \eta$

 $\textbf{ 3} \ \, \text{if} \, \, d_{\min} = 0 \, \, \text{and} \, \, C \succ 0, \, \text{let} \, \, v_* \in \mathbb{R}^n_{>0} \, \, \text{be right eigenvector of} \, \, -C + d_{\max} |A|_{\mathsf{M}},$

$$\inf_{\eta \in \mathbb{R}^n_{>0}} \operatorname{osLip}_{\infty,[\eta]}(f_{\mathsf{FR}}) = \operatorname{osLip}_{\infty,[v_*]^{-1}}(f_{\mathsf{FR}}) = \max \big\{ \alpha(-C), \alpha(-C + d_{\mathsf{max}}|A|_{\mathsf{M}}) \big\}.$$

A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks. In *American Control Conference*, 2022. URL https://arxiv.org/abs/2110.08298. To appear

Outline

- Scientific and engineering problems from neural networks
- Contraction theory
 - Banach contractions and infinitesimal counterparts
 - Contraction on Euclidean and inner product spaces
 - Contraction on non-Euclidean normed vector spaces
- 3 Detour: Network systems
- 4 Application to recurrent neural networks and implicit ML models
 - Contractivity of recurrent neural networks
 - Implicit neural networks in machine learning
- Conclusions and future research

Implicit neural networks in machine learning

ML advantages of implicit/equilibrium/fixed point formulation:

bio-inspired, simplicity, accuracy, memory efficiency, input-output robustness

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In *Advances in Neural Information Processing Systems*, Dec. 2021b. URL http://arxiv.org/abs/2106.03194

$$A_{\sf upper-diagonal} = egin{pmatrix} A_{\sf complete} = egin$$

Motivation #2: Weight-tied infinite-depth NN \rightarrow fixed-point of INN

$$x^{i+1} = \Phi(Ax^i + Bu + b) \implies \lim_{i \to \infty} x^i = x^*$$
 solution to the INN

Motivation #3: Neural ODE model (infinite time) \rightarrow fixed-point of INN

$$\dot{x} = -x + \Phi(Ax + Bu + b) \quad \implies \quad \lim_{t \to \infty} x(t) = x^* \text{ solution to INN}$$

Recent literature on implicit NNs

- S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. In Advances in Neural Information Processing Systems, 2019. URL https://arxiv.org/abs/1909.01377
- 2 L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Tsai. Implicit deep learning. *SIAM Journal on Mathematics of Data Science*, 3(3):930–958, 2021.
- E. Winston and J. Z. Kolter. Monotone operator equilibrium networks. In Advances in Neural Information Processing Systems, 2020. URL https://arxiv.org/abs/2006.08591
- M. Revay, R. Wang, and I. R. Manchester. Lipschitz bounded equilibrium networks. 2020. URL https://arxiv.org/abs/2010.01732
- A. Kag, Z. Zhang, and V. Saligrama. RNNs incrementally evolving on an equilibrium manifold: A panacea for vanishing and exploding gradients? In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=HylpqA4FwS
- K. Kawaguchi. On the theory of implicit deep learning: Global convergence with implicit layers. In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=p-NZluwqhl4
- S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin. Fixed point networks: Implicit depth models with Jacobian-free backprop, 2021. URL https://arxiv.org/abs/2103.12803. ArXiv e-print

Implicit Neural Networks (INNs)

- Training INNs:
 - lacksquare loss function $\mathcal L$
 - 2 training data $(\widehat{u}_i, \widehat{y}_i)_{i=1}^N$
 - **1** training optimization problem

$$\min_{A,B,C,b} \sum_{i=1}^{N} \mathcal{L}(\widehat{y}_i, Cx_i + c)$$
$$x_i = \Phi(Ax_i + B\widehat{u}_i + b)$$

- Efficient back-propagation through implicit differentiation
- Stochastic gradient descent: at each step solve $x = \Phi(Ax + Bu + b)$.

Challenge #1: well-posedness of fixed-point equation

Challenge #2: algorithm for fixed-point equation

Robustness of INNs

Adversarial examples: small input change causes large output change!

Robustness measures: input-to-output Lipschitz constant

- **1** ℓ_2 -norm Lipschitz constant: not informative in many scenarios
- ${f 2}$ ℓ_{∞} -norm Lipschitz constant: large-scale input wrt wide-spread perturbations

Challenge #3: compute robustness margins

Challenge #4: implement robustness in training

Well-posedness and robustness of ℓ_{∞} -contracting INNs

$$x = \Phi(Ax + Bu + b)$$
 (INN fixed point)
 $\dot{x} = -x + \Phi(Ax + Bu + b)$ (Recurrent NN)
 $x_{k+1} = (1 - \alpha)x_k + \alpha\Phi(Ax_k + Bu + b)$ (Average iter.n)

$$\mu_{\infty}(A) < 1$$
 (i.e., $a_{ii} + \sum_{j} |a_{ij}| < 1$ for all i)

• dynamics is contracting with rate $1 - \mu_{\infty}(A)_{+}$

 $\mu_{\infty}(A) < 1$

- average iteration is Banach with factor $1 \frac{1 \mu_{\infty}(A)_{+}}{1 \min_{i}(a_{ii})_{-}}$ at $\alpha = \frac{1}{1 \min_{i}(a_{ii})_{-}}$
- input-output Lipschitz constant $\operatorname{Lip}_{u \to y} = \frac{\|B\|_{\infty} \|C\|_{\infty}}{1 \mu_{\infty}(A)}$

Training INNs

Training optimization problem:

$$\min_{A,B,C,b} \qquad \sum_{i=1}^{N} \mathcal{L}(\widehat{y}_i, Cx_i + c) + \lambda \quad \mathsf{Lip}_{u \to y}$$
$$x_i = \Phi(Ax_i + B\widehat{u}_i + b)$$
$$\mu_{\infty}(A) \le \gamma$$

- $\lambda \ge 0$ is a regularization parameter
- ullet $\gamma < 1$ is a hyperparameter

Parametrization of μ_{∞} constraint:

$$\mu_{\infty}(A) \leq \gamma \quad \iff \quad \exists T \text{ s.t. } A = T - \operatorname{diag}(|T|\mathbb{1}_n) + \gamma I_n.$$

Graph-Theoretic Regularization

Synaptic matrix A encodes interactions between neurons

- \bullet $A_{\rm dropout}$ is a principal submatrix of $A_{\rm complete}$
- $\mu_{\infty}(A_{\mathsf{dropout}}) \leq \mu_{\infty}(A_{\mathsf{complete}})$
 - Well-posedness of original INN implies well-posedness of INN with subset of neurons
 - Promotes compression and sparsity of overparametrized models

Numerical Experiments

- MNIST handwritten digit dataset (60K+10K, 28x28, grayscale)
- implicit neural network order: n = 100

Numerical Experiments

Robustness of INNs

Tradeoff between accuracy and robustness

Pareto-optimal curve

• Clean performance vs. robustness

Numerical Experiments

Robustness of INNs

Clean performance vs. robustness

Outline

- Scientific and engineering problems from neural networks
- 2 Contraction theory
 - Banach contractions and infinitesimal counterparts
 - Contraction on Euclidean and inner product spaces
 - Contraction on non-Euclidean normed vector spaces
- 3 Detour: Network systems
- 4 Application to recurrent neural networks and implicit ML models
 - Contractivity of recurrent neural networks
 - Implicit neural networks in machine learning
- Conclusions and future research

Conclusions

From Contracting Dynamics to Contracting Algorithms:

- contraction theory, monotone operator theory, convex optimization
 - effective methodologies to tackle control, optimization and learning problems
 - extensions to network dynamics
- from Euclidean to non-Euclidean norms
- application to recurrent and implicit neural networks
 - existence, uniqueness, and computation of fixed-points
 - robustness analysis and robust training via Lipschitz bounds
 - $\bullet \ https://github.com/davydovalexander/Non-Euclidean_Mon_Op_Net$

From Contracting Dynamics to Contracting Algorithms:

- mixed-monotone contraction theory (https://arxiv.org/abs/2112.05310)
- implicit graph neural architectures
- bio-inspired Hebbian learning
- o robustness of implicit models

Supplementary slides

Background on Infinitesimal Contraction Theorem

- **①** there exists $0 < \alpha < 1$ such that the average iteration is a Banach contraction
- $oldsymbol{2}$ the map G satisfies osLip(G) < 1
- **3** the dynamics $\dot{x} = F(x) := -x + G(x)$ is infinitesimally contracting
- the equivalence (2) \iff (3) is just a transcription:
 - $F = -\operatorname{Id} + \operatorname{G}$ contracting with rate $c \iff \operatorname{osLip}(F) < -c \iff \operatorname{osLip}(G) < 1 c$, for c > 0
 - in (ℓ_2, P) , osLip(F) < -c is usual Krasovskii: $PJ(x) + J(x)^{\top}P \preceq -2cP$ for all x and J = DF
- ullet (2) \Longrightarrow (1): known in monotone operator theory (page 15 "forward step method" in 1)
 - \bullet vector field F is contracting with rate $c \iff -\mathsf{F}$ is strongly monotone with parameter c
- Theorem 1 in² proves the equivalence (1) \iff (2) for any norm, i.e., the implication (2) \implies (1) for any norm (with proper osLip definitions) and the converse direction (1) \implies (2) for ℓ_2 , P. Theorem 3 in² proves the one-sided Lim Lemma (see next slide).

¹E. K. Ryu and S. Boyd. Primer on monotone operator methods. *Applied Computational Mathematics*, 15(1):3–43, 2016

²S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In *Advances in Neural Information Processing Systems*, Dec. 2021b. URL http://arxiv.org/abs/2106.03194

Euclidean vs. non-Euclidean contractions

Most foundational results in systems theory are based on ℓ_2 linear-quadratic theory; their ℓ_1/ℓ_∞ analogs are yet to be worked out.

Advantages of non-Euclidean approach

- computational advantages: non-Euclidean log-norm constraints lead to LPs, whereas ℓ_2 constraints leads to LMIs. Parametrization of log-norm constrained matrices is polytopic.
 - A. Rantzer. Scalable control of positive systems. *European Journal of Control*, 24:72–80, 2015.
- **2** guaranteed robustness to structural perturbations: ℓ_{∞} contractivity ensures:
 - absolute contractivity = with respect to a class of activation functions
 - 2 total contractivity = remove any node and all its incident connections
 - **3** connective contractivity = remove any set of edges
- adversarial input-output analysis
 - ℓ_{∞} better suited for the analysis of adversarial examples than ℓ_2 : in high dimensions, large inner product between two vectors is possible even when one vector has small ℓ_{∞} norm
 - I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In *International Conference on Learn Representations (ICLR)*, 2015. URL https://arxiv.org/abs/1412.6572

Literature on recurrent NN ODEs

- J. J. Hopfield. Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences, 81(10):3088−3092, 1984.
- 2 E. Kaszkurewicz and A. Bhaya. On a class of globally stable neural circuits. *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, 41(2):171–174, 1994.
- M. Forti, S. Manetti, and M. Marini. Necessary and sufficient condition for absolute stability of neural networks. *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, 41(7):491–494, 1994.
- Y. Fang and T. G. Kincaid. Stability analysis of dynamical neural networks. *IEEE Transactions on Neural Networks*, 7(4):996–1006, 1996.
- H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. *IEEE Transactions on Neural Networks*, 12(2):360–370, 2001.
- W. He and J. Cao. Exponential synchronization of chaotic neural networks: a matrix measure approach. *Nonlinear Dynamics*, 55:55–65, 2009.
- M. Zhang, Z. Wang, and D. Liu. A comprehensive review of stability analysis of continuous-time recurrent neural networks. *IEEE Transactions on Neural Networks and Learning Systems*, 25(7): 1229–1262, 2014.

Contractivity conditions with respect to arbitrary norms

Log norm bound	Demidovich condition	One-sided Lipschitz condition
$\mu_{2,P}(DF(x)) \le b$	$PDF(x) + DF(x)^{\top}P \leq 2bP$	$(x-y)^{\top} P(F(x) - F(y)) \le b x-y _{P^{1/2}}^2$
$\mu_p(DF(x)) \le b$	$(v \circ v ^{p-2})^\top DF(x)v \leq b \ v\ _p^p$	$((x-y)\circ x-y ^{p-2})^{\top}(F(x)-F(y)) \le b\ x-y\ _p^p$
$\mu_1(DF(x)) \le b$	$\operatorname{sign}(v)^{\top} DF(x) v \le b \ v\ _1$	$\operatorname{sign}(x-y)^{\top}(F(x)-F(y)) \le b\ x-y\ _1$
$\mu_{\infty}(DF(x)) \le b$	$\max_{i \in I_{\infty}(v)} v_i \left(DF(x) v \right)_i \leq b \ v\ _{\infty}^2$	$\max_{i \in I_{\infty}(x-y)} (x_i - y_i)(f_i(x) - f_i(y)) \le b x - y _{\infty}^2$

Table of equivalences between measure bounded Jacobians, differential Demidovich and one-sided Lipschitz conditions. Note: $I_{\infty}(v) = \{i \in \{1,\dots,n\} \mid |v_i| = \|v\|_{\infty}\}.$

- J. A. Jacquez and C. P. Simon. Qualitative theory of compartmental systems. SIAM Review, 35(1):43–79, 1993. ⁶⁰
- H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. *IEEE Transactions on Neural Networks*, 12(2):360–370, 2001.
- G. Como, E. Lovisari, and K. Savla. Throughput optimality and overload behavior of dynamical flow networks under monotone distributed routing. *IEEE Transactions on Control of Network Systems*, 2(1):57–67, 2015.

Robustness to unmodeled dynamics

Given a norm $\|\cdot\|$, consider

$$\dot{x} = f(x) + g(x) \tag{2}$$

If F has one-sided Lipschitz constant -c < 0 and g has one-sided Lipschitz constant d > 0, then

- **①** (contractivity under perturbations) if d < c, then f + g is strongly contracting with rate c d,
- **Q** (equilibrium point under perturbations) if additionally F and g are time-invariant, then the unique equilibrium point x^* of F and x^{**} of f+g satisfy

$$||x^* - x^{**}|| \le \frac{||g(x^*)||}{c - d} \tag{3}$$

Metzler matrices and monotone systems

- For Metzler M and monotonic $\|\cdot\|$, $\mu(M) = \sup_{x \geq 0_n} \frac{\|Ax, x\|}{\|x\|}$.
- ullet For $\eta, \xi \in \mathbb{R}^n_{>0}$,

$$\mu_{1,[\eta]}(M) = \max(\eta^{\top} M [\eta]^{-1}) = \min\{b \in \mathbb{R} \mid \eta^{\top} M \le b \eta^{\top}\}$$

$$\mu_{\infty,[\xi]^{-1}}(M) = \max([\xi]^{-1} M \xi) = \min\{b \in \mathbb{R} \mid M \xi \le b \xi\}$$

F monotone if DF(x) Metzler for all x

- **0** osl : $[f(x) f(y), x y] \le b||x y||^2$ for all $x \ge y$
- $\textbf{@ d-osL} \ : \ \ \llbracket D\mathsf{F}(x)v,v\rrbracket \leq b\lVert v\rVert^2 \text{, for all } v\geq 0 \text{ and } x$

$$\mu_{1,[\eta]}(D\mathsf{F}(x)) \leq b \qquad \qquad \eta^\top D\mathsf{F}(x) \leq b \eta^\top \qquad \qquad \eta^\top \big(f(x) - f(y)\big) \leq b \eta^\top (x-y) \text{ for all } x \geq y$$

$$\mu_{\infty,[\xi]^{-1}}(D\mathsf{F}(x)) \leq b \qquad \qquad D\mathsf{F}(x)\xi \leq b\xi \qquad \qquad f(x) - f(y) \leq b(x-y) \text{ for all } x = y + \beta \xi, \beta > 0$$

(4)

For a time and input-dependent vector F,

$$\dot{x} = f(x, u(t)), \qquad x(0) = x_0 \in \mathbb{R}^n, u(t) \in \mathbb{R}^k$$

Assume $\|\cdot\|_{\mathcal{X}}$ with compatible $[\![\cdot,\cdot]\!]_{\mathcal{X}}$, a norm $\|\cdot\|_{\mathcal{U}}$, and $c,\ell>0$ such that

- osL: $[f(x,u) f(y,u), x y]_{\mathcal{X}} \le -c||x y||_{\mathcal{X}}^2$, for all x, y, u,
- Lip: $||f(x,u) f(x,v)||_{\mathcal{X}} \le \ell ||u-v||_{\mathcal{U}}$, for all x,u,v.

Then

lacktriangledown any two soltns x(t) and y(t) to (4) with inputs u_x,u_y

$$D^{+} \|x(t) - y(t)\|_{\mathcal{X}} \le -c \|x(t) - y(t)\|_{\mathcal{X}} + \ell \|u_x(t) - u_y(t)\|_{\mathcal{U}}$$

 $\ensuremath{\mathbf{2}}$ F is incrementally input-to-state stable, i.e., for all x_0,y_0

$$||x(t) - y(t)||_{\mathcal{X}} \le e^{-ct} ||x_0 - y_0||_{\mathcal{X}} + \frac{\ell(1 - e^{-ct})}{c} \sup_{\tau \in [0, t]} ||u_x(\tau) - u_y(\tau)||_{\mathcal{U}}$$

 $\textbf{ § F has incremental } \mathcal{L}^q_{\mathcal{X},\mathcal{U}} \textbf{ gain equal to } \ell/c \textbf{, for } q \in [1,\infty] \textbf{,}$

$$||x(\cdot) - y(\cdot)||_{\mathcal{X},q} \le \frac{\ell}{c} ||u_x(\cdot) - u_y(\cdot)||_{\mathcal{U},q}$$
 (for $x_0 = y_0$)

Given norm $\|\cdot\|_{\mathcal{X}}$ on \mathbb{R}^n (or $\|\cdot\|_{\mathcal{U}}$ on \mathbb{R}^k),

• $\mathcal{L}^q_{\mathcal{X}}$, $q \in [1, \infty]$, is vector space of continuous signals, $x : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$, with well-defined bounded norm

$$||x(\cdot)||_{\mathcal{X},q} = \begin{cases} \left(\int_0^\infty ||x(t)||_{\mathcal{X}}^q dt\right)^{1/q} & \text{if } q \in [1,\infty[\\ \sup_{t \ge 0} ||x(t)||_{\mathcal{X}} & \text{if } q = \infty \end{cases}$$

$$(5)$$

• Input-state system has $\mathcal{L}^q_{\mathcal{X},\mathcal{U}}$ -induced gain upper bounded by $\gamma > 0$ if, for all $u \in \mathcal{L}^q_{\mathcal{U}}$, the state x from zero initial state satisfies

$$||x(\cdot)||_{\mathcal{X},q} \le \gamma ||u(\cdot)||_{\mathcal{U},q} \tag{6}$$

Incremental ISS for strongly contracting delay ODEs

$$\dot{x}(t) = f(x(t), x(t-s), u(t)), 0 \le s \le S, \qquad \|\cdot\|_{\mathcal{X}}, \|\cdot\|_{\mathcal{U}}$$

$$\tag{7}$$

assume there exist positive constants $c,\ell_{\mathcal{U}},\ell_{\mathcal{X}}$ such that, for all variables,

osl
$$x$$
: $[\![f(x,d,u) - f(y,d,u), x - y]\!]_{\mathcal{X}} \le -c|\![x - y]\!]_{\mathcal{X}}^2$ (8)

Lip
$$x(t-s)$$
: $||f(x,x_1,u) - f(x,x_2,u)||_{\mathcal{X}} \le \ell_{\mathcal{X}} ||x_1 - x_2||_{\mathcal{X}}$ (9)

$$\|f(x,d,u) - f(x,d,v)\|_{\mathcal{X}} \le \ell_{\mathcal{U}} \|u - v\|_{\mathcal{U}} \tag{10}$$

By the curve norm derivative formula, subadditivity, and Cauchy-Schwarz inequality,

$$\begin{split} \|x(t) - y(t)\|_{\mathcal{X}} D^+ \|x(t) - y(t)\|_{\mathcal{X}} &= \left[\!\!\left[f(x(t), x(t-s), u_x(t)) - f(y(t), y(t-s), u_y(t)), x(t) - y(t) \right]\!\!\right]_{\mathcal{X}} \\ &\leq \left[\!\!\left[f(x(t), x(t-s), u_x(t)) - f(y(t), x(t-s), u_x(t)), x(t) - y(t) \right]\!\!\right]_{\mathcal{X}} \\ &+ \left[\!\!\left[f(y(t), x(t-s), u_x(t)) - f(y(t), y(t-s), u_x(t)), x(t) - y(t) \right]\!\!\right]_{\mathcal{X}} \\ &+ \left[\!\!\left[f(y(t), y(t-s), u_x(t)) - f(y(t), y(t-s), u_y(t)), x(t) - y(t) \right]\!\!\right]_{\mathcal{X}} \\ &\leq -c \|x(t) - y(t)\|_{\mathcal{X}}^2 + \ell_{\mathcal{X}} \|x(t-s) - y(t-s)\|_{\mathcal{U}} \|x(t) - y(t)\|_{\mathcal{X}}, \\ &+ \ell_{\mathcal{U}} \|u_x(t) - u_y(t)\|_{\mathcal{U}} \|x(t) - y(t)\|_{\mathcal{X}}. \end{split}$$

Thus, with $m(t) = \|x(t) - y(t)\|_{\mathcal{X}}$, delay differential inequality:

$$D^{+}m(t) \le -cm(t) + \ell_{\mathcal{X}} \sup_{0 \le s \le S} m(t-s) + \ell_{\mathcal{U}} \|u_{x}(t) - u_{y}(t)\|_{\mathcal{U}}, \tag{11}$$

Halanay inequality is applicable. If $c>\ell_{\mathcal{X}}$, then

$$m(t) \le m_0 e^{-\rho(t-t_0)} + \ell_{\mathcal{U}} \int_{t_0}^t e^{-\rho(t-\tau)} \|u_x(\tau) - u_y(\tau)\|_{\mathcal{U}} d\tau,$$
 (12)

where $\rho > 0$ is the unique positive root of $\rho = c - \ell_{\mathcal{X}} e^{\rho S}$ and $m_0 = \sup_{0 \le s \le S} m(t_0 - s)$.

Networks of contracting systems with time delays

Interconnected subsystems $i \in \{1, \dots, n\}$

$$\dot{x}_i = f_i(x_i, x_{-i}, x_{-i}(t-s), u_i), \qquad 0 \le s \le S, \qquad \|\cdot\|_i, \|\cdot\|_{i,\mathcal{U}}$$
(13)

Assume there exist positive constants st

With $m_i(t) = ||x_i(t) - y_i(t)||_i$, delay differential inequality:

$$D^+ m(t) \le -Cm(t) + \Gamma m(t) + \widehat{\Gamma} \sup_{0 \le s \le S} m(t-s) + \ell_{\mathcal{U}} ||u_x(t) - u_y(t)||_{\mathcal{U}}$$

and, if the Metzler matrix $-C + \Gamma + \widehat{\Gamma}$ is Hurwitz, then (13) is incremental ISS

Networks of ISS systems

Interconnections scalar ISS subsystems

$$\dot{x}_i = -a_i(x_i) + \sum_{j \neq i} \gamma_{ij}(x_j) + u_i, \quad \text{for } i \in \{1, \dots, n\}.$$
 (14)

where a_i are of class \mathcal{K}_{∞} and γ_{ij} are of class \mathcal{K} . Define

$$A_i(x) = a_i(x_i), \quad \text{ and } \Gamma_i(x) = \sum_{j \neq i} \gamma_{ij}(x_j)$$

If there exist $\eta \in \mathbb{R}^n_{>0}$ and c>0 satisfying

$$\eta^{\top}(A(v) - A(w)) \ge \eta^{\top}(\Gamma(v) - \Gamma(w) + c(v - w)), \quad \text{for all } v \ge w \ge 0,$$

then the interconnected system is strongly contracting with respect to $\|\cdot\|_{1,[\eta]}$ and with rate c

 Γ

Proof:
$$\operatorname{osLip}_{1,[\eta]}(f) \leq b$$
 if and only if $\eta^\top \big(f(x) - f(y) \big) \leq b \eta^\top (x-y)$