Perspectives on Contraction Theory and Neural Networks

Francesco Bullo

Center for Control,
Dynamical Systems & Computation
University of California at Santa Barbara

http://motion.me.ucsb.edu

ECE Seminar Series, NYU, Feb 10, 2022

Biological and Artificial Neural Networks

artificial neural network (AlexNet '12)

human neocortical neuron

Aim: understand the dynamics of neural networks, so that

- reproducible behavior, i.e., equilibrium response as function of stimula
- robust behavior in face of uncertain stimuli
- robust behavior in face of uncertain dynamics
- learning models, efficient computational tools, periodic behaviors ...

Acknowledgments

Alex Davydov PhD student UC Santa Barbara

Saber Jafarpour Postdoc GeorgiaTech

Anton Proskurnikov Politecnico Torino & Russian Academy of Sciences

- S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In *Advances in Neural Information Processing Systems*, Dec. 2021b. URL http://arxiv.org/abs/2106.03194
- A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability.
 IEEE Transactions on Automatic Control, July 2021. URL https://arxiv.org/abs/2103.12263. Submitted
- CDC 2021 tutorial (https://arxiv.org/abs/2110.03623), ACC 2022 (https://arxiv.org/abs/2110.08298), L4DC 2022 (https://arxiv.org/abs/2112.05310)

Fixed point computation

Fixed point strategies in data science = simplifying and unifying framework to model, analyze, and solve advanced convex optimization methods, Nash equilibria, monotone inclusions, etc.

P. L. Combettes and J.-C. Pesquet. Fixed point strategies in data science. *IEEE Transactions on Signal Processing*, 2021.

Outline

- Scientific and engineering problems from neural networks.
- 2 Contraction theory
 - Banach contractions and infinitesimal counterparts
 - Contraction on Euclidean and inner product spaces
 - Contraction on non-Euclidean normed vector spaces
- 3 Detour: Network systems
- Application to recurrent neural networks and implicit ML models
 - Contractivity of recurrent neural networks
 - Implicit neural networks in machine learning
- Conclusions and future research

- contraction conditions without Jacobians have been studied under many different names:
 - 1 uniformly decreasing maps in: L. Chua and D. Green. A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of autonomous networks. IEEE Transactions on Circuits and Systems, 23(6):355-379, 1976.
 - One-sided Lipschitz maps in: E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations 1. Nonstiff Problems. Springer, 1993. 6 (Section 1.10, Exercise 6)
 - maps with negative nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. IEEE Transactions on Neural Networks, 12(2):360-370, 2001.
 - 4 dissipative Lipschitz maps in: T. Caraballo and P. E. Kloeden. The persistence of synchronization under environmental noise. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2059):2257–2267, 2005.
 - maps with negative lub log Lipschitz constant in: G. Söderlind. The logarithmic norm. History and modern theory. BIT Numerical Mathematics, 46(3):631-652, 2006.
 - QUAD maps in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled ordinary differential systems. Physica D: Nonlinear Phenomena, 213(2):214-230, 2006.
 - incremental quadratically stable maps in: L. D'Alto and M. Corless. Incremental quadratic stability. Numerical Algebra, Control and Optimization, 3:175-201, 2013.
- deep connections: infinitesimal contraction, fixed point and monotone operator theory

 - V. Berinde. Iterative Approximation of Fixed Points. Springer, 2007. ISBN 3-540-72233-5
 H. H. Bauschke and P. L. Combettes. Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Springer, 2 edition, 2017. ISBN
 - 8 E. K. Ryu and W. Yin, Large-Scale Convex Optimization via Monotone Operators, Cambridge, 2022

Contraction theory: historical notes

Origins

- S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3(1):133–181, 1922.
- S. M. Lozinskii. Error estimate for numerical integration of ordinary differential equations. I. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 5:52-90, 1958
- C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit analysis. IEEE Transactions on Circuit Theory, 19(5):480–486, 1972.
- Application in dynamics and control: W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. *Automatica*, 34(6):683–696, 1998.

Reviews:

- Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some open problems. In *IEEE Conf. on Decision and Control*, pages 3835–3847, Dec. 2014.
- M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of complex networks via contraction theory. In J. Lü, X. Yu, G. Chen, and W. Yu, editors, Complex Systems and Networks, pages 313-339. Springer, 2016. ISBN 978-3-662-47824-0.
- H. Tsukamotoa, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and learning-based control: A tutorial overview, 2021. URL https://arxiv.org/abs/2110.00675

On fixed point algorithms and Banach contractions

$$x = \mathsf{G}(x)$$

Banach Contraction Theorem

If Lip(G) < 1 that is $||G(u) - G(v)|| \le Lip(G)||u - v||$,

then *Picard iteration* $x_{k+1} = G(x_k)$ is a Banach contraction

For Lip(G) > 1, define the <u>average/damped/Mann-Krasnosel'skii iteration</u>

$$x_{k+1} = (1 - \alpha)x_k + \alpha \mathsf{G}(x_k)$$

Infinitesimal Contraction Theorem

- there exists $0 < \alpha < 1$ such that the average iteration is a Banach contraction
- ② the map G satisfies osLip(G) < 1
- 3 the dynamics $\dot{x} = -x + G(x)$ is infinitesimally strongly contracting

Robustness of fixed point algorithms

Robustness via Lipschitz constants (Lim's Lemma)

 x_u^* is a fixed point of x = G(x, u) and $\operatorname{Lip}_x G < 1$, then

$$\|x_u^* - x_v^*\| \leq \frac{\mathsf{Lip}_u \, \mathsf{G}}{1 - \mathsf{Lip}_x \, \mathsf{G}} \|u - v\|$$

Robustness via one-sided Lipschitz constants

 x_u^* is a fixed point of x = G(x, u)

 x_{v}^{*} is a fixed point of x = G(x, v) + D(x, v), and

$$\mathrm{osLip}_x(\mathsf{G}+\mathsf{D})<1\text{, then}$$

$$\|x_u^* - x_v^*\| \leq \frac{1}{1 - \mathsf{osLip}_x(\mathsf{G} + \mathsf{D})} \Big(\, \mathsf{Lip}_u(\mathsf{G} + \mathsf{D}) \|u - v\| + \|\mathsf{D}(x_u^*, u)\| \Big)$$

Properties of contracting dynamical systems

Highly ordered transient and asymptotic behavior:

- time-invariant F: unique globally exponential stable equilibrium two natural Lyapunov functions
- 2 periodic F: contracting system entrain to periodic inputs
- Ocontractivity rate is natural measure/indicator of robust stability
- 4 accurate numerical integration, and
- there exist efficient methods for their equilibrium computation

On infinitesimal contraction theory

Given $\dot{x} = F(t,x)$, F is *infinitesimally strongly contractive* if its flow is a Banach contraction

Scalar maps and vector field

 $F: \mathbb{R} \to \mathbb{R}$ is one-sided Lipschitz with $\operatorname{osLip}(F) = b$ if

$$F'(x) \le b,$$
 $\forall x$
 $\iff F(x) - F(y) \le b(x - y),$ $\forall x > y$
 $\iff (x - y)(F(x) - F(y)) \le b(x - y)^2,$ $\forall x, y$

- ullet F is osL with b=0 iff F weakly decreasing
- if F is Lipschitz with bound ℓ , then F is osL with $b \leq \ell$
- For

$$\dot{x} = F(x)$$

the Grönwall lemma implies $|x(t) - y(t)| \le e^{bt}|x(0) - y(0)|$

For $x \in \mathbb{R}^n$ and differentiable time-dep

$$\dot{x} = \mathsf{F}(x)$$

For $P = P^{\top} \succ 0$, define $||x||_{2,P^{1/2}}^2 = x^{\top} P x$

Main equivalences: For c > 0, map F is c-strongly contracting (i.e., osLip(F) $\leq -c$) if

- **osl** : $(F(x) F(y))^T P(x y) \le -c ||x y||_{2P^{1/2}}^2$ for all x, y
- **4** d-osL : $PDF(x) + DF(x)^{T}P \leq -2cP$ for all x
- **3** d-IS : $D^+ ||x(t) y(t)||_{2|P^{1/2}} \le -c||x(t) y(t)||_{2|P^{1/2}}$ for all soltns $x(\cdot), y(\cdot)$

For differentiable $V: \mathbb{R}^n \to \mathbb{R}$, equivalent statements:

- lacktriangledown V is strongly convex with parameter m
- \circ grad V is m-strongly contracting, that is

$$\left(-\operatorname{grad}V(x) + \operatorname{grad}V(y)\right)^{\top}(x-y) \le -m\|x-y\|_2^2$$

For map $F: \mathbb{R}^n \to \mathbb{R}^n$, equivalent statements:

- F is a monotone operator (or a coercive operator) with parameter m,

Contraction theory on inner product space (\mathbb{R}^n, ℓ_2)

3/4 Contraction theory on inner product space (\mathbb{R}^n, ℓ_2)

Given $\mathsf{F}:\mathbb{R}^n \to \mathbb{R}^n$

 $x^* \in \operatorname{zero}(\mathsf{F})$ \iff $x^* \in \operatorname{fixed}(G)$, where $\mathsf{G} = \operatorname{\mathsf{Id}} + \mathsf{F}$

consider forward step = Euler integration for F = averaged iteration for G:

$$x_{k+1} = (\operatorname{Id} + \alpha \operatorname{F}) x_k = x_k + \alpha \operatorname{F}(x_k) = (1 - \alpha) \operatorname{Id} + \alpha \operatorname{G}$$

Equilibria of contracting vector fields:

For a time-invariant F, c-strongly contracting with respect to $\|\cdot\|_{2,P^{1/2}}$

- $\begin{tabular}{ll} \textbf{0} & \textbf{flow of F is a contraction,} \\ & \textbf{i.e., distance between solutions exponentially decreases with rate } c \\ \end{tabular}$
- f 2 there exists an equilibrium x^* , that is unique, globally exponentially stable with global Lyapunov functions

$$x \mapsto \|x - x^*\|_{2, P^{1/2}}^2$$
 and $x \mapsto \|\mathsf{F}(x)\|_{2, P^{1/2}}^2$

Given contraction rate c and Lipschitz constant ℓ , define condition number $\kappa = \ell/c \ge 1$

1 the map $\operatorname{Id} + \alpha \mathsf{F}$ is a contraction map with respect to $\|\cdot\|_{2,P^{1/2}}$ for

$$0 < \alpha < \frac{2}{c\kappa^2}$$

2 the optimal step size minimizing and minimum contraction factor:

$$\alpha_{\mathsf{E}}^* = \frac{1}{c\kappa^2}$$

$$\ell_{\mathsf{E}}^* = 1 - \frac{1}{2\kappa^2} + \mathcal{O}\left(\frac{1}{\kappa^4}\right)$$

2/5

- Scientific and engineering problems from neural networks.
- 2 Contraction theory
 - Banach contractions and infinitesimal counterparts
 - Contraction on Euclidean and inner product spaces
 - Contraction on non-Euclidean normed vector spaces
- 3 Detour: Network systems
- 4 Application to recurrent neural networks and implicit ML models
 - Contractivity of recurrent neural networks
 - Implicit neural networks in machine learning
- 5 Conclusions and future research

Generalizing LMIs: log norms conditions

The log norm of $A \in \mathbb{R}^{n \times n}$ wrt to $\|\cdot\|$:

$$\mu(A) := \lim_{h \to 0^+} \frac{\|I_n + hA\| - 1}{h}$$

Basic properties:

scaling:
$$\mu(bA) = b\mu(A),$$

convexity:
$$\mu(\theta A + (1 - \theta)B) \le \theta \mu$$

$$\mu(\theta A + (1 - \theta)B) \le \theta \mu(A) + (1 - \theta)\mu(B),$$

 $\mu(A+B) < \mu(A) + \mu(B)$

$$\mu_2(A) \le -c \iff A + A^\top \le -2cI_n$$

$$\mu_\infty(A) \le -c \iff a_{ii} + \sum_{j \ne i} |a_{ij}| \le -c \text{ for all } i$$

T. Ström. On logarithmic norms. SIAM Journal on Numerical Analysis, 12(5):741-753, 1975.

Norms From inner products to sign and max pairings

From LMIs to log norms

$$||x||_{2,P^{1/2}}^2 = x^{\top} P x$$

$$||x||_{2,P^{1/2}}^2 = x^{\mathsf{T}} P x$$
 $[\![x,y]\!]_{2,P^{1/2}} = x^{\mathsf{T}} P y$

$$\mu_{2,P^{1/2}}(A) = \min\{b \mid A^{\top}P + PA \leq 2bP\}$$

$$||x||_1 = \sum_i |x_i|$$

3/5

 $\forall b > 0$

 $\forall \theta \in [0,1]$

$$[x, y]_1 = ||y||_1 \operatorname{sign}(y)$$

 $[x, y]_{\infty} = \max_{x \in \mathcal{X}} y_i x_i$

$$||x||_1 = \sum_{i} |x_i| \qquad ||x, y||_1 = ||y||_1 \operatorname{sign}(y)^{\top} x \qquad \mu_1(A) = \max_{j} \left(a_{jj} + \sum_{i \neq j} |a_{ij}| \right)$$
$$||x||_{\infty} = \max_{i} |x_i| \qquad ||x, y||_{\infty} = \max_{i \in I_{\infty}(y)} y_i x_i \qquad \mu_{\infty}(A) = \max_{i} \left(a_{ii} + \sum_{j \neq i} |a_{ij}| \right)$$

where
$$I_{\infty}(x) = \{i \in \{1, \dots, n\} \mid |x_i| = ||x||_{\infty}\}$$

Generalizing inner products: weak pairings

A weak pairing is $\llbracket \cdot, \cdot \rrbracket : \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$ satisfying

1 $[x_1 + x_2, y] < [x_1, y] + [x_2, y]$ and $x \mapsto [x, y]$ is continuous,

② [bx, y] = [x, by] = b[x, y] for b > 0 and [-x, -y] = [x, y],

[x,x] > 0, for all $x \neq 0_n$,

Given norm $\|\cdot\|$, compatibility: $[x,x] = \|x\|^2$ for all x

Sup of non-Euclidean numerical range:

$$\mu(A) = \sup_{\|x\|=1} [Ax, x]$$

Norm derivative formula:

$$\frac{1}{2}D^{+}||x(t)||^{2} = [\![\dot{x}(t), x(t)]\!]$$

For $x \in \mathbb{R}^n$ and differentiable time-dep

$$\dot{x} = \mathsf{F}(x) \tag{1}$$

For norm $\|\cdot\|$ with log norm $\mu(\cdot)$ and compatible weak pairing $[\![\cdot,\cdot]\!]$

Main equivalences: for c > 0

- **osl** : $[\![\mathsf{F}(x) \mathsf{F}(y), x y]\!] \le -c ||x y||^2$ for all x, y
- **Q** d-osL : $\mu(DF(x)) \leq -c$ for all x
- **3** d-IS : $D^+ ||x(t) y(t)|| \le -c||x(t) y(t)||$ for soltns $x(\cdot), y(\cdot)$

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. *IEEE Transactions on Automatic Control*, July 2021. URL https://arxiv.org/abs/2103.12263. Submitted

Consider a norm $\|\cdot\|$ with compatible weak pairing $[\cdot, \cdot]$ Recall forward step method $x_{k+1} = (\operatorname{Id} + \alpha \operatorname{F})x_k = x_k + \alpha \operatorname{F}(x_k)$

Given contraction rate c and Lipschitz constant ℓ , define condition number $\kappa = \ell/c \ge 1$

 $\textbf{0} \ \ \text{the map Id} + \alpha \mathsf{F} \ \text{is a contraction map with respect to} \ \| \cdot \| \ \text{for}$

$$0 < \alpha < \frac{1}{c\kappa(1+\kappa)}$$

2 the optimal step size minimizing and minimum contraction factor:

$$\begin{split} \alpha_{\text{nE}}^* &= \frac{1}{c} \Big(\frac{1}{2\kappa^2} - \frac{3}{8\kappa^3} + \mathcal{O}\Big(\frac{1}{\kappa^4} \Big) \Big) \\ \ell_{\text{nE}}^* &= 1 - \frac{1}{4\kappa^2} + \frac{1}{8\kappa^3} + \mathcal{O}\Big(\frac{1}{\kappa^4} \Big) \end{split}$$

Outline

- Scientific and engineering problems from neural networks
- 2 Contraction theory
 - Banach contractions and infinitesimal counterparts
 - Contraction on Euclidean and inner product spaces
 - Contraction on non-Euclidean normed vector spaces
- 3 Detour: Network systems
- 4 Application to recurrent neural networks and implicit ML models
 - Contractivity of recurrent neural networks
 - Implicit neural networks in machine learning
- **5** Conclusions and future research

Control theories: general Lyapunov theory, passivity/dissipativity, monotone dynamics ...

Networks of contracting systems

Interconnected subsystems: $x_i \in \mathbb{R}^{N_i}$ and $x_{-i} \in \mathbb{R}^{N-N_i}$:

$$\dot{x}_i = f_i(x_i, x_{-i}), \quad \text{for } i \in \{1, \dots, n\}$$

- osL: $x_i \mapsto f_i(x_i, x_{-i})$ is infinitesimally strongly contracting with rate c_i
- Lip: $x_{-i} \mapsto f_i(x_i, x_{-i})$ is Lipschitz: $||f_i(x_i, x_{-i}) f_i(x_i, y_{-i})||_i \le \sum_{i \ne i} \gamma_{ij} ||x_j y_j||_j$
- ullet the gain matrix $egin{bmatrix} -c_1 & \dots & \gamma_{1n} \\ \vdots & & \vdots \\ \gamma_{n1} & \dots & -c_n \end{bmatrix}$ is $modestart{Metzler\ Hurwitz}$

the **interconnected system** is infinitesimally strongly contracting

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. IEEE Transactions on Automatic Control, July 2021. URL https://arxiv.org/abs/2103.12263. Submitted

Weakly contracting systems

 $\dot{x} = f(x)$ is weakly contracting wrt $\|\cdot\|$:

$$\operatorname{osLip}(f) \leq 0$$

- 1 Lotka-Volterra population dynamics (Lotka, 1920; Volterra, 1928) (ℓ₁-norm for mutualistic)
- 2 Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill, 1981) (ℓ_1 -norm and ℓ_{∞} -norm)
- 3 Daganzo's cell transmission model for traffic networks (Daganzo, 1994), (ℓ₁-norm for non-FIFO intersection)
- compartmental systems in biology, medicine, and ecology (Sandberg, 1978; Maeda et al., 1978). $(\ell_1$ -norm)
- **5** saddle-point dynamics for optimization of weakly-convex functions (Arrow et al., 1958). (ℓ_2 -norm)

Contraction theory for networks

Challenge: many real-world networks are not contracting.

For a vector field F and positive vectors $\eta, \xi \in \mathbb{R}^n_{>0}$,

$$f(x + \alpha \xi) = f(x) \ \forall x, \alpha$$

If F satisfies a conservation law or translation invariance, then

- \bigcirc osLip(f) > 0
- ② if additionally F is monotone, then $\operatorname{osLip}_{1,[\eta]}(f)=0$ or $\operatorname{osLip}_{\infty,[\xi]^{-1}}(f)=0$

Semi-contracting systems

 $\dot{x} = f(x)$ is semi-contracting wrt the semi-norm $\|\cdot\|$ with rate c > 0:

$$\operatorname{osLip}_{\|.\|}(f) \leq -c$$

or, for differentiable systems, $\mu_{\parallel . \parallel}(D\mathsf{F}(x)) \leq -c$

- Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill, 1981), (ℓ₁-norm)
- 2 Chua's diffusively-coupled circuits (Wu and Chua, 1995), (ℓ_2 -norm)
- 3 morphogenesis in developmental biology (Turing, 1952), (ℓ_1 -norm, over some param ranges)
- Goodwin model for oscillating auto-regulated gene (Goodwin, 1965). (ℓ₁-norm, over some param) ranges)

S. Jafarpour, P. Cisneros-Velarde, and F. Bullo. Weak and semi-contraction for network systems and diffusively-coupled oscillators. IEEE Transactions on Automatic Control, 2021a. . To appear

k and α -contracting systems

Outline

- M. Y. Li and J. S. Muldowney. A geometric approach to global-stability problems. SIAM Journal on Mathematical Analysis, 27(4):1070–1083, 1996.
- C. Wu, I. Kanevskiy, and M. Margaliot. k-contraction: Theory and applications. Automatica, 136:110048, 2022, 🔩
- C. Wu, R. Pines, M. Margaliot, and J.-J. E. Slotine. Generalization of the multiplicative and additive compounds of square matrices and contraction in the Hausdorff dimension, Dec. 2020. Available at https://arxiv.org/abs/2012.13441

- Scientific and engineering problems from neural networks
- 2 Contraction theory
 - Banach contractions and infinitesimal counterparts
 - Contraction on Euclidean and inner product spaces
 - Contraction on non-Euclidean normed vector spaces
- 3 Detour: Network systems
- 4 Application to recurrent neural networks and implicit ML models
 - Contractivity of recurrent neural networks
 - Implicit neural networks in machine learning
- Conclusions and future research

Applications to recurrent neural networks

Continuous-time recurrent neural networks:

$$\dot{x} = -x + A\Phi(x) + u$$

$$\dot{x} = -x + \Phi(Ax + u) =: f_{\mathsf{FR}}(x)$$

$$\dot{x} = A\Phi(x)$$

$$\dot{x} = Ax - \Phi(x)$$

(Hopfield) (Firing rate ∼ Implicit NNs) (Persidskii-type) (...)

sigmoid, hyperbolic tangent

 $ReLU = max\{x, 0\} = (x)_{+}$

activation functions are locally-Lip and slope-restricted: for all $\it i$

$$d_{\min} := \operatorname{ess\,inf}_{y \in \mathbb{R}} \frac{\partial \Phi_i(y)}{\partial y} \geq 0 \quad \text{and} \quad d_{\max} := \operatorname{ess\,sup}_{y \in \mathbb{R}} \frac{\partial \Phi_i(y)}{\partial y} < \infty$$

Tight transcription. $Df_{\mathsf{FR}}(x) = -I_n + (D\Phi(x))A$ a.e., and so

$$\operatorname{osLip}_{\infty}(f_{\mathsf{FR}}) = \operatorname{ess\,sup}_{x \in \mathbb{R}^n} \mu_{\infty} \big(-I_n + (D\Phi(x))A \big) = -1 + \max_{d \in [d_{\min}, d_{\max}]^n} \mu_{\infty}(\operatorname{dg}(d)A)$$

Max log norms over hypercubes. For $A \in \mathbb{R}^{n \times n}$ and $0 \le d_{\min} \le d_{\max}$

$$\max_{d \in [d_{\min}, d_{\max}]^n} \mu_1(\mathsf{dg}(d)A) = \max\{\mu_1(d_{\max}A), \mu_1(d_{\max}A - (d_{\max} - d_{\min})(I_n \circ A))\}$$

$$\max \quad \mu_{\infty}(\mathsf{dg}(d)A) = \max\{\mu_{\infty}(d_{\min}A), \mu_{\infty}(d_{\max}A)\}$$

$$\max_{d \in [d_{\min}, d_{\max}]^n} \mu_{\infty}(\mathsf{dg}(d)A) = \max\left\{\mu_{\infty}(d_{\min}A), \mu_{\infty}(d_{\max}A)\right\}$$

Recall: max convex function over polytope achieved at a vertex; here $2^n \to 2$ vertices only.

NonEuclidean contractivity of firing rate model

$$\dot{x} = -Cx + \Phi(Ax + u) =: f_{\mathsf{FR}}(x)$$

 $\bullet \ \ \text{for arbitrary} \ \eta \in \mathbb{R}^n_{>0}$

$$\mathsf{osLip}_{\infty,[\eta]^{-1}}(f_{\mathsf{FR}}) = \max\{\mu_{\infty,[\eta]^{-1}}(-C + d_{\mathsf{min}}A), \mu_{\infty,[\eta]^{-1}}(-C + d_{\mathsf{max}}A)\}$$

 $\textbf{ 0} \text{ optimal weight } \eta \text{ and minimim value of osLip}_{\infty, [\eta]^{-1}}(f_{\mathsf{FR}}) \text{ from quasiconvex opt:}$

$$\begin{split} &\inf_{b \in \mathbb{R}, \eta \in \mathbb{R}^n_{>0}} b \\ \text{s.t.} &\quad (-C + d_{\min}|A|_{\mathsf{M}})\eta \leq b\eta \\ &\quad (-C + d_{\max}|A|_{\mathsf{M}})\eta \leq b\eta \end{split}$$

 $\begin{aligned} \textbf{ 3} & \text{ if } d_{\min} = 0 \text{ and } C \succ 0, \text{ let } v_* \in \mathbb{R}^n_{>0} \text{ be right eigenvector of } -C + d_{\max}|A|_{\mathsf{M}}, \\ & \inf_{\eta \in \mathbb{R}^n_{>0}} \mathrm{osLip}_{\infty,[\eta]}(f_{\mathsf{FR}}) = \mathrm{osLip}_{\infty,[v_*]^{-1}}(f_{\mathsf{FR}}) = \max \left\{ \alpha(-C), \alpha(-C + d_{\max}|A|_{\mathsf{M}}) \right\}. \end{aligned}$

A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks. In *American Control Conference*, 2022. URL https://arxiv.org/abs/2110.08298. To appear

Implicit neural networks in machine learning

Implicit/Recurrent NN

 $x = \Phi(Ax + Bu + b),$

y = Cx + d

ML advantages of implicit/equilibrium/fixed point formulation:

bio-inspired, simplicity, accuracy, memory efficiency, input-output robustness

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In *Advances in Neural Information Processing Systems*, Dec. 2021b. URL http://arxiv.org/abs/2106.03194

Outline

- 1 Scientific and engineering problems from neural networks
- 2 Contraction theory
 - Banach contractions and infinitesimal counterparts
 - Contraction on Euclidean and inner product spaces
 - Contraction on non-Euclidean normed vector spaces
- 3 Detour: Network systems
- 4 Application to recurrent neural networks and implicit ML models
 - Contractivity of recurrent neural networks
 - Implicit neural networks in machine learning
- **5** Conclusions and future research

Motivation #1: Generalizing FF to fully-connected synaptic matrices $x^{i+1} = \Phi(A_i x^i + B_i u + b_i) \iff x = \Phi(Ax + Bu + b)$, where A has upper diagonal structure.

Motivation #2: Weight-tied infinite-depth NN → fixed-point of INN

 $x^{i+1} = \Phi(Ax^i + Bu + b) \implies \lim_{i \to \infty} x^i = x^*$ solution to the INN

Motivation #3: Neural ODE model (infinite time) → fixed-point of INN

 $\dot{x} = -x + \Phi(Ax + Bu + b)$ \Longrightarrow $\lim_{t \to \infty} x(t) = x^*$ solution to INN

Recent literature on implicit NNs

- S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. In Advances in Neural Information Processing Systems, 2019. URL https://arxiv.org/abs/1909.01377
- 2 L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Tsai. Implicit deep learning. *SIAM Journal on Mathematics of Data Science*. 3(3):930–958, 2021.
- E. Winston and J. Z. Kolter. Monotone operator equilibrium networks. In Advances in Neural Information Processing Systems, 2020. URL https://arxiv.org/abs/2006.08591
- M. Revay, R. Wang, and I. R. Manchester. Lipschitz bounded equilibrium networks. 2020. URL https://arxiv.org/abs/2010.01732
- **5** A. Kag, Z. Zhang, and V. Saligrama. RNNs incrementally evolving on an equilibrium manifold: A panacea for vanishing and exploding gradients? In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=HylpqA4FwS
- 6 K. Kawaguchi. On the theory of implicit deep learning: Global convergence with implicit layers. In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=p-NZluwqhl4
- S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin. Fixed point networks: Implicit depth models with Jacobian-free backprop, 2021. URL https://arxiv.org/abs/2103.12803. ArXiv e-print

Robustness of INNs

Adversarial examples: small input change causes large output change!

Robustness measures: input-to-output Lipschitz constant

- **1** ℓ_2 -norm Lipschitz constant: not informative in many scenarios
- ${f 2}$ ℓ_{∞} -norm Lipschitz constant: large-scale input wrt wide-spread perturbations

Challenge #3: compute robustness margins

Challenge #4: implement robustness in training

Implicit Neural Networks (INNs)

- Training INNs:
 - lacksquare loss function $\mathcal L$
 - 2 training data $(\widehat{u}_i, \widehat{y}_i)_{i=1}^N$
 - 3 training optimization problem

$$\min_{A,B,C,b} \sum_{i=1}^{N} \mathcal{L}(\widehat{y}_i, Cx_i + c)$$
$$x_i = \Phi(Ax_i + B\widehat{u}_i + b)$$

- Efficient back-propagation through implicit differentiation
- Stochastic gradient descent: at each step solve $x = \Phi(Ax + Bu + b)$.

Challenge #1: well-posedness of fixed-point equation

Challenge #2: algorithm for fixed-point equation

Well-posedness and robustness of ℓ_{∞} -contracting INNs

$$x = \Phi(Ax + Bu + b)$$
 (INN fixed point)
 $\dot{x} = -x + \Phi(Ax + Bu + b)$ (Recurrent NN)
 $x_{k+1} = (1 - \alpha)x_k + \alpha\Phi(Ax_k + Bu + b)$ (Average iter.n)

lf

$$\mu_{\infty}(A) < 1$$
 (i.e., $a_{ii} + \sum_{i} |a_{ij}| < 1$ for all i)

- dynamics is contracting with rate $1 \mu_{\infty}(A)_{+}$
- average iteration is Banach with factor $1-\frac{1-\mu_{\infty}(A)_{+}}{1-\min_{i}(a_{ii})_{-}}$ at $\alpha=\frac{1}{1-\min_{i}(a_{ii})_{-}}$
- input-output Lipschitz constant $\operatorname{Lip}_{u \to y} = \frac{\|B\|_{\infty} \|C\|_{\infty}}{1 \mu_{\infty}(A)_{+}}$

Training INNs

Training optimization problem:

$$\begin{aligned} \min_{A,B,C,b} & & \sum_{i=1}^{N} \mathcal{L}(\widehat{y}_i, Cx_i + c) + & \lambda & \mathsf{Lip}_{u \to y} \\ & & x_i = \Phi(Ax_i + B\widehat{u}_i + b) \\ & & \mu_{\infty}(A) \leq \gamma \end{aligned}$$

- $\lambda \ge 0$ is a regularization parameter
- ullet $\gamma < 1$ is a hyperparameter

Parametrization of μ_{∞} constraint:

$$\mu_{\infty}(A) \leq \gamma \quad \iff \quad \exists T \text{ s.t. } A = T - \operatorname{diag}(|T|\mathbb{1}_n) + \gamma I_n.$$

Numerical Experiments

- MNIST handwritten digit dataset (60K+10K, 28x28, grayscale)
- implicit neural network order: n = 100

Graph-Theoretic Regularization

Synaptic matrix A encodes interactions between neurons

- \bullet $A_{dropout}$ is a principal submatrix of $A_{complete}$
- $\mu_{\infty}(A_{\mathsf{dropout}}) \leq \mu_{\infty}(A_{\mathsf{complete}})$
 - Well-posedness of original INN implies well-posedness of INN with subset of neurons
 - Promotes compression and sparsity of overparametrized models

Numerical Experiments

Robustness of INNs

Tradeoff between accuracy and robustness

• Clean performance vs. robustness

Numerical Experiments

Robustness of INNs

Clean performance vs. robustness

Conclusions

From Contracting Dynamics to Contracting Algorithms:

- contraction theory, monotone operator theory, convex optimization
 - effective methodologies to tackle control, optimization and learning problems
 - extensions to network dynamics
- 2 from Euclidean to non-Euclidean norms
- 3 application to recurrent and implicit neural networks
 - existence, uniqueness, and computation of fixed-points
 - robustness analysis and robust training via Lipschitz bounds
 - https://github.com/davydovalexander/Non-Euclidean_Mon_Op_Net

From Contracting Dynamics to Contracting Algorithms:

- mixed-monotone contraction theory (https://arxiv.org/abs/2112.05310)
- 2 implicit graph neural architectures
- 3 bio-inspired Hebbian learning
- o robustness of implicit models

Outline

- 1 Scientific and engineering problems from neural networks
- 2 Contraction theory
 - Banach contractions and infinitesimal counterparts
 - Contraction on Euclidean and inner product spaces
 - Contraction on non-Euclidean normed vector spaces
- 3 Detour: Network systems
- 4 Application to recurrent neural networks and implicit ML models
 - Contractivity of recurrent neural networks
 - Implicit neural networks in machine learning
- **5** Conclusions and future research

Supplementary slides

Background on Infinitesimal Contraction Theorem

- $oldsymbol{0}$ there exists $0<\alpha<1$ such that the average iteration is a Banach contraction
- \odot the map G satisfies osLip(G) < 1
- 3 the dynamics $\dot{x} = F(x) := -x + G(x)$ is infinitesimally contracting
- the equivalence (2) \iff (3) is just a transcription:
 - F = $-\operatorname{Id} + \operatorname{G}$ contracting with rate $c \iff \operatorname{osLip}(\mathsf{F}) < -c \iff \operatorname{osLip}(\mathsf{G}) < 1 c$, for c > 0
 - in (ℓ_2, P) , osLip(F) < -c is usual Krasovskii: $PJ(x) + J(x)^{\top}P \leq -2cP$ for all x and J = DF
- ullet (2) \Longrightarrow (1): known in monotone operator theory (page 15 "forward step method" in 1)
 - \bullet vector field F is contracting with rate $c \iff -\mathsf{F}$ is strongly monotone with parameter c
- Theorem 1 in² proves the equivalence (1) \iff (2) for any norm, i.e., the implication (2) \implies (1) for any norm (with proper osLip definitions) and the converse direction (1) \implies (2) for ℓ_2, P . Theorem 3 in² proves the one-sided Lim Lemma (see next slide).

Literature on recurrent NN ODEs

- J. J. Hopfield. Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences, 81(10):3088-3092, 1984.
- 2 E. Kaszkurewicz and A. Bhaya. On a class of globally stable neural circuits. *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, 41(2):171–174, 1994.
- M. Forti, S. Manetti, and M. Marini. Necessary and sufficient condition for absolute stability of neural networks. *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, 41(7):491–494, 1994.
- Y. Fang and T. G. Kincaid. Stability analysis of dynamical neural networks. *IEEE Transactions on Neural Networks*, 7(4):996–1006, 1996.
- H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. IEEE Transactions on Neural Networks, 12(2):360–370, 2001.
- W. He and J. Cao. Exponential synchronization of chaotic neural networks: a matrix measure approach. *Nonlinear Dynamics*, 55:55−65, 2009. [€]
- H. Zhang, Z. Wang, and D. Liu. A comprehensive review of stability analysis of continuous-time recurrent neural networks. IEEE Transactions on Neural Networks and Learning Systems, 25(7): 1229–1262, 2014.

Euclidean vs. non-Euclidean contractions

Most foundational results in systems theory are based on ℓ_2 linear-quadratic theory; their ℓ_1/ℓ_∞ analogs are yet to be worked out.

Advantages of non-Euclidean approach

• computational advantages: non-Euclidean log-norm constraints lead to LPs, whereas ℓ_2 constraints leads to LMIs. Parametrization of log-norm constrained matrices is polytopic.

A. Rantzer. Scalable control of positive systems. European Journal of Control, 24:72–80, 2015.

- **2** guaranteed robustness to structural perturbations: ℓ_{∞} contractivity ensures:
 - absolute contractivity = with respect to a class of activation functions
 - 2 total contractivity = remove any node and all its incident connections
 - 3 connective contractivity = remove any set of edges
- 3 adversarial input-output analysis

 ℓ_{∞} better suited for the analysis of adversarial examples than ℓ_2 : in high dimensions, large inner product between two vectors is possible even when one vector has small ℓ_{∞} norm

I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In *International Conference on Learn Representations (ICLR)*, 2015. URL https://arxiv.org/abs/1412.6572

Contractivity conditions with respect to arbitrary norms

Log norm bound	Demidovich condition	One-sided Lipschitz condition
$\mu_{2,P}(DF(x)) \le b$	$PDF(x) + DF(x)^{\top}P \leq 2bP$	$(x - y)^{T} P(F(x) - F(y)) \le b x - y _{P^{1/2}}^2$
$\mu_p(DF(x)) \leq b$	$(v \circ v ^{p-2})^\top DF(x)v \le b\ v\ _p^p$	$((x-y)\circ x-y ^{p-2})^{\top}(F(x)-F(y)) \le b\ x-y\ _p^p$
$\mu_1(DF(x)) \le b$	$\operatorname{sign}(v)^{\top} DF(x) v \le b \ v\ _1$	$\operatorname{sign}(x-y)^{\top}(F(x)-F(y)) \le b\ x-y\ _1$
$\mu_{\infty}(DF(x)) \le b$	$\max_{i \in I_{\infty}(v)} v_i \left(DF(x) v \right)_i \leq b \ v\ _{\infty}^2$	$\max_{i \in I_{\infty}(x-y)} (x_i - y_i)(f_i(x) - f_i(y)) \le b x - y _{\infty}^2$

Table of equivalences between measure bounded Jacobians, differential Demidovich and one-sided Lipschitz conditions. Note: $I_{\infty}(v) = \{i \in \{1, \dots, n\} \mid |v_i| = ||v||_{\infty}\}.$

J. A. Jacquez and C. P. Simon. Qualitative theory of compartmental systems. SIAM Review, 35(1):43-79, 1993. 60

H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. *IEEE Transactions on Neural Networks*. 12(2):360–370, 2001.

G. Como, E. Lovisari, and K. Savla. Throughput optimality and overload behavior of dynamical flow networks under monotone distributed routing. *IEEE Transactions on Control of Network Systems*, 2(1):57–67, 2015.

¹E. K. Ryu and S. Boyd. Primer on monotone operator methods. *Applied Computational Mathematics*, 15(1):3–43, 2016

²S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in Neural Information Processing Systems, Dec. 2021b. URL http://arxiv.org/abs/2106.03194

$$\dot{x} = f(x) + g(x) \tag{2}$$

If F has one-sided Lipschitz constant -c < 0 and g has one-sided Lipschitz constant d > 0, then

- (contractivity under perturbations) if d < c, then f + g is strongly contracting with rate c d,
- (equilibrium point under perturbations) if additionally F and g are time-invariant, then the unique equilibrium point x^* of F and x^{**} of f+g satisfy

$$||x^* - x^{**}|| \le \frac{||g(x^*)||}{c - d} \tag{3}$$

- $\bullet \ \ \text{For Metzler} \ M \ \ \text{and monotonic} \ \|\cdot\|, \ \mu(M) = \sup_{x>0...} \frac{[\![Ax,x]\!]}{\|x\|}.$
- For $\eta, \xi \in \mathbb{R}^n_{>0}$,

$$\mu_{1,[\eta]}(M) = \max(\eta^{\top} M [\eta]^{-1}) = \min\{b \in \mathbb{R} \mid \eta^{\top} M \le b \eta^{\top}\}$$
$$\mu_{\infty,[\xi]^{-1}}(M) = \max([\xi]^{-1} M \xi) = \min\{b \in \mathbb{R} \mid M \xi \le b \xi\}$$

F monotone if DF(x) Metzler for all x

• osl : $[f(x) - f(y), x - y] \le b||x - y||^2$ for all $x \ge y$

 $\textbf{2} \ \, \operatorname{d-osl} \ \, : \quad [\![D\mathsf{F}(x)v,v]\!] \leq b \|v\|^2 \text{, for all } v \geq 0 \text{ and } x$

$$\begin{split} \mu_{1,[\eta]}(D\mathsf{F}(x)) & \leq b \qquad \qquad \eta^\top D\mathsf{F}(x) \leq b \eta^\top \qquad \qquad \eta^\top \left(f(x) - f(y) \right) \leq b \eta^\top (x-y) \text{ for all } x \geq y \\ \mu_{\infty,[\xi]^{-1}}(D\mathsf{F}(x)) & \leq b \qquad \qquad D\mathsf{F}(x)\xi \leq b\xi \qquad \qquad f(x) - f(y) \leq b(x-y) \text{ for all } x = y + \beta\xi, \beta > 0 \end{split}$$

Input-state stability and gain of contracting systems

Input-state stability and gain of contracting systems

For a time and input-dependent vector F.

$$\dot{x} = f(x, u(t)), \qquad x(0) = x_0 \in \mathbb{R}^n, u(t) \in \mathbb{R}^k$$
(4)

Assume $\|\cdot\|_{\mathcal{X}}$ with compatible $[\![\cdot,\cdot]\!]_{\mathcal{X}}$, a norm $\|\cdot\|_{\mathcal{U}}$, and $c,\ell>0$ such that

- osL: $[f(x,u) f(y,u), x y]_{\mathcal{X}} \le -c||x y||_{\mathcal{X}}^2$, for all x, y, u,
- Lip: $||f(x,u)-f(x,v)||_{\mathcal{X}} \leq \ell ||u-v||_{\mathcal{U}}$, for all x,u,v.

Then

1/3

 $\mbox{\large 0}$ any two soltns x(t) and y(t) to (4) with inputs u_x,u_y

$$D^{+}||x(t) - y(t)||_{\mathcal{X}} \le -c||x(t) - y(t)||_{\mathcal{X}} + \ell||u_x(t) - u_y(t)||_{\mathcal{U}}$$

② F is incrementally input-to-state stable, i.e., for all x_0, y_0

$$||x(t) - y(t)||_{\mathcal{X}} \le e^{-ct} ||x_0 - y_0||_{\mathcal{X}} + \frac{\ell(1 - e^{-ct})}{c} \sup_{\tau \in [0, t]} ||u_x(\tau) - u_y(\tau)||_{\mathcal{U}}$$

3 F has incremental $\mathcal{L}_{\mathcal{X}\mathcal{U}}^q$ gain equal to ℓ/c , for $q \in [1, \infty]$,

$$\|x(\cdot) - y(\cdot)\|_{\mathcal{X},q} \le \frac{\ell}{c} \|u_x(\cdot) - u_y(\cdot)\|_{\mathcal{U},q} \qquad \text{(for } x_0 = y_0\text{)}$$

Signal norms and system gains

3/3

Incremental ISS for strongly contracting delay ODEs

Given norm $\|\cdot\|_{\mathcal{X}}$ on \mathbb{R}^n (or $\|\cdot\|_{\mathcal{U}}$ on \mathbb{R}^k),

• $\mathcal{L}^q_{\mathcal{X}}$, $q \in [1, \infty]$, is vector space of continuous signals, $x : \mathbb{R}_{\geq 0} \to \mathbb{R}^n$, with well-defined bounded norm

$$||x(\cdot)||_{\mathcal{X},q} = \begin{cases} \left(\int_0^\infty ||x(t)||_{\mathcal{X}}^q dt \right)^{1/q} & \text{if } q \in [1,\infty[\\ \sup_{t \ge 0} ||x(t)||_{\mathcal{X}} & \text{if } q = \infty \end{cases}$$

$$(5)$$

• Input-state system has $\mathcal{L}^q_{\mathcal{X},\mathcal{U}}$ -induced gain upper bounded by $\gamma>0$ if, for all $u\in\mathcal{L}^q_{\mathcal{U}}$, the state x from zero initial state satisfies

$$||x(\cdot)||_{\mathcal{X},q} \le \gamma ||u(\cdot)||_{\mathcal{U},q} \tag{6}$$

$$_{\ell},\ell_{\mathcal{X}}$$
 such that, for all variables,

(7)

assume there exist positive constants $c,\ell_{\mathcal{U}},\ell_{\mathcal{X}}$ such that, for all variables,

osl
$$x$$
:
$$[f(x, d, u) - f(y, d, u), x - y]_{\mathcal{X}} \le -c||x - y||_{\mathcal{X}}^{2}$$
 (8
$$\lim x(t - s) : \qquad ||f(x, x_{1}, u) - f(x, x_{2}, u)||_{\mathcal{X}} \le \ell_{\mathcal{X}} ||x_{1} - x_{2}||_{\mathcal{X}}$$
 (9

Lip
$$u$$
: $||f(x, d, u) - f(x, d, v)||_{\mathcal{X}} \le \ell_{\mathcal{U}} ||u - v||_{\mathcal{U}}$

By the curve norm derivative formula, subadditivity, and Cauchy-Schwarz inequality,

$$\begin{split} \|x(t) - y(t)\|_{\mathcal{X}} D^+ \|x(t) - y(t)\|_{\mathcal{X}} &= \left[\!\!\left[f(x(t), x(t-s), u_x(t)) - f(y(t), y(t-s), u_y(t)), x(t) - y(t) \right]\!\!\right]_{\mathcal{X}} \\ &\leq \left[\!\!\left[f(x(t), x(t-s), u_x(t)) - f(y(t), x(t-s), u_x(t)), x(t) - y(t) \right]\!\!\right]_{\mathcal{X}} \\ &+ \left[\!\!\left[f(y(t), x(t-s), u_x(t)) - f(y(t), y(t-s), u_x(t)), x(t) - y(t) \right]\!\!\right]_{\mathcal{X}} \\ &+ \left[\!\!\left[f(y(t), y(t-s), u_x(t)) - f(y(t), y(t-s), u_y(t)), x(t) - y(t) \right]\!\!\right]_{\mathcal{X}} \\ &\leq -c \|x(t) - y(t)\|_{\mathcal{X}}^2 + \ell_{\mathcal{X}} \|x(t-s) - y(t-s)\|_{\mathcal{U}} \|x(t) - y(t)\|_{\mathcal{X}}, \\ &+ \ell_{\mathcal{U}} \|u_x(t) - u_y(t)\|_{\mathcal{U}} \|x(t) - y(t)\|_{\mathcal{X}}. \end{split}$$

 $\dot{x}(t) = f(x(t), x(t-s), u(t)), 0 < s < S, \quad \|\cdot\|_{\mathcal{X}}, \|\cdot\|_{\mathcal{U}}$

Thus, with $m(t) = \|x(t) - y(t)\|_{\mathcal{X}}$, delay differential inequality

$$D^{+}m(t) \le -cm(t) + \ell_{\mathcal{X}} \sup_{0 \le s \le S} m(t-s) + \ell_{\mathcal{U}} \|u_{x}(t) - u_{y}(t)\|_{\mathcal{U}}, \tag{11}$$

Halanay inequality is applicable. If $c>\ell_{\mathcal{X}}$, then

$$m(t) \le m_0 e^{-\rho(t-t_0)} + \ell_{\mathcal{U}} \int_{t_0}^t e^{-\rho(t-\tau)} \|u_x(\tau) - u_y(\tau)\|_{\mathcal{U}} d\tau,$$
 (12)

where $\rho > 0$ is the unique positive root of $\rho = c - \ell_{\mathcal{X}} e^{\rho S}$ and $m_0 = \sup_{0 \le s \le S} m(t_0 - s)$.

Networks of contracting systems with time delays

Interconnected subsystems $i \in \{1, \ldots, n\}$

$$\dot{x}_i = f_i(x_i, x_{-i}, x_{-i}(t-s), u_i), \qquad 0 \le s \le S, \qquad \|\cdot\|_i, \|\cdot\|_{i,\mathcal{U}}$$
(13)

Assume there exist positive constants st

osL
$$x_i$$
: $[f_i(x_i,...) - f_i(y_i,...), x_i - y_i]_i \le -c_i ||x_i - y_i||_i^2$

Lip
$$x_{-i}$$
: $||f_i(\ldots, x_{-i}, \ldots) - f_i(\ldots, y_{-i}, \ldots)||_i \le \sum_{j=1, j \ne i}^n \gamma_{ij} ||x_j - y_j||_j$

$$\text{Lip } x_{-1}^{-s}: \qquad \|f_i(\dots, x_{-i}^{-s}, \dots) - f_i(\dots, y_{-i}^{-s}, \dots)\|_i \leq \sum\nolimits_{j=1, j \neq i}^n \widehat{\gamma}_{ij} \|x_j^{-s} - y_j^{-s}\|_j$$

Lip
$$u_i$$
: $||f_i(..., u_i) - f_i(..., v_i)||_i \le \ell_{i,\mathcal{U}} ||u_i - v_i||_{i,\mathcal{U}}$

With $m_i(t) = ||x_i(t) - y_i(t)||_i$, delay differential inequality:

$$D^+m(t) \le -Cm(t) + \Gamma m(t) + \widehat{\Gamma} \sup_{0 \le s \le S} m(t-s) + \ell_{\mathcal{U}} \|u_x(t) - u_y(t)\|_{\mathcal{U}}$$

and, if the Metzler matrix $-C + \Gamma + \widehat{\Gamma}$ is Hurwitz, then (13) is incremental ISS

F. Mazenc, M. Malisoff, and M. Krstic. Vector extensions of Halanay's inequality. *IEEE Transactions on Automatic Control*, 2021. ©. to appear

Networks of ISS systems

Interconnections scalar ISS subsystems

$$\dot{x}_i = -a_i(x_i) + \sum_{j \neq i} \gamma_{ij}(x_j) + u_i, \quad \text{for } i \in \{1, \dots, n\}.$$
 (14)

where a_i are of class \mathcal{K}_{∞} and γ_{ij} are of class \mathcal{K} . Define

$$A_i(x) = a_i(x_i), \quad \text{ and } \Gamma_i(x) = \sum_{j \neq i} \gamma_{ij}(x_j)$$

If there exist $\eta \in \mathbb{R}^n_{>0}$ and c>0 satisfying

$$\eta^{\top}(A(v) - A(w)) \ge \eta^{\top}(\Gamma(v) - \Gamma(w) + c(v - w)), \quad \text{for all } v \ge w \ge 0_n$$

then the **interconnected** system is strongly contracting

with respect to $\|\cdot\|_{1,[\eta]}$ and with rate c

Proof:
$$\operatorname{osLip}_{1,[\eta]}(f) \leq b$$
 if and only if $\eta^{\top} \big(f(x) - f(y) \big) \leq b \eta^{\top} (x - y)$