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Fixed point computation

Biological and Artificial Neural Networks

human neocortical neuron

artificial neural network (AlexNet '12)

Aim: understand the dynamics of neural networks, so that
@ reproducible behavior, i.e., equilibrium response as function of stimula
@ robust behavior in face of uncertain stimuli
@ robust behavior in face of uncertain dynamics

@ learning models, efficient computational tools, periodic behaviors ...

Feedforward NN Implicit/Recurrent NN
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Tiy1 = (Aiz; + b)), x0 = u, z = ®(Az + Bu +b),
y=Czxp+d y=Czr+d

Fixed point strategies in data science = simplifying and unifying framework to model, analyze,
and solve advanced convex optimization methods, Nash equilibria, monotone inclusions, etc.
P. L. Combettes and J.-C. Pesquet. Fixed point strategies in data science. /EEE Transactions on Signal
Processing, 2021. 4




Outline Contraction theory: historical notes

@ Origins
S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.
Fundamenta Mathematicae, 3(1):133-181, 1922. L

S. M. Lozinskii. Error estimate for numerical integration of ordinary differential equations. |. /zvestiya

© Contraction theory Vysshikh Uchebnykh Zavedenii. Matematika, 5:52-90, 1958
@ Banach contractions and infinitesimal counterparts C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
@ Contraction on Euclidean and inner product spaces analysis. |EEE Transactions on Circuit Theory, 19(5):480-486, 1972. 4

@ Contraction on non-Euclidean normed vector spaces

@ Application in dynamics and control: W. Lohmiller and J.-J. E. Slotine. On contraction analysis for
non-linear systems. Automatica, 34(6):683-696, 1998. &

@ Reviews:
Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some
open problems. In /EEE Conf. on Decision and Control, pages 3835-3847, Dec. 2014. @

M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of
complex networks via contraction theory. In J. Li, X. Yu, G. Chen, and W. Yu, editors, Complex Systems
and Networks, pages 313-339. Springer, 2016. ISBN 978-3-662-47824-0. ¢

H. Tsukamotoa, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and
learning-based control: A tutorial overview, 2021. URL https://arxiv.org/abs/2110.00675

On fixed point algorithms and Banach contractions

@ contraction conditions without Jacobians have been studied under many different names: ()
o uniformly decreasing maps in: L. Chua and D. Green. A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of :
e autonomous networks. |EEE Transactions on Circuits and Systems, 23(6):355-379, 1976. ¢ Banach Contraction Theorem
one-sided Lipschitz maps in: E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff Problems. Springer, . . .
1993. 4 (Section 1.10, Exercise 6) If L|p(G) < 1 thatis ||G(U) — G('U)” S Llp(G) ||U — ’U”,

maps with negative nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis
for Hopfield-type neural networks. /EEE Transactions on Neural Networks, 12(2):360-370, 2001. €

dissipative Lipschitz maps in: T. Caraballo and P. E. Kloeden. The persistence of synchronization under environmental noise. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2059):2257-2267, 2005. 4

maps with negative lub log Lipschitz constant in: G. Séderlind. The logarithmic norm. History and modern theory. BIT Numerical Mathematics, i

then Picard iteration xp4+1 = G(xy) is a Banach contraction

46(3):631-652, 2006. ¢

e QUAD maps in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled ordinary differential systems. Physica D:
Nonlinear Phenomena, 213(2):214-230, 2006. 4
incremental quadratically stable maps in: L. D'Alto and M. Corless. Incremental quadratic stability. Numerical Algebra, Control and
Optimization, 3:175-201, 2013. &

For Lip(G) > 1, define the average/damped/Mann-Krasnosel'skii iteration

@ deep connections: infinitesimal contraction, fixed point and monotone operator theory

V. Berinde. /terative Approximation of Fixed Points. Springer, 2007. ISBN 3-540-72233-5

H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, 2 edition, 2017. ISBN

978-3-319-48310-8 . . . .
e E. K. Ryu and W. Yin. Large-Scale Convex Optimization via Monotone Operators. Cambridge, 2022 Inflnlte5|ma| ContraCtlon Theorem

Zpr1 = (1 — @)ag + aG(xg)

@ there exists 0 < a < 1 such that the average iteration is a Banach contraction
@ the map G satisfies osLip(G) < 1

@ the dynamics & = —x + G(z) is infinitesimally strongly contracting




Robustness of fixed point algorithms

Robustness via Lipschitz constants (Lim’s Lemma)
*

x3 is a fixed point of x = G(z,u) and Lip, G < 1, then

Lip, G
lz = 23ll < = ¢ llu =

— Lip,, G

-

Robustness via one-sided Lipschitz constants
a7 is a fixed point of x = G(x, u)

x is a fixed point of z = G(z,v) + D(z,v), and
osLip, (G + D) < 1, then

Fr—
1 — osLip,(G+ D)

ot - 3] (Lipu(G +D)llu = o]l + [ID(z, wl)

Properties of contracting dynamical systems

ct

Highly ordered transient and asymptotic behavior: ‘
@ time-invariant F: unique globally exponential stable equilibriLmq”mmai
two natural Lyapunov functions
@ periodic F: contracting system entrain to periodic inputs
© contractivity rate is natural measure/indicator of robust stability

@ accurate numerical integration, and

@ there exist efficient methods for their equilibrium computation

On infinitesimal contraction theory

Given & = F(t,x), F is infinitesimally strongly contractive if its flow is a Banach contraction

ct

Scalar maps and vector field

F :R — R is one-sided Lipschitz with osLip(F') = b if

F'(z) <b, Va
<~ F(z)—F(y) <blz—y), Ve >y
—  (z—y)(F(z) = F(y)) < bz —y)?, v,y

@ Fis osL with b = 0 iff F' weakly decreasing
e if F'is Lipschitz with bound ¢, then F is osL with b </
e For

T = F(x)

the Gronwall lemma implies |z(t) — y(t)| < e |z(0) — y(0)]




Contraction theory on inner product space (R", {s)

For x € R™ and differentiable time-dep
& =F(x)

For P=PT >0, define [|z|2 ., = 2" Pz

Main equivalences: For ¢ > 0, map F is c-strongly contracting (i.e., osLip(F) < —c¢) if
Q@ osL : (F(2)—F(y) Pz —y) < —cle =yl e
Q d-osL : PDF(x)+ DF(z)"P < —2cP for all x

for all z,y

© d-1IS : DFz(t) —y®)llg,pr2 < —cllz(t) —y(@)llgpr2  forall soltns z(-), y(")

Contraction theory on inner product space (R", {5)

Equilibria of contracting vector fields:
For a time-invariant F, c-strongly contracting with respect to || - |5 p1/2

@ flow of F is a contraction,
i.e., distance between solutions exponentially decreases with rate ¢

@ there exists an equilibrium z*, that is unique, globally exponentially stable with global
Lyapunov functions

vz =22 and @ (@) e

1/4  Contraction theory on inner product space (R, ¢5)

For differentiable V' : R® — R, equivalent statements:
@ V is strongly convex with parameter m

@ —gradV is m-strongly contracting, that is

(— gradV (z) + gradV (y)) " (z — y) < —mllz — y[3

For map F : R® — R", equivalent statements:
© F is a monotone operator (or a coercive operator) with parameter m,

@ —F is m-strongly contracting

Contraction theory on inner product space (R", )
Given F : R* — R"
x* € zero(F) <— 2" € fixed(G), where G =Id+F
consider forward step = Euler integration for I° = averaged iteration for G:
g1 = (ld+aF)z, = zp + aF (x) = (1 —a)ld+aG

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = £/c > 1

@ the map Id +aF is a contraction map with respect to || - || p1/2 for

2
0<a<—2
cK

@ the optimal step size minimizing and minimum contraction factor:
1
cK?




Outline Contraction theory on the normed vector spaces (R", ¢ /{~,)

) Norms From inner products to From LMls to
© Contraction theory sign and max pairings log norms

@ Banach contractions and infinitesimal counterparts

@ Contraction on Euclidean and inner product spaces

@ Contraction on non-Euclidean normed vector spaces ||~’C||37P1/2 =7 Pz [z, Y]y pr/o = 2T Py g, pr/2(A) = min{b | ATP £ PA < 2bP)
el =300l gl = fulhsin)Te ea(4) = max (a + 3, las)

K3

||‘T||OO = mlax ‘xz‘ [["E7 y]]oo = zel?jé) Yili Noo(A) = In?X (aii + Z]’yﬁi |aij|>

where Io(z) ={i € {1,...,n} | |z;| = [|z]|co }

Generalizing LMls: log norms conditions Generalizing inner products: weak pairings

The log norm of A € R™"™ wrt to || - ||:
(4) = lim I + hA| — 1 A weak pairing is [-,-] : R x R™ — R satisfying
P 0 h ) O [z1 + z2,y] < [x1,y] + [x2,y] and z — [z, y] is continuous,
: : Q [bx,y] = [=,by] = b[x,y] for b >0 and [—z, —y[ = [z, ],
Basic properties:
Q [xz,z] >0, for all z #0,,
subadditivity: /,L(A + B) < /J,(A) + /,L(B) o | [[x,y]] | S [[x’x]]l/Q Hy,y]]l/Q,
scaling; p(bA) = bu(A), V6= 0 Given norm || - ||, compatibility: [z, z] = ||z||? for all =
convexity: uw(@A+ (1 —-0)B) <0u(A)+ (1 —0)u(B), Vo € [0,1] s
Sup of non-Euclidean numerical range: w(A) = sup [Az, ]
p2(A) < —c = A+ AT < -2, llll =1
Norm derivative formula: DT |z(t)|? = [(2), z(t)]

hoo(A) < —¢ <= a;+ Z laij| < —c for all i
J#i

T. Strém. On logarithmic norms. SIAM Journal on Numerical Analysis, 12(5):741-753, 1975. @
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Contraction theory on the normed vector spaces (R", {1 /()

Contraction theory on the normed vector spaces (R", {1 /()

For x € R™ and differentiable time-dep
i = F(z) (1)

For norm || - || with log norm f(-) and compatible weak pairing [-, |

Main equivalences: for ¢ > 0
O osL [F(z) = F(y),z —y] < —clle —y*  forallz,y
@ d-osL : wu(DF(x)) < —c for all 2
@ d15 : DF|la(t) ~y(t)] < —cllx(t) ~y(t)]| for soltns x(-), (") |

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. /EEE
Transactions on Automatic Control, July 2021. URL https://arxiv.org/abs/2103.12263. Submitted

Consider a norm || - || with compatible weak pairing [-, -]
Recall forward step method x4y = (Id +aF)x, = 2 + oF ()

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = £/c > 1

O the map ld +aF is a contraction map with respect to || - || for

l<a< ———
« ck(l + k)

@ the optimal step size minimizing and minimum contraction factor:

e~ 2 (ze 50+ (7))

. 1 1 1
e=1-1o+5a0(a)

© Detour: Network systems

averaging compartmental flows mutualism virus spread coupled oscillators social power

function = dynamic behavior

<~

network structure

Control theories: general Lyapunov theory, passivity/dissipativity, monotone dynamics ...




Networks of contracting systems

Interconnected subsystems: x; € RYi and z_; € RN—Ni:

T; :fi<$i>x—i)7 fori e {1,...,7’L}

@ osl: x; — fi(xz;,x_;) is infinitesimally strongly contracting with rate ¢;

o Lip: 2—; = fi(xs,x—) is Lipschitz: || fi(ws, 2—) — falzi, y—i)lli < D5 visllws — will;

—C1 ... Yin
@ the gain matrix is Metzler Hurwitz
Ynl oo —Cp
= the interconnected system is infinitesimally strongly contracting

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. /EEE
Transactions on Automatic Control, July 2021. URL https://arxiv.org/abs/2103.12263. Submitted

Weakly contracting systems

& = f(x) is weakly contracting wrt || - |

osLip(f) <0

© Lotka-Volterra population dynamics (Lotka, 1920; Volterra, 1928) (¢1-norm for mutualistic)

@ Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill, 1981) (¢1-norm
and /..-norm)

© Daganzo’s cell transmission model for traffic networks (Daganzo, 1994), (/1-norm for non-FIFO
intersection)

© compartmental systems in biology, medicine, and ecology (Sandberg, 1978; Maeda et al., 1978).
(£1-norm)

© saddle-point dynamics for optimization of weakly-convex functions (Arrow et al., 1958). (/2-norm)

Contraction theory for networks

Challenge: many real-world networks are not contracting.

For a vector field F and positive vectors 1, £ € RY,

n' DF(z) =0 Vz
DF(z)¢ =0 Vz

n' fx)=n"f(y) Va,y =
flx+af) = f(z) Va,a —

conservation law

translation invariance

If F satisfies a conservation law or translation invariance, then
@ osLip(f) >0
Q if additionally F is monotone, then osLip; ;) (f) = 0 or osLip [¢g-1(f) =0

Semi-contracting systems

& = f(x) is semi-contracting wrt the semi-norm ||-|| with rate ¢ > 0:

osLipy.(f) < —e

or, for differentiable systems, py.(DF(z)) < —c

@ Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill, 1981), (/1-norm)
@ Chua’s diffusively-coupled circuits (Wu and Chua, 1995), (/2-norm)
© morphogenesis in developmental biology (Turing, 1952), (/1-norm, over some param ranges)

© Goodwin model for oscillating auto-regulated gene (Goodwin, 1965). (/1-norm, over some param
ranges)

S. Jafarpour, P. Cisneros-Velarde, and F. Bullo. Weak and semi-contraction for network systems and diffusively-coupled oscillators. /EEE Transactions on Automatic

Control, 2021a. 4. To appear




k and a-contracting systems Outline

e M.Y. Liand J. S. Muldowney. A geometric approach to global-stability problems. SIAM
Journal on Mathematical Analysis, 27(4):1070-1083, 1996. ¢

o C. Wu, . Kanevskiy, and M. Margaliot. k-contraction: Theory and applications.
Automatica, 136:110048, 2022. @

o C. Wu, R. Pines, M. Margaliot, and J.-J. E. Slotine. Generalization of the multiplicative
and additive compounds of square matrices and contraction in the Hausdorff dimension, 0 Application to recurrent neural networks and implicit ML models
Dec. 2020. Available at https://arxiv.org/abs/2012.13441 @ Contractivity of recurrent neural networks

@ Implicit neural networks in machine learning

Applications to recurrent neural networks

Continuous-time recurrent neural networks:
) Tight transcription. D =—I,+ (D® A ae., and so
b= —z 4+ A®(x) + u (Hopfield) & P frr(@) = =1 + (D2(2))
& =—x+ ®(Ax + u) =: frr(x) (Firing rate ~ Implicit NNs) osLip, (frr) = esssup i ( — I, + (D®(2))A) = —1 + . [dmaé( | oo (dg(d)A)
@ €|dmin;dmax|™
&= A®(x) (Persidskii-type) <R /
&= Az — () ()
Max log norms over hypercubes. For A € R"™*" and 0 < dmin < dmax
sigmoid, hyperbolic tangent ReLU = max{z,0} = (z)+ de[dma;( - 11 (dg(d)A) = max{u1 (dmaxA), 1 (dmaxA — (dmax — dmin)(In 0 A))}
de[dma;{ . Hoo(dg(d)A) = max {Hoo (dminA), NOO(dmaxA)}
£ ——— : Recall: max convex function over polytope achieved at a vertex; here 2" — 2 vertices only.

s Py

activation functions are locally-Lip and slope-restricted: for all i

dmin := essinfyer 8%;3/) >0 and dmax 1= esssup,cgr B%‘;y) < 00




NonEuclidean contractivity of firing rate model Outline

i =—Czx+ ®(Az +u) =: frr(2)
O for arbitrary n € RZ,

osupoo,[n]—l (fFR) = maX{:U’oo,[n]—l (_C + dminA)a Hoo,[n]—1 (_G + dmaxA)}

@ optimal weight 17 and minimim value of OSLipoo’[n]—l(fFR) from quasiconvex opt:

inf b
beRne Rgo

st (=C+ dmin]Alm)n < bn

(=C + dmax| Alm)n < by 0 Application to recurrent neural networks and implicit ML models
o Contractivity of recurrent neural networks

Q if dmin = 0 and C' - 0, let v, € RY, be right eigenvector of —C' + dmax|A[w, o Implicit neural networks in machine learning

77éIF\1’f1 OSLipoo,[n](fFR) = OSLipoo’[U*]—l(fFR) = max {a(—C),a(—C + dmaxiAiM)}~
>0

A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks. In
American Control Conference, 2022. URL https://arxiv.org/abs/2110.08298. To appear

Implicit neural networks in machine learning Motivation #1: Generalizing FF to fully-connected synaptic matrices

= ®(A;2' + Biu+b;) <= 2 = ®(Ax + Bu + b), where A has
upper diagonal structure.

Feedforward NN Implicit/Recurrent NN
O ||
8 Aupper-diagona| = E :> Acomplete —
— =Y
O
O
(@)
T1 Xy X3 T Motivation #2: Weight-tied infinite-depth NN — fixed-point of INN
Tiy1 = (Aizi + b)), x0 = u, z = ®(Az + Bu+10),
‘ [ x1 Z2 T3 > — Tk — Y
ML advantages of implicit/equilibrium/fixed point formulation:
bio-inspired, simplicity, accuracy, memory efficiency, input-output robustness i i i I

" =®(A2’ + Bu+b) = lim;_ 2’ = 2* solution to the INN
S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean
contractions. In Advances in Neural Information Processing Systems, Dec. 2021b. URL Motivation #3: Neural ODE model (infinite time) — fixed—point of INN

http://arxiv.org/abs/2106.03194
t=—-2r+®Ar+Bu+b) = limy, z(t) = 2" solution to INN




Recent literature on implicit NNs Implicit Neural Networks (INNs)

© S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. In Advances in Neural Information @ Training INNs:
Processing Systems, 2019. URL https://arxiv.org/abs/1909.01377 © loss function £
@ L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Tsai. Implicit deep learning. SIAM Journal on @ training data (U;, )Y,
Mathematics of Data Science, 3(3):930-958, 2021. ¢ © training optimization problem
© E. Winston and J. Z. Kolter. Monotone operator equilibrium networks. In Advances in Neural
Information Processing Systems, 2020. URL https://arxiv.org/abs/2006.08591 . N L O
@ M. Revay, R. Wang, and I. R. Manchester. Lipschitz bounded equilibrium networks. 2020. URL A}%}g,b Z (G, Ci+ c)
https://arxiv.org/abs/2010.01732 = ~
O A. Kag, Z. Zhang, and V. Saligrama. RNNs incrementally evolving on an equilibrium manifold: A @i = ©(Az; + Bu; +)

panacea for vanishing and exploding gradients? In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HylpqA4FwS

@ K. Kawaguchi. On the theory of implicit deep learning: Global convergence with implicit layers. In o Efficient back-propagation through implicit differentiation
International Conference on Learning Representations, 2021. URL @ Stochastic gradient descent: at each step solve x = ®(Az + Bu + b).
https://openreview.net/forum?id=p-NZluwqghl4

@ S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin. Fixed point networks: Implicit Challenge #1: well-posedness of fixed-point equation
dAer)p(tIP\1/ :g:ﬁiilts with Jacobian-free backprop, 2021. URL https://arxiv.org/abs/2103.12803. Challenge #2: algorithm for fixed-point equation J

Robustness of INNs Well-posedness and robustness of /,.-contracting INNs

Adversarial examples: small input change causes large output change!

x = ®(Azx + Bu + b) (INN fixed point)
& =—x+ ®(Ax + Bu+b) (Recurrent NN)
Zrt1 = (1 — o)z + a®(Azy, + Bu+b)  (Average iter.n)

0.005 x

Hoo(A) < 1 (i.e., ag; + Z la;;| < 1 for all 1)

J

Robustness measures: input-to-output Lipschitz constant o dynamics is contracting with rate 1 — o0 (A)

@ /5-norm Lipschitz constant: not informative in many scenarios

@ average iteration is Banach with factor 1 — M at o = SN
@ /s -norm Lipschitz constant: large-scale input wrt wide-spread perturbations . 1 — min;(a;)— 1 — ming(ay)_
: N , [BlloolICl
Challenge #3: compute robustness margins @ input-output Lipschitz constant Lip,,_,, = —
J 1 — poo(A)+

Challenge #4: implement robustness in training




Training INNs

Training optimization problem:

N
i L(yi, Cx; AL
T

€xr; = <I>(A33,- + Bu; + b)
oo(A) <y

@ )\ > 0 is a regularization parameter

@ 7 < 1 is a hyperparameter

Parametrization of ;. constraint:

Hoo(A) <y <<= TITst. A=T —diag(|T|1,) + vIn.

Numerical Experiments

@ MNIST handwritten digit dataset (60K+10K, 28x28, grayscale)

@ implicit neural network order: n = 100

Label: 5 Label: 4 Label: Label: Label: 2 Label:

clolsTalalslal
EEEIRRER
EEEIRRER
EEEEREER
I8 (6 1 A A L

Graph-Theoretic Regularization

Synaptic matrix A encodes interactions between neurons

. >
I:l\> Adropout

—

Acomplete

@ Agropout is a principal submatrix of Acomplete

° Moo(Adropout) < oo (Acomplete)
o Well-posedness of original INN implies well-posedness of INN with subset of neurons
o Promotes compression and sparsity of overparametrized models

Numerical Experiments
Robustness of INNs

Tradeoff between accuracy and robustness

Test error vs Lipschitz constant on MNIST handwritten digits Accuracy vs perturbation on MNIST handwritten digits

5l e * -1 L0 — A=10"!
< ® -0 — A=107?
10 O \=10% —A=10725
4 0.8 4 =107
144 A=10 A=107%
A=107" A=107%
124 A=10"" —10-5
_e 0.6 A= 10
s ® =0 g — A=0
S| @ o @ 4] <095 5 Al <0.95
% < _
R 04 MON
6
0.24
44
2 T T T T ‘ 0.0 v v v v
10% 10° 10* 10° 0.0 0.1 0.2 0.3 0.4 0.5
Lipschitz constant (. amplitude of perturbation

@ Pareto-optimal curve @ Clean performance vs. robustness




Numerical Experiments

Robustness of INNs

Clean performance vs. robustness

Accuracy vs perturbation on MNIST handwritten digits

Accuracy vs perturbation on MNIST handwritten digits

1.0 1.0 T
— A=10""! — A=10""!
— A=10"2 — A=10"2
0.84 — A=107%% 0.8 4 — A=1072%
A=10"2 A=10"2
A=10"4 A=10"4
— —5 _ —5
064 A=10 064 A=10
9 — A=0 g — A=0
H — A< <095 g — | All< <095
< 04+ MON <04 MON
0.2 0.2
= | =
0.0 . . . . 0.0 . . . .
0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4

{~ amplitude of perturbation { amplitude of perturbation

Conclusions

From Contracting Dynamics to Contracting Algorithms:
@ contraction theory, monotone operator theory, convex optimization

o effective methodologies to tackle control, optimization and learning problems
e extensions to network dynamics

@ from Euclidean to non-Euclidean norms
© application to recurrent and implicit neural networks
e existence, uniqueness, and computation of fixed-points

e robustness analysis and robust training via Lipschitz bounds
o https://github.com/davydovalexander/Non-Euclidean_Mon_Op_Net

From Contracting Dynamics to Contracting Algorithms:
@ mixed-monotone contraction theory (https://arxiv.org/abs/2112.05310)
@ implicit graph neural architectures
© bio-inspired Hebbian learning

@ robustness of implicit models

Outline

@ Scientific and engineering problems from neural networks

@ Contraction theory
@ Banach contractions and infinitesimal counterparts
@ Contraction on Euclidean and inner product spaces
@ Contraction on non-Euclidean normed vector spaces

© Detour: Network systems

0 Application to recurrent neural networks and implicit ML models
o Contractivity of recurrent neural networks
@ Implicit neural networks in machine learning

© Conclusions and future research

Supplementary slides




Background on Infinitesimal Contraction Theorem

Euclidean vs. non-Euclidean contractions

@ there exists 0 < a < 1 such that the average iteration is a Banach contraction
@ the map G satisfies osLip(G) < 1

@ the dynamics & = F(z) := —x + G(z) is infinitesimally contracting

o the equivalence (2) <= (3) is just a transcription:
o F = —1d+G contracting with rate ¢ <= osLip(F) < —¢ <= osLip(G) < 1 — ¢, for
c>0
e in (£2, P), osLip(F) < —c is usual Krasovskii: PJ(x)+J(z)" P < —2¢P for all x and J = DF
@ (2) = (1): known in monotone operator theory (page 15 “forward step method” in')

o vector field F is contracting with rate ¢ <= —F is strongly monotone with parameter ¢
@ Theorem 1 in? proves the equivalence (1) <= (2) for any norm, i.e., the implication (2)

= (1) for any norm (with proper osLip definitions) and the converse direction (1) —
(2) for £, P. Theorem 3 in? proves the one-sided Lim Lemma (see next slide).

1E. K. Ryu and S. Boyd. Primer on monotone operator methods. Applied Computational Mathematics, 15(1):3-43, 2016

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in Neural Information
Processing Systems, Dec. 2021b. URL http://arxiv.org/abs/2106.03194

Literature on recurrent NN ODEs

Most foundational results in systems theory are based on /5 linear-quadratic theory;
their ¢1 /¢ analogs are yet to be worked out.
Advantages of non-Euclidean approach

@ computational advantages: non-Euclidean log-norm constraints lead to LPs, whereas /o
constraints leads to LMIs. Parametrization of log-norm constrained matrices is polytopic.

A. Rantzer. Scalable control of positive systems. European Journal of Control, 24:72-80, 2015. ¢

@ guaranteed robustness to structural perturbations: f, contractivity ensures:

@ absolute contractivity = with respect to a class of activation functions
@ total contractivity = remove any node and all its incident connections
@ connective contractivity = remove any set of edges

© adversarial input-output analysis
{~ better suited for the analysis of adversarial examples than £5: in high dimensions, large
inner product between two vectors is possible even when one vector has small /o, norm

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In International Conference on Learr
Representations (ICLR), 2015. URL https://arxiv.org/abs/1412.6572

© J. J. Hopfield. Neurons with graded response have collective computational properties like those of
two-state neurons. Proceedings of the National Academy of Sciences, 81(10):3088-3092, 1984. g

@ E. Kaszkurewicz and A. Bhaya. On a class of globally stable neural circuits. /[EEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, 41(2):171-174, 1994 4

© M. Forti, S. Manetti, and M. Marini. Necessary and sufficient condition for absolute stability of
neural networks. /EEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, 41(7):491-494, 1994. ¢

@ Y. Fang and T. G. Kincaid. Stability analysis of dynamical neural networks. |[EEE Transactions on
Neural Networks, 7(4):996-1006, 1996. ¢

@ H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability
analysis for Hopfield-type neural networks. |[EEE Transactions on Neural Networks, 12(2):360-370,
2001.

@ W. He and J. Cao. Exponential synchronization of chaotic neural networks: a matrix measure
approach. Nonlinear Dynamics, 55:55-65, 2009. ¢

@ H. Zhang, Z. Wang, and D. Liu. A comprehensive review of stability analysis of continuous-time
recurrent neural networks. /EEE Transactions on Neural Networks and Learning Systems, 25(7):
1229-1262, 2014. 4

Contractivity conditions with respect to arbitrary norms

Log norm Demidovich
bound condition

p2,p(DF(z)) < b

One-sided Lipschitz
condition

(@ =) "P(F(2) — F(y)) < bllz — |5

PDF(x) + DF(z)" P < 2bP

(vo |v["=*)T DF(z)v < blv]l}

pip(DF(z)) < b ((x —y)olz —yP=>) T (F(x) — F(y)) < bllz —y|

1 (DF(z)) <b sign(v) " DF(z)v < b]jvlx sign(z —y) " (F(z) — F(y)) < bllz —yla

fioo (DF (z)) < b max v; (DF(x)v); < bl|v]%,

i€l (v)

(zi = yi)(fi(z) = fily)) < bllz —yll3

max
i€l (z—y)

Table of equivalences between measure bounded Jacobians, differential Demidovich and one-sided
Lipschitz conditions. Note: I (v) ={i € {1,...,n} | |vi] = ||v]|oc}-

J. A. Jacquez and C. P. Simon. Qualitative theory of compartmental systems. SIAM Review, 35(1):43-79, 1993. ¢

H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. /EEE Transactions
on Neural Networks, 12(2):360-370, 2001. d

G. Como, E. Lovisari, and K. Savla. Throughput optimality and overload behavior of dynamical flow networks under monotone distributed routing. /EEE
Transactions on Control of Network Systems, 2(1):57-67, 2015. ¢




Robustness to unmodeled dynamics Metzler matrices and monotone systems

Given a norm || - ||, consider
&= f(z) +g(x) (2)

If F has one-sided Lipschitz constant —c < 0 and
g has one-sided Lipschitz constant d > 0, then

O (contractivity under perturbations) if d < ¢, then f + g is strongly contracting with
rate ¢ — d,

@ (equilibrium point under perturbations) if additionally F and g are time-invariant, then
the unique equilibrium point 2* of F and z** of f + g satisfy

* *ok g "
" — 2 < 1 )

@ For Metzler M and monotonic || - ||, u(M) =

@ For n,§ € RY,

g1 1y (M) = max(n M[n)™') = min{b € R [ ' M < by}
foo g1 (M) = max([€] ' ME) = min{b € R | M¢ < b¢}

F monotone if DF(z) Metzler for all z

Q osL If(z) = f(y),z —y] <bllz —yl|? forall z >y
@ d-osL : [DF(x)v,v] <bl|v||? forallv>0and z

v

Input-state stability and gain of contracting systems

For a time and input-dependent vector F,

z= f(ib, u(t))7

Assume || - ||x with compatible [-,-],, a norm || - |

z(0) = 2o € R", u(t) € R¥

(4)

u, and ¢, £ > 0 such that

o osL: [f(z,u) = f(y,u), 2 — yly < —clz —y[%, for all z,y,u,
o Lip: |[f(z,u) — f(z,v)||x < Ll|u— vy, for all z,u,v.

n' DF(z) <bn' n' (f(z) = fy) <bn'(z—y) forallz >y

fl@)—fly) <blz—y)forallz=y+ B3>0

pa,f (DF(2)) < b

foo,je-1 (DF(2)) < b DF(z)¢ < b¢

Input-state stability and gain of contracting systems

Then
@ any two soltns z(t) and y(t) to (4) with inputs g, uy

Dlz(t) — y(t)llx < —cllz(t) — y(®)llx + Clua(t) — uy(t)llu

@ F is incrementally input-to-state stable, i.e., for all zg, 3o

e (1 —e
1) — 5@l < ellwo - solle + L sup o) — g ()

T€[0,t]

O F has incremental L%, gain equal to //c, for g € [1, 0],

I#0) ~ 9Vl < - )~ wyOlleg  (for 20 = o)




Signal norms and system gains 3/3

Given norm || - ||+ on R™ (or || - ||z on R¥),

o L%, g €[1,00], is vector space of continuous signals, z : R>9 — R”", with well-defined

bounded norm
> q 1/q |
(] lelgae) ™ ifae ool

supy>o [l (1) x

(5)

()l =
if ¢g=o00

@ Input-state system has /f/’y‘u—induced gain upper bounded by v > 0 if, for all u € £},
the state = from zero initial state satisfies

() g < v llul)llenq (6)

Incremental ISS for strongly contracting delay ODEs

i(t) = f(x(t), z(t — ), u(t)),0 < s < S, I tlaes I e @)
assume there exist positive constants ¢, £, £ x such that, for all variables,
2
osL z : [f(z d,w) = f(y,dsu), 2 —ylx < —cllz —yllx (8)
Lip z(t — s) : [If(z, z1,u) = f(z, z2, w)llx < Lxllzr — z2]lx 9)
Lip w : If(z,d,u) = f(z,d,v)llx < byllu — vy (10)

By the curve norm derivative formula, subadditivity, and Cauchy-Schwarz inequality,

le@)—y@®lx DY 2(t) =yl = [f(@(), a(t = 5), ua(t)) = FE), y(t — ), uy (), 2(t) — v(B)] 5
< @), 2t — ), ua (1) — Fy(@), 2(t — 5), ua (), x(t) — ()] x
+ @), 2t = 8), ua(t)) — fy(@), y(t — s), ua(t)), z(t) — y()]x
+ [ (), y(t — 5), ua () = F(y(1), y(t — 5), uy (), x(t) — y(1)] »

< —cllz(t) = yOI% + Lxlla(t = ) = y(t — )lulle) — v(®)llx,
+ Lyl (B) — uy (@)l lle() — (@)l x-

Thus, with m(t) = ||z(t) — y(t)|| . delay differential inequality:

DTm(t) < —em(t) + La supg<s<s Mt — ) + Ly llue (t) — uy (8) o (11)

Halanay inequality is applicable. If ¢ > £y, then
—p(t—to) b emplt=T)
m(e) < moe™ T sty [T T () = wy (1), (12)
to

where p > 0 is the unique positive root of p = ¢ — ZXepS and mg = supg<s<g m(to — s).

Networks of contracting systems with time delays Networks of ISS systems

Interconnected subsystems i € {1,...,n}

& = fi(zi, v, oi(t — 8),u;), 0<s<S, I llis 1 llia (13)
Assume there exist positive constants st
[filwir- ) = fiyis - )y i — will; < —cillws — will 7
Vfeloosmie ) = fioymn e < 307 il = will
Lip 27% : il a=s ) = fileo oy, )i < Z::L#i Tl — Il

Wil osws) = filoo vl < Giullws — villi

osL z; :

Lip z_; :

Lip u; :

With m;(t) = ||z;(t) — yi(t)||;, delay differential inequality:
DFm(t) < —Cm(t) + Tm(t) + T supgcscs m(t — 8) + ullus (t) — uy (t) |l

and, if the Metzler matrix —C +T" + Tis Hurwitz, then (13) is incremental 1SS

Interconnections scalar ISS subsystems
€T; = —ai(mi) +Zj;£i ’y,'j(acj) + ug, for i € {1,...,71}. (14)

where a; are of class Ko and v;; are of class K. Define

Ai(z) = a;(x;), and Ty(z) = Z#i i (x5)

If there exist 7 € R and ¢ > 0 satisfying
n' (A(v) — A(w)) > 7" (T(v) — D(w) + e(v — w)), for all v > w >0,

then the interconnected system is strongly contracting
with respect to || - ||, and with rate ¢

F. Mazenc, M. Malisoff, and M. Krstic. Vector extensions of Halanay's inequality. /EEE Transactions on Automatic Control, 2021. 7. to
appear

Proof: osLipy ,;(f) < bif and only if n (f(z) — f(y)) <bn'(z —y)




