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Biological and Artificial Neural Networks

artificial neural network (AlexNet '12) human neocortical neuron

Aim: understand the dynamics of neural networks, so that
o reproducible behavior, i.e., equilibrium response as function of stimula
@ robust behavior in face of uncertain stimuli
@ robust behavior in face of uncertain dynamics

@ learning models, efficient computational tools, periodic behaviors ...



Fixed point computation

Feedforward NN Implicit/Recurrent NN
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o = U, .’L':(I)(Al'—i-Bu—Fb),

y=Cx+d

Fixed point strategies in data science = simplifying and unifying framework to model, analyze,
and solve advanced convex optimization methods, Nash equilibria, monotone inclusions, etc.

P. L. Combettes and J.-C. Pesquet. Fixed point strategies in data science. /EEE Transactions on Signal
Processing, 2021. 4



http://dx.doi.org/10.1109/TSP.2021.3069677

© Contraction theory
@ Banach contractions and infinitesimal counterparts
@ Contraction on Euclidean and inner product spaces
@ Contraction on non-Euclidean normed vector spaces



Contraction theory: historical notes

@ Origins
S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.
Fundamenta Mathematicae, 3(1):133-181, 1922. d
S. M. Lozinskii. Error estimate for numerical integration of ordinary differential equations. |. /zvestiya
Viysshikh Uchebnykh Zavedenii. Matematika, 5:52-90, 1958

C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
analysis. /EEE Transactions on Circuit Theory, 19(5):480-486, 1972. 4

@ Application in dynamics and control: W. Lohmiller and J.-J. E. Slotine. On contraction analysis for
non-linear systems. Automatica, 34(6):683-696, 1998. @

@ Reviews:
Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some
open problems. In IEEE Conf. on Decision and Control, pages 3835-3847, Dec. 2014. 4

M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of
complex networks via contraction theory. In J. Lii, X. Yu, G. Chen, and W. Yu, editors, Complex Systems
and Networks, pages 313-339. Springer, 2016. ISBN 978-3-662-47824-0. @

H. Tsukamotoa, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and
learning-based control: A tutorial overview, 2021. URL https://arxiv.org/abs/2110.00675


http://dx.doi.org/10.4064/fm-3-1-133-181
http://dx.doi.org/10.1109/TCT.1972.1083507
http://dx.doi.org/10.1016/S0005-1098(98)00019-3
http://dx.doi.org/10.1109/CDC.2014.7039986
http://dx.doi.org/10.1007/978-3-662-47824-0_12
https://arxiv.org/abs/2110.00675

@ contraction conditions without Jacobians have been studied under many different names:

uniformly decreasing maps in: L. Chua and D. Green. A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of
autonomous networks. |[EEE Transactions on Circuits and Systems, 23(6):355-379, 1976. L

one-sided Lipschitz maps in: E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff Problems. Springer,
1993. 4 (Section 1.10, Exercise 6)

maps with negative nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis
for Hopfield-type neural networks. /EEE Transactions on Neural Networks, 12(2):360-370, 2001. 4

dissipative Lipschitz maps in: T. Caraballo and P. E. Kloeden. The persistence of synchronization under environmental noise. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2059):2257-2267, 2005. ¢

maps with negative lub log Lipschitz constant in: G. Soderlind. The logarithmic norm. History and modern theory. BIT Numerical Mathematics,
46(3):631-652, 2006. ¢

QUAD maps in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled ordinary differential systems. Physica D:
Nonlinear Phenomena, 213(2):214-230, 2006. €

incremental quadratically stable maps in: L. D'Alto and M. Corless. Incremental quadratic stability. Numerical Algebra, Control and
Optimization, 3:175-201, 2013. 4
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@ deep connections: infinitesimal contraction, fixed point and monotone operator theory

V. Berinde. lterative Approximation of Fixed Points. Springer, 2007. ISBN 3-540-72233-5
H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, 2 edition, 2017. ISBN
978-3-319-48310-8

e E. K. Ryu and W. Yin. Large-Scale Convex Optimization via Monotone Operators. Cambridge, 2022


http://dx.doi.org/10.1109/TCS.1976.1084228
http://dx.doi.org/10.1007/978-3-540-78862-1
http://dx.doi.org/10.1109/72.914530
http://dx.doi.org/10.1098/rspa.2005.1484
http://dx.doi.org/10.1007/s10543-006-0069-9
http://dx.doi.org/10.1016/j.physd.2005.11.009
http://dx.doi.org/10.3934/naco.2013.3.175

On fixed point algorithms and Banach contractions

x = G(x)
Banach Contraction Theorem

If Lip(G) < 1 that is ||G(u) — G(v)|| < Lip(G)]|ju — v],
then Picard iteration x4+ = G(zy) is a Banach contraction

e

For Lip(G) > 1, define the average/damped/Mann-Krasnosel'skii iteration

Tpr1 = (1 — a)xg + aG(zy)

Infinitesimal Contraction Theorem
@ there exists 0 < o < 1 such that the average iteration is a Banach contraction
@ the map G satisfies osLip(G) < 1
© the dynamics & = —z + G(«) is infinitesimally strongly contracting




Robustness of fixed point algorithms

Robustness via Lipschitz constants (Lim’s Lemma)
x} is a fixed point of z = G(x,u) and Lip, G < 1, then

u

| < Lip, G
"= 1—Lip, G

23

s = [ =]

N

Robustness via one-sided Lipschitz constants
v is a fixed point of x = G(x, u)
x} is a fixed point of z = G(x,v) 4+ D(x,v), and

osLip,(G+ D) < 1, then

1
* _ * <
lew =2l < T e 7 o)

(Lipu(G + D)llu— v + (s, ) )




On infinitesimal contraction theory

Given & = F(t,x), F is infinitesimally strongly contractive if its flow is a Banach contraction

ball centered at z(t) with radius e~



Properties of contracting dynamical systems
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i ball centered at z(t) with radius e~

Highly ordered transient and asymptotic behavior:

Zo

@ time-invariant F: unique globally exponential stable equilibriumfmmm1
two natural Lyapunov functions

@ periodic F: contracting system entrain to periodic inputs
© contractivity rate is natural measure/indicator of robust stability

@ accurate numerical integration, and

@ there exist efficient methods for their equilibrium computation



Scalar maps and vector field

F :R — R is one-sided Lipschitz with osLip(F) = b if

F'(z) < b, Va
<~ F(z)-F(y) <b(z—y), Vr >y
= (z-y)(F(z) - F(y) <blz —y)* v,y

@ Fis osL with b = 0 iff F' weakly decreasing

o if I is Lipschitz with bound ¢, then F'is osL with b </
o For

&= F(x)
the Gronwall lemma implies |z(t) — y(t)| < €% |x(0) — y(0)]



Contraction theory on inner product space (R, ¢5)

For x € R™ and differentiable time-dep

For P = PT = 0, define ||x||§ pijz = z! Px

Main equivalences: For ¢ > 0, map F is c-strongly contracting (i.e., osLip(F) < —¢) if
Q@ osL : (F(z)=F(y) Plx—y) < —cla—ylls ., forallz,y

@ d-osL : PDF(z)+ DF(z)TP < —2cP for all =

Q dIS : DF|x(t) —y(t)

2 pi/2 < —cllz(t) — y(t)lg p1/2 for all soltns z(-),y(+)




Contraction theory on inner product space (R, ¢5)

For differentiable V' : R — R, equivalent statements:
Q@ V is strongly convex with parameter m

@ —gradV is m-strongly contracting, that is

(- gradV (z) + gradV () (z — y) < —ml|z — y|3

For map F : R® — R", equivalent statements:

© F is a monotone operator (or a coercive operator) with parameter m,

© -—F is m-strongly contracting




Contraction theory on inner product space (R, ¢5)

Equilibria of contracting vector fields:

For a time-invariant F, c-strongly contracting with respect to || - ||y p1/2

Q@ flow of F is a contraction,

i.e., distance between solutions exponentially decreases with rate ¢

@ there exists an equilibrium x*, that is unique, globally exponentially stable with global

Lyapunov functions

x|z — 1’*“3,131/2

and 2> [F(@)[2 e




Contraction theory on inner product space (R, ¢5)

Given F: R — R"™

x* € zero(F) < " € fixed(G), where G =Id+F
consider forward step = Euler integration for ' = averaged iteration for G:
1 = (Id+aF)x = z + aF (xg) =(1—a)ld+aG

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = {/c > 1

@ the map Id +aF is a contraction map with respect to || - ||, p1/2 for

2
0<Oé<—2
CK

@ the optimal step size minimizing and minimum contraction factor:

aE




© Contraction theory
@ Banach contractions and infinitesimal counterparts
@ Contraction on Euclidean and inner product spaces
@ Contraction on non-Euclidean normed vector spaces



Contraction theory on the normed vector spaces (R", {1 /()

Norms From inner products to From LMIs to
sign and max pairings log norms
J@lZ pro =2 Pz [yl pre =37 Py 1z, p1/2(A) = min{b | ATP 4+ PA < 2P}
||.'L’||1 = Z |xl| [[q;,y]]l = ||y||1 Sign(y)-rx ,ufl(A) max (CL_” aF Z | A5 >
2
lalloc = masxlei|  [29le = max yia poo(A) = max (@i + Y Jay)

where Io(z) = {i € {1,...,n} | |z;| = ||z]|oc}



Generalizing LMIs: log norms conditions

The log norm of A € R™*™ wrt to || - ||:

. |Hn+RA| -1
A):=lim ——
A = I
Basic properties:
subadditivity: w(A+ B) < u(A) + u(B)
scaling: w(bA) = bu(A), Vb >0
convexity: @A+ (1—0)B) <0u(A)+ (1 —0)u(B), Vo € [0,1]
p(A) < —c = A+ AT < —2cl,
,LLOO(A) <—c <= a;-+ Z |aij| < —c¢ for all ¢

JFi

T. Strém. On logarithmic norms. SIAM Journal on Numerical Analysis, 12(5):741-753, 1975. 4



http://dx.doi.org/10.1137/0712055

Generalizing inner products: weak pairings

A weak pairing is [-,-] : R® x R" — R satisfying
Q [z1+ x2,y] < [z1,y] + [x2,y] and z — [z, y] is continuous,
Q [bz,y] = [z,by] = b[z,y] for b > 0 and [—z, —y] = [z, ],
@ [z,z] >0, for all x # Oy,

O [[z.9]| < [w,2]"* [y 9],
Given norm || - ||, compatibility: [z, 2] = ||z||? for all =

Sup of non-Euclidean numerical range: w(A) = sup [Azx,z]
llzll=1

Norm derivative formula: IDMz(t)|? = [&(t), z(t)]



Contraction theory on the normed vector spaces (R", {1 /()

For x € R™ and differentiable time-dep
i = F(z) (1)

For norm || - || with log norm u(-) and compatible weak pairing [, -]

Main equivalences: for ¢ > 0
O osL : [F(z)—F(y),z—9y] < —cllz —y|? for all =,y
Q d-osL : u(DF(x)) < —c for all =

© d-1s : DTlz(t) —y@)l < —cllz(®) —y(®)||  for soltns z(-), y(")

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. /EEE
Transactions on Automatic Control, July 2021. URL https://arxiv.org/abs/2103.12263. Submitted


https://arxiv.org/abs/2103.12263

Contraction theory on the normed vector spaces (R", {1 /()

Consider a norm || - || with compatible weak pairing [-, ]
Recall forward step method x4 = (Id +aF)z, = z; + oF (z)

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = {/c > 1

© the map Id +aF is a contraction map with respect to || - || for

0 -
<a<cm(1+;@)

@ the optimal step size minimizing and minimum contraction factor:

iem ke 0l )

. 1 1 1
e =1- 53+ 5o+ ()




© Detour: Network systems



virus spread coupled oscillators social power

< gl
BT

averaging compartmental flows

network structure — function = dynamic behavior

Control theories: general Lyapunov theory, passivity/dissipativity, monotone dynamics ...



Networks of contracting systems

Interconnected subsystems: x; € RN and z_; € RN,

T; :fi(l‘iax—i); fori € {1,,7’L}

@ osL: z; — fi(z;,x_;) is infinitesimally strongly contracting with rate ¢;

o Lip: w—; = fi(w, x—;) is Lipschitz: || fi(zi, 2—s) — fi(wi, y—i)lli < 2250 visllzs — ysll

—C1 ... Vin
@ the gain matrix | : . | is Metzler Hurwitz
Tnl .- —Cn
— the interconnected system is infinitesimally strongly contracting

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. /EEE
Transactions on Automatic Control, July 2021. URL https://arxiv.org/abs/2103.12263. Submitted


https://arxiv.org/abs/2103.12263

Contraction theory for networks

Challenge: many real-world networks are not contracting.

For a vector field F and positive vectors 7, £ € RY,

conservation law n' f(x)=n"f(y) Yz,y = n' DF(z) =0 Yz
translation invariance  f(z + af) = f(z) Vz,a = DF(z){ =0 Vz

If F satisfies a conservation law or translation invariance, then
Q osLip(f) >0
@ if additionally F is monotone, then osLip; ,;(f) = 0 or osLip g-1(f) =0




Weakly contracting systems

& = f(x) is weakly contracting wrt || - ||:

osLip(f) <0

© Lotka-Volterra population dynamics (Lotka, 1920; Volterra, 1928) (¢1-norm for mutualistic)

@ Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill, 1981) (/;-norm
and {o.-norm)

© Daganzo’s cell transmission model for traffic networks (Daganzo, 1994), (¢:-norm for non-FIFO
intersection)

@ compartmental systems in biology, medicine, and ecology (Sandberg, 1978; Maeda et al., 1978).
(¢1-norm)

@ saddle-point dynamics for optimization of weakly-convex functions (Arrow et al., 1958). (/2-norm)



Semi-contracting systems

& = f(x) is semi-contracting wrt the semi-norm |||-|| with rate ¢ > 0:

osLipy. (f) < —e

or, for differentiable systems, 1. (DF(z)) < —c

© Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill, 1981), (¢1-norm)
@ Chua’s diffusively-coupled circuits (Wu and Chua, 1995), (/>-norm)
© morphogenesis in developmental biology (Turing, 1952), (/1-norm, over some param ranges)

© Goodwin model for oscillating auto-regulated gene (Goodwin, 1965). (/;-norm, over some param
ranges)

S. Jafarpour, P. Cisneros-Velarde, and F. Bullo. Weak and semi-contraction for network systems and diffusively-coupled oscillators. /EEE Transactions on Automatic
Control, 2021a. 4. To appear


http://dx.doi.org/10.1109/TAC.2021.3073096

k and a-contracting systems

e M. Y. Liand J. S. Muldowney. A geometric approach to global-stability problems. SIAM
Journal on Mathematical Analysis, 27(4):1070-1083, 1996. 4

o C. Wu, I. Kanevskiy, and M. Margaliot. k-contraction: Theory and applications.
Automatica, 136:110048, 2022. €

@ C. Wu, R. Pines, M. Margaliot, and J.-J. E. Slotine. Generalization of the multiplicative
and additive compounds of square matrices and contraction in the Hausdorff dimension,
Dec. 2020. Available at https://arxiv.org/abs/2012.13441


http://dx.doi.org/10.1137/s0036141094266449
http://dx.doi.org/10.1016/j.automatica.2021.110048
https://arxiv.org/abs/2012.13441

@ Application to recurrent neural networks and implicit ML models
o Contractivity of recurrent neural networks
@ Implicit neural networks in machine learning



Applications to recurrent neural networks

Continuous-time recurrent neural networks:
t=—-x+AP(z) +u (Hopfield)
t=—x+ ®(Az + u) =: frr(z) (Firing rate ~ Implicit NNs)
&= AdP(x) (Persidskii-type)
&= Az — ®(x) (...)
sigmoid, hyperbolic tangent ReLU = max{z,0} = (z)+

o a 2 o a =z
|||||

activation functions are locally-Lip and slope-restricted: for all ¢

dmin := essinf,cr %ggy) >0 and dmax ;= €ss SUpPycR

0%;(y)
Y

< 00



Tight transcription. Dfrr(z) = —1I, + (D®(z))A a.e., and so

osLipy (fFR) = esssup poo ( — Iy + (D®(2))A) = =1+ max  poo(dg(d)A)
zeR™ de[dmimdmax]n

Max log norms over hypercubes. For A € R™*™ and 0 < dmin < dmax

de[dn-lac}i( 0 ,ul(dg(d)A) = max{,ul (dmaxA)7 1251 (dmaxA - (dmax - dmin)(In o A))}

dE[dH.la;( jn Hoo(dg(d)A) = max {Moo (dminA); Hoo (dmaxA)}

Recall: max convex function over polytope achieved at a vertex; here 2" — 2 vertices only.




NonEuclidean contractivity of firing rate model

t=—-Czx+ ®(Az +u) =: fer(z)
© for arbitrary € RY

05Lipeg, [y -1 (frr) = max{jice [y -1 (=C' + dminA); fioo, (-1 (=C + dmaxA)}

@ optimal weight 7 and minimim value of osLip ;-1 (frr) from quasiconvex opt:

inf b
n
bER7nER>O

s.t. (*C + dmin|A|M)n < b77
(—C + dmax|A‘M)77 < b77

© if dmin =0 and C > 0, let v, € RZ; be right eigenvector of —C' + dmax|A|wm,

né%f 0sLip g ;] (frr) = 0SLipeg -1 (frr) = max {a(=C), a(—=C + dmax| Alm) }-
>0

A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks. In
American Control Conference, 2022. URL https://arxiv.org/abs/2110.08298. To appear


https://arxiv.org/abs/2110.08298

@ Application to recurrent neural networks and implicit ML models
o Contractivity of recurrent neural networks
@ Implicit neural networks in machine learning



Implicit neural networks in machine learning

Feedforward NN Implicit/Recurrent NN
(©)
(@)
(©)
(@)
T Tk
Tyl = P(Ajr; + b;), T = u, r = ®(Az + Bu+b),
y=Cxr+d y=Cx+d

ML advantages of implicit/equilibrium/fixed point formulation:
bio-inspired, simplicity, accuracy, memory efficiency, input-output robustness

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean
contractions. In Advances in Neural Information Processing Systems, Dec. 2021b. URL
http://arxiv.org/abs/2106.03194


http://arxiv.org/abs/2106.03194

Motivation #1: Generalizing FF to fully-connected synaptic matrices
't = ®(Ai2' + Biu+b) <<= 1 = ®(Azx + Bu+b), where A has
upper diagonal structure.

Aupper-diagonal = E :> Acomplete =

Motivation #2: Weight-tied infinite-depth NN — fixed-point of INN

A A A y
uT x1 —> T2 x3 o Tk -
|1 T T *?

= ®(Az' + Bu+b) = lim; . 2" = z* solution to the INN

Motivation #3: Neural ODE model (infinite time) — fixed-point of INN

t=—-x+P(Az+ Bu+b) = limy_ x(t) = z* solution to INN



Recent literature on implicit NNs

© 6 o o

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. In Advances in Neural Information
Processing Systems, 2019. URL https://arxiv.org/abs/1909.01377

L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Tsai. Implicit deep learning. SIAM Journal on
Mathematics of Data Science, 3(3):930-958, 2021. 4

E. Winston and J. Z. Kolter. Monotone operator equilibrium networks. In Advances in Neural
Information Processing Systems, 2020. URL https://arxiv.org/abs/2006.08591

M. Revay, R. Wang, and I. R. Manchester. Lipschitz bounded equilibrium networks. 2020. URL
https://arxiv.org/abs/2010.01732

A. Kag, Z. Zhang, and V. Saligrama. RNNs incrementally evolving on an equilibrium manifold: A
panacea for vanishing and exploding gradients? In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HylpqA4FwS

K. Kawaguchi. On the theory of implicit deep learning: Global convergence with implicit layers. In

International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=p-NZluwghl4

S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin. Fixed point networks: Implicit
depth models with Jacobian-free backprop, 2021. URL https://arxiv.org/abs/2103.12803.
ArXiv e-print


https://arxiv.org/abs/1909.01377
http://dx.doi.org/10.1137/20M1358517
https://arxiv.org/abs/2006.08591
https://arxiv.org/abs/2010.01732
https://openreview.net/forum?id=HylpqA4FwS
https://openreview.net/forum?id=p-NZIuwqhI4
https://arxiv.org/abs/2103.12803

Implicit Neural Networks (INNs)

@ Training INNs:

@ loss function £
@ training data (U;,4:)Y;
© training optimization problem

N
Jmin z; L(Gi, Cz; + c)
1=

€T; = (I)(A."L‘i + Bu; + b)
o Efficient back-propagation through implicit differentiation

@ Stochastic gradient descent: at each step solve x = ®(Ax + Bu + b).

Challenge #1: well-posedness of fixed-point equation
Challenge #2: algorithm for fixed-point equation J




Robustness of INNs

Adversarial examples: small input change causes large output change!

0.005 x

Robustness measures: input-to-output Lipschitz constant
@ /s-norm Lipschitz constant: not informative in many scenarios

@ /-norm Lipschitz constant: large-scale input wrt wide-spread perturbations

Challenge #3: compute robustness margins

Challenge #4: implement robustness in training




Well-posedness and robustness of /.-contracting INNs

z=®(Ax + Bu+b) (INN fixed point)
&t =—x+ ®(Az + Bu+b) (Recurrent NN)
Tpr1 = (1 — a)xg + a®(Axg + Bu +b) (Average iter.n)

,U,OO(A) <1 (i.e., A Z ‘(1,1‘.}" < 1 for all ])
J

@ dynamics is contracting with rate 1 — o (A)+

1-— A 1
@ average iteration is Banach with factor 1 — w ata=———-—
— min;(a;;)— 1 — min;(as;)—
| Blloo |Clloo

e input-output Lipschitz constant Lip,_,, = T @)
— Moo +




Training INNs

Training optimization problem:

N
A,mB}ICl',b ; E(y’u Cw’L + C) + A Llpu~>y
x; = <I>(Axi + Bu; + b)
foo(A) <7y

@ )\ > 0 is a regularization parameter

@ v < 1 is a hyperparameter

Parametrization of ., constraint:

poo(A) <~ <<= ITst. A=T —diag(|T|1,) + vIn.




Graph-Theoretic Regularization

Synaptic matrix A encodes interactions between neurons

.

—| B

Acom plete

> — >
:> Ad ropout

@ Adropout 1S @ principal submatrix of Acomplete

o Noo(Adropout) S Noo(Acomplete)

o Well-posedness of original INN implies well-posedness of INN with subset of neurons
e Promotes compression and sparsity of overparametrized models



Numerical Experiments

e MNIST handwritten digit dataset (60K+10K, 28x28, grayscale)

@ implicit neural network order: n = 100

Glolstd]alglal o
Oololsidlalalal ¢
OlolsiHlalalal ¢
OlojsiHlalglal ¢



Numerical Experiments

Robustness of INNs

Tradeoff between accuracy and robustness

Test error vs Lipschitz constant on MNIST handwritten digits Accuracy vs perturbation on MNIST handwritten digits

] 1.0
"l e ® =10 — A=10"!
16 1 ® =10 A= 102
® =100 084 — A=10-25
144 A=10"% A=10"%
A=10"4 A=10"*
3121 A=107° 061 A=10"5
5 ® =0 g — =0
g{ @ ° @ Al <095 E — Al <095
o g
<
g s 0.4 MON
6
0.2 4
4
24 %
T . T — 0.0 T T T T
10% 10 10 10° 0.0 0.1 0.2 0.3 0.4 0.5
Lipschitz constant l amplitude of perturbation
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Numerical Experiments
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© Scientific and engineering problems from neural networks

© Contraction theory
@ Banach contractions and infinitesimal counterparts
@ Contraction on Euclidean and inner product spaces
@ Contraction on non-Euclidean normed vector spaces

© Detour: Network systems

@ Application to recurrent neural networks and implicit ML models
o Contractivity of recurrent neural networks
@ Implicit neural networks in machine learning

© Conclusions and future research



Conclusions

From Contracting Dynamics to Contracting Algorithms:
@ contraction theory, monotone operator theory, convex optimization

o effective methodologies to tackle control, optimization and learning problems
e extensions to network dynamics

@ from Euclidean to non-Euclidean norms
© application to recurrent and implicit neural networks

e existence, uniqueness, and computation of fixed-points
e robustness analysis and robust training via Lipschitz bounds
o https://github.com/davydovalexander/Non-Euclidean_Mon_Op_Net

From Contracting Dynamics to Contracting Algorithms:
@ mixed-monotone contraction theory (https://arxiv.org/abs/2112.05310)
@ implicit graph neural architectures
© bio-inspired Hebbian learning

@ robustness of implicit models


https://github.com/davydovalexander/Non-Euclidean_Mon_Op_Net
https://arxiv.org/abs/2112.05310

Supplementary slides



Background on Infinitesimal Contraction Theorem

@ there exists 0 < o < 1 such that the average iteration is a Banach contraction
@ the map G satisfies osLip(G) < 1

© the dynamics & = F(z) := —x + G(x) is infinitesimally contracting

o the equivalence (2) <= (3) is just a transcription:
o F = —1d+G contracting with rate ¢ <= osLip(F) < —¢ <= osLip(G) <1 —¢, for
c>0
e in (£, P), osLip(F) < —c is usual Krasovskii: PJ(z)+ J(z)" P < —2¢P for all x and J = DF
@ (2) = (1): known in monotone operator theory (page 15 “forward step method" in)
o vector field F is contracting with rate ¢ <= —F is strongly monotone with parameter ¢
@ Theorem 1 in? proves the equivalence (1) <= (2) for any norm, i.e., the implication (2)

= (1) for any norm (with proper osLip definitions) and the converse direction (1) =
(2) for £, P. Theorem 3 in? proves the one-sided Lim Lemma (see next slide).

lE. K. Ryu and S. Boyd. Primer on monotone operator methods. Applied Computational Mathematics, 15(1):3-43, 2016

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in Neural Information
Processing Systems, Dec. 2021b. URL http://arxiv.org/abs/2106.03194


http://arxiv.org/abs/2106.03194

Euclidean vs. non-Euclidean contractions

Most foundational results in systems theory are based on /5 linear-quadratic theory;
their ¢1/{~ analogs are yet to be worked out.
Advantages of non-Euclidean approach

@ computational advantages: non-Euclidean log-norm constraints lead to LPs, whereas /5
constraints leads to LMIs. Parametrization of log-norm constrained matrices is polytopic.
A. Rantzer. Scalable control of positive systems. European Journal of Control, 24:72-80, 2015. ¢

@ guaranteed robustness to structural perturbations: £+, contractivity ensures:

@ absolute contractivity = with respect to a class of activation functions
@ total contractivity = remove any node and all its incident connections
@ connective contractivity = remove any set of edges

© adversarial input-output analysis
loo better suited for the analysis of adversarial examples than ¢5: in high dimensions, large
inner product between two vectors is possible even when one vector has small /o, norm

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In International Conference on Learr
Representations (ICLR), 2015. URL https://arxiv.org/abs/1412.6572


http://dx.doi.org/10.1016/j.ejcon.2015.04.004
https://arxiv.org/abs/1412.6572

Literature on recurrent NN ODEs

@ J. J. Hopfield. Neurons with graded response have collective computational properties like those of
two-state neurons. Proceedings of the National Academy of Sciences, 81(10):3088-3092, 1984. ©

@ E. Kaszkurewicz and A. Bhaya. On a class of globally stable neural circuits. /[EEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, 41(2):171-174, 1994. &

© M. Forti, S. Manetti, and M. Marini. Necessary and sufficient condition for absolute stability of
neural networks. |[EEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, 41(7):491-494, 1994. ¢

© Y. Fang and T. G. Kincaid. Stability analysis of dynamical neural networks. |[EEE Transactions on
Neural Networks, 7(4):996-1006, 1996. 4

© H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability
analysis for Hopfield-type neural networks. /EEE Transactions on Neural Networks, 12(2):360-370,
2001. @

@ W. He and J. Cao. Exponential synchronization of chaotic neural networks: a matrix measure
approach. Nonlinear Dynamics, 55:55-65, 2009. 4

@ H. Zhang, Z. Wang, and D. Liu. A comprehensive review of stability analysis of continuous-time
recurrent neural networks. |[EEE Transactions on Neural Networks and Learning Systems, 25(7):
1229-1262, 2014. 4


http://dx.doi.org/10.1073/pnas.81.10.3088
http://dx.doi.org/10.1109/81.269055
http://dx.doi.org/10.1109/81.298364
http://dx.doi.org/10.1109/72.508941
http://dx.doi.org/10.1109/72.914530
http://dx.doi.org/10.1007/s11071-008-9344-4
http://dx.doi.org/10.1109/TNNLS.2014.2317880

Contractivity conditions with respect to arbitrary norms

Log norm Demidovich One-sided Lipschitz

bound condition condition

p2.p(DF(x)) <b  PDF(x)+ DF(z)" P < 2bP (z—y) " P(F(z) — F(y)) <bllz —yllp/e

tp(DF(z)) < b (vo [v[P~*)T DF(z)v < b|lo|? ((z —y)olz —y|"*) T (F(z) — F(y)) < bllz -y}

p(DF(z)) <b  sign(v)T DF(z)v < bljo|h sign(z — )" (F(z) — F(y)) < bllz —yl

too (DF(2)) < b “max v; (DF(z)v), <bljv|%, Cmax (2 — i) (filx) = fiy) <bllz —yll3
i€l (v) i€loe (z—y)

Table of equivalences between measure bounded Jacobians, differential Demidovich and one-sided
Lipschitz conditions. Note: Io(v) ={i € {1,...,n} | |vi| = ||v|loc}-

J. A. Jacquez and C. P. Simon. Qualitative theory of compartmental systems. SIAM Review, 35(1):43-79, 1993. 4

H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. /[EEE Transactions

on Neural Networks, 12(2):360-370, 2001. 4
G. Como, E. Lovisari, and K. Savla. Throughput optimality and overload behavior of dynamical flow networks under monotone distributed routing. /EEE
Transactions on Control of Network Systems, 2(1):57-67, 2015. 4


http://dx.doi.org/10.1137/1035003
http://dx.doi.org/10.1109/72.914530
http://dx.doi.org/10.1109/TCNS.2014.2367361

Robustness to unmodeled dynamics

Given a norm || - ||, consider
&= f(z) +g(x) (2)

If F has one-sided Lipschitz constant —c < 0 and
g has one-sided Lipschitz constant d > 0, then

© (contractivity under perturbations) if d < ¢, then f + g is strongly contracting with
rate ¢ — d,

@ (equilibrium point under perturbations) if additionally F and g are time-invariant, then
the unique equilibrium point 2* of F and ™ of f + g satisfy

lg(@)

lz* =™ < = (3)




Metzler matrices and monotone systems

e For Metzler M and monotonic || - ||, (M) = sup

x>0,

e Forn,§ € RY,
p ) (M) = max(n " M[n]™") = minfb € R | 9" M < bn'}
foo g1 (M) = max([¢] ' M¢) = min{b € R | M& < b}

F monotone if DF(x) Metzler for all

[f(x) = f(y),z —y] < bllz—y|* for all z >y

O osL

Q d-osL : [DF(x)v,v] < b|jv|? forall v >0 and x

i1,y (DF (2)) < b n' DF(z) < by’ n" (fx) = f(y)) <bn'(z—y) forallz >y

too g1 (DF(2)) < b DF(z)§ < b fl@)=fly) <blxz—vy) forallz=y+BE,5>0




Input-state stability and gain of contracting systems

For a time and input-dependent vector F,
= f(x,u(t)), z(0) = 29 € R™, u(t) € R (4)
Assume || - ||x with compatible [-, ]y, a norm || - [lz7, and ¢, ¢ > 0 such that

o osL: [f(z,u) — f(y,u),z — y]y < —cllz — y||%, for all z,y, v,
o Lip: ||f(z,u) — f(z,v)||x < {||u — vy, for all z,u,v.



Input-state stability and gain of contracting systems

Then
© any two soltns z(t) and y(t) to (4) with inputs u,, u,

D||lz(t) — y(®)llx < —clla(t) — y(@)llx + Llua(t) — uy(t)ll

@ F is incrementally input-to-state stable, i.e., for all xg, yo

(1 —e )

l=(t) = y(®)llx < e™Ilzo — yollx + sup |ug(7) = uy (7) lu

T7€[0,t]

© F has incremental LY, ,, gain equal to //c, for g € [1, ],

() =y()llxg < é [ () = uy(Ylleg — (for zo = o)




Signal norms and system gains 3/3

Given norm || - ||x on R™ (or || - |lx on R¥),

° Eg\,, q € [1, 0], is vector space of continuous signals, z : R>o — R™, with well-defined

bounded norm
R q 1/q
(] le@lgde) ™ ifae ool

supy>o [ ()]l x if ¢ = o0

[2()llx.q = (5)

@ Input-state system has EqX_u—induced gain upper bounded by v > 0 if, for all u € £},
the state x from zero initial state satisfies

() llxg < v llul)leq (6)



Incremental ISS for strongly contracting delay ODEs

i(t) = f(x(t), x(t — ), u(t)),0 < s < S, I laes I e M

assume there exist positive constants ¢, £4, £ x such that, for all variables,

osL w : [f(z,dyu) — f(y,du),z -yl < —cllz —yl% (®)
Lip o(t — s) : If (2, e1,u) — f(z,22,w)llx < xller —22llx ©)
Lip u : If (2, dyu) — £z, d, o)l < Lullu — vlly (10)

By the curve norm derivative formula, subadditivity, and Cauchy-Schwarz inequality,

le@®)—y®llxDF2t) =y lx = [f@(t), a(t — 5),uz(t)) — FY(E), y(t — 8),uy (1)), 2(8) — y(D)]
S (@), z(t = s), ua(t)) — f(y(@), z(t — 8), uaz (?), 2(t) —y(O)]x
+ [y (), (t — ), uz(t) = FY(), y(t — 8), uz (t), z(t) —y(H)]»
+ [Fw®), y(t = 5), ua () = Fy®), y(t — 5), uy (1)), 2(t) — y(H)] »

< —clla(t) — yI% + Lxllat — ) — y(t — llulle) — yOlx,
+ lyllua () — uy () llull=(t) —y(@)llx-

Thus, with m(t) = ||z (t) — y(t)|| x, delay differential inequality:

D¥m(t) < —em(t) + La supg<acs Mt — 8) + by 1w () — uy (8l (11)

Halanay inequality is applicable. If ¢ > £, then
—p(t—tg) to—p(t—7)
m(t) < moe 07 + 0y e [l (7) = uy () lleedT, (12)
to

where p > 0 is the unique positive root of p = ¢ — éxe"s and mg = supg<s<s m(tg — s).



Networks of contracting systems with time delays

Interconnected subsystems i € {1,...,n}

T = filzs, ozt —s),ui),  0<s<S, |-l liw (13)
Assume there exist positive constants st
osL z; : [filzir. ) = filyir - )y — will; < —cillws — will7
Lip z_; : 1file iy ) = fileo o y—is )l < Z;:L#i viglles =il
tp o fioaTh ) = fioyZh D < 300 Aillay =il

Lip u; : N filuwi) = filoo o vi)lli < Gullwi — villiu
With m;(t) = ||z;(t) — yi(t)];, delay differential inequality:
DFm(t) < —Cm(t) + Tm(t) + T supge,cg m(t — 5) + bylJua(t) — uy () lu

and, if the Metzler matrix —C + I + I is Hurwitz, then (13) is incremental 1SS

F. Mazenc, M. Malisoff, and M. Krstic. Vector extensions of Halanay's inequality. /EEE Transactions on Automatic Control, 2021. &, to
appear


http://dx.doi.org/10.1109/TAC.2021.3062565

Networks of ISS systems

Interconnections scalar ISS subsystems
= —a;(x;) + Z i (x) + i, forie{1,...,n}. (14)
where a; are of class Ko, and ;; are of class K. Define

Aiw) = aiw:),  and Ti(w) =D i)

If there exist n € RY, and ¢ > 0 satisfying
n' (A(v) — A(w)) > n' (T(v) — T(w) + ¢(v — w)), forallv >w >0,

then the interconnected system is strongly contracting
with respect to || - [|1,,) and with rate ¢

v

Proof: osLipy ,;(f) < b if and only if n' (f(@) = f(y) <bon'(z—y)
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