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Contraction theory: definition

Given & = F(t,x), vector field F is contractive if its flow is a contraction map

ball centered at z(t) with radius e~



Contraction theory: historical notes

@ Origins

S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.
Fundamenta Mathematicae, 3(1):133-181, 1922. d

S. M. Lozinskii. Error estimate for numerical integration of ordinary differential equations. |. /zvestiya
Viysshikh Uchebnykh Zavedenii. Matematika, 5:52-90, 1958

C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
analysis. /EEE Transactions on Circuit Theory, 19(5):480-486, 1972. 4

Application in control theory: W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear
systems. Automatica, 34(6):683-696, 1998. ¢

Reviews:
Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some
open problems. In IEEE Conf. on Decision and Control, pages 3835-3847, Dec. 2014. 4

M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of
complex networks via contraction theory. In J. Lii, X. Yu, G. Chen, and W. Yu, editors, Complex Systems
and Networks, pages 313-339. Springer, 2016. ISBN 978-3-662-47824-0. @

H. Tsukamotoa, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and
learning-based control: A tutorial overview, 2021. URL https://arxiv.org/abs/2110.00675
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http://dx.doi.org/10.1007/978-3-662-47824-0_12
https://arxiv.org/abs/2110.00675

@ contraction conditions on vector field do not necessarily involve Jacobians

@ contraction conditions without Jacobians have been studied under many different names:
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uniformly decreasing maps in: L. Chua and D. Green. A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of
autonomous networks. |[EEE Transactions on Circuits and Systems, 23(6):355-379, 1976. €

one-sided Lipschitz maps in: E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff Problems. Springer,
1993. @ (Section 1.10, Exercise 6)

maps with negative nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis
for Hopfield-type neural networks. /EEE Transactions on Neural Networks, 12(2):360-370, 2001. L

dissipative Lipschitz maps in: T. Caraballo and P. E. Kloeden. The persistence of synchronization under environmental noise. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2059):2257-2267, 2005. €

maps with negative lub log Lipschitz constant in: G. Soderlind. The logarithmic norm. History and modern theory. BIT Numerical Mathematics,
46(3):631-652, 2006. 4

QUAD maps in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled ordinary differential systems. Physica D:
Nonlinear Phenomena, 213(2):214-230, 2006. L

incremental quadratically stable maps in: L. D'Alto and M. Corless. Incremental quadratic stability. Numerical Algebra, Control and
Optimization, 3:175-201, 2013. 4
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http://dx.doi.org/10.1007/s10543-006-0069-9
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Contraction theory: properties of contracting systems
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i ball centered at z(t) with radius e~

Highly ordered transient and asymptotic behavior:

Zo

@ time-invariant F: unique globally exponential stable equilibriumfmmm1
two natural Lyapunov functions

@ periodic F: contracting system entrain to periodic inputs
© contractivity rate is natural measure/indicator of robust stability

@ accurate numerical integration, and

@ there exist efficient methods for their fixed point computation

ct



Why fixed point computations?

Fixed point strategies in data science = simplifying and unifying framework to model, analyze,
and solve advanced convex optimization methods, Nash equilibria, monotone inclusions, etc.

P. L. Combettes and J.-C. Pesquet. Fixed point strategies in data science. /EEE Transactions on Signal
Processing, 2021. 4

Feedforward NN Implicit/Recurrent NN

v
000000
<

To = u, x=¢(Ax+Bu—|—b),
y=Cx,+d y=Cz+d

Advantages of implicit/equilibrium/fixed point formulation: simplicity, analogy with
neural circuits, accuracy, memory efficiency, input-output robustness, etc



http://dx.doi.org/10.1109/TSP.2021.3069677

Recent literature on implicit NNs

© 6 o o

S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. In Advances in Neural Information
Processing Systems, 2019. URL https://arxiv.org/abs/1909.01377

L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Y. Tsai. Implicit deep learning. 2019. URL
https://arxiv.org/abs/1908.06315

E. Winston and J. Z. Kolter. Monotone operator equilibrium networks. In Advances in Neural
Information Processing Systems, 2020. URL https://arxiv.org/abs/2006.08591

M. Revay, R. Wang, and I. R. Manchester. Lipschitz bounded equilibrium networks. 2020. URL
https://arxiv.org/abs/2010.01732

A. Kag, Z. Zhang, and V. Saligrama. RNNs incrementally evolving on an equilibrium manifold: A
panacea for vanishing and exploding gradients? In International Conference on Learning
Representations, 2020. URL https://openreview.net/forum?id=HylpqA4FwS

K. Kawaguchi. On the theory of implicit deep learning: Global convergence with implicit layers. In
International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=p-NZluwghl4

S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin. Fixed point networks: Implicit
depth models with Jacobian-free backprop, 2021. URL https://arxiv.org/abs/2103.12803.
ArXiv e-print
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Literature on recurrent NN ODEs

@ J. J. Hopfield. Neurons with graded response have collective computational properties like those of
two-state neurons. Proceedings of the National Academy of Sciences, 81(10):3088-3092, 1984. ©

@ E. Kaszkurewicz and A. Bhaya. On a class of globally stable neural circuits. /[EEE Transactions on
Circuits and Systems I: Fundamental Theory and Applications, 41(2):171-174, 1994. &

© M. Forti, S. Manetti, and M. Marini. Necessary and sufficient condition for absolute stability of
neural networks. |[EEE Transactions on Circuits and Systems I: Fundamental Theory and
Applications, 41(7):491-494, 1994. ¢

© Y. Fang and T. G. Kincaid. Stability analysis of dynamical neural networks. |[EEE Transactions on
Neural Networks, 7(4):996-1006, 1996. 4

© H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability
analysis for Hopfield-type neural networks. /EEE Transactions on Neural Networks, 12(2):360-370,
2001. @

@ W. He and J. Cao. Exponential synchronization of chaotic neural networks: a matrix measure
approach. Nonlinear Dynamics, 55:55-65, 2009. 4

@ H. Zhang, Z. Wang, and D. Liu. A comprehensive review of stability analysis of continuous-time
recurrent neural networks. |[EEE Transactions on Neural Networks and Learning Systems, 25(7):
1229-1262, 2014. 4
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Primer on monotone operator theory and contractions

x = G(z)

Banach Contraction Theorem
If Lip(G) < 1, then Picard iteration xy; = G(zy) is a Banach contraction J

For Lip(G) > 1, define the average/damped/Mann-Krasnosel'skii iteration

Tp1 = (1 — a)zg + aG(2k)

Infinitesimal Contraction Theorem
@ there exists 0 < o < 1 such that the average iteration is a Banach contraction
@ the map G satisfies osL(G) < 1

© the dynamics & = —z + G(z) is infinitesimally contracting




Primer on monotone operator theory and contractions: Addendum

Lim’s Lemma
x} is a fixed point of x = G(z,u) and Lip, G < 1, then

u

Llpu G

= [ =

One-sided Lim’s Lemma
x} is a fixed point of z = G(z,u) and osL,(G) < 1, then

u

2| < Lip,(G)
Toll = T 0sL,(G)

I = [ =




Background on Infinitesimal Contraction Theorem

O there exists 0 < a < 1 such that the average iteration is a Banach contraction
@ the map G satisfies osL(G) < 1

© the dynamics & = F(z) := —x + G(x) is infinitesimally contracting

@ the equivalence (2) <= (3) is just a transcription:
o F = —1d+G contracting with rate ¢ <= osL(F) < —¢ <= osL(G) <1 —¢, forc>0
e in ({2, P), osL(F) < —c is usual Krasovskii: P.J(z) + J(z)" P < —2¢P for all x and J = DF
e (2) = (1): known in monotone operator theory (page 15 “forward step method" in?)
o vector field F is contracting with rate ¢ <= —F is strongly monotone with parameter ¢
@ Theorem 1 in? proves the equivalence (1) <= (2) for any norm, i.e., the implication (2)
= (1) for any norm (with proper osL definitions) and the converse direction (1) —-
(2) for £, P. Theorem 3 in? proves the one-sided Lim Lemma (see next slide).

lE. K. Ryu and S. Boyd. Primer on monotone operator methods. Applied Computational Mathematics, 15(1):3-43, 2016

S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in Neural Information
Processing Systems, Dec. 2021. URL http://arxiv.org/abs/2106.03194
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© Overview and motivation
@ Contraction on Euclidean and inner product spaces
© Contraction on Riemannian manifolds

@ Contraction on non-Euclidean normed vector spaces



Scalar maps and vector field

F :R — R is one-sided Lipschitz with osL(F") = b if

F'(z) < b, Va
<— F(z)—- F(y) <b(z—y), Vr >y
= (z-y)(F(z) - F(y) <blz —y)* v,y

@ Fis osL with b = 0 iff F' weakly decreasing

o if I is Lipschitz with bound ¢, then F'is osL with b </
o For

&= F(x)
the Gronwall lemma implies |z(t) — y(t)| < €% |x(0) — y(0)]



Contraction theory on inner product space (R, ¢5)

For x € R™ and differentiable time-dep
z = F(x)

For P = PT = 0, define ||x||g pijz = z! Px

Main equivalences: For ¢ > 0, map F is c-strongly contracting if
Q@ osL : (F(z)=F(y) Pz —y) < —cla—ylls )y forallz,y

@ d-osL : PDF(z)+ DF(z)TP < —2cP for all =

© d-IS : D) -y

o1z < —cle(t) = y(O)llppria  for all soltns z(), y(-)




Contraction theory on inner product space (R, ¢5)

For differentiable V' : R™ — R, equivalent statements:
@ V is strongly convex with parameter m

@ —gradV is m-strongly contracting, that is

(- gradV (z) + gradV () ' (z — y) < —ml|z — y|I3

For map F : R® — R"™, equivalent statements:
© F is a monotone operator (or a coercive operator) with parameter m,

© —F is m-strongly contracting

E. K. Ryu and W. Yin. Large-Scale Convex Optimization via Monotone Operators. Cambridge, 2022



Contraction theory on inner product space (R, ¢5)

Equilibria of contracting vector fields:

For a time-invariant F, c-strongly contracting with respect to || - ||y p1/2

Q@ flow of F is a contraction,

i.e., distance between solutions exponentially decreases with rate ¢

@ there exists an equilibrium x*, that is unique, globally exponentially stable with global

Lyapunov functions

x|z — 1’*“3,131/2

and 2> [F(@)[2 e




Contraction theory on inner product space (R, ¢5)

Given F: R — R"™

x* € zero(F) < " € fixed(G), where G =Id+F
consider forward step = Euler integration for ' = averaged iteration for G:
1 = (Id+aF)x = z + aF (xg) =(1—a)ld+aG

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = {/c > 1

@ the map Id +aF is a contraction map with respect to || - ||, p1/2 for

2
0<Oé<—2
CK

@ the optimal step size minimizing and minimum contraction factor:

aE




© Overview and motivation
@ Contraction on Euclidean and inner product spaces
© Contraction on Riemannian manifolds

@ Contraction on non-Euclidean normed vector spaces



Contraction theory on Riemannian manifold (M, G)

F contracting if geodesic distances from x to y diminishes along the flow of F

integral test: the inner product between F and the geodesic velocity vector %’Cy at x and y
differential test: condition on covariant differential of F

G(:c)gl;(a:) + g;(m)TG(a;) + G(a:) = —2¢G(x)



© Overview and motivation
@ Contraction on Euclidean and inner product spaces
© Contraction on Riemannian manifolds

@ Contraction on non-Euclidean normed vector spaces



Contraction theory on the normed vector spaces (R", {1 /()

Norms From inner products to From LMIs to
sign and max pairings log norms
J@lZ pro =2 Pz [yl pre =37 Py 1z, p1/2(A) = min{b | ATP 4+ PA < 2P}
||.'L’||1 = Z |xl| [[q;,y]]l = ||y||1 Sign(y)-rx ,ufl(A) max (CL_” aF Z | A5 >
2
lalloc = masxlei|  [29le = max yia poo(A) = max (@i + Y Jay)

where Io(z) = {i € {1,...,n} | |z;| = ||z]|oc}



A weak pairing is [-,-] : R” x R" — R satisfying
O [z1+ z2,y] < [z1,y] + [x2,y] and z — [z, y] is continuous,
Q [bx,y] = [z,by] = b[z,y] for b > 0 and [—z, —y] = [z, y],
Q [z,z] >0, for all z # 0,
O [zl < [z 21" [y 41"

Given norm || - ||, compatibility: [z, ] = ||x||* for all x
Sup of non-Euclidean numerical range: w(A) = sup [Az,x]
llel=1
Norm derivative formula: DV z(t)|? = [E(t), 2 ()]

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. /EEE
Transactions on Automatic Control, July 2021. URL https://arxiv.org/abs/2103.12263. Submitted


https://arxiv.org/abs/2103.12263

The log norm of A € R™*™ wrt to || - ||:

. ”In + hAH -1
A):= lim ————
HA) = B
Basic properties:
subadditivity: u(A+ B) < u(A) + u(B)
scaling: wu(bA) = bu(A), Vb >0
convexity: @A+ (1—-0)B) <0u(A)+ (1 —0)u(B), Vo € [0,1]

T. Strém. On logarithmic norms. SIAM Journal on Numerical Analysis, 12(5):741-753, 1975. 4


http://dx.doi.org/10.1137/0712055

Contraction theory on the normed vector spaces (R", {1 /()

For x € R™ and differentiable time-dep
& =F(x) (1)

For norm || - || with log norm pu(-) and compatible weak pairing [, -]

Main equivalences: for ¢ > 0
Q osL : [F@)—F@),z—y] < —cllz—yl>  forallz,y
Q d-osL : wu(DF(x)) < —c for all =

© d-1s : DTlz(t) —y@)ll < —cllz(t) —y(@®)||  for soltns z(-), y(")




Contraction theory on the normed vector spaces (R", {1 /()

Consider a norm || - || with compatible weak pairing [-, ]
Recall forward step method x4 = (Id +aF)z, = z; + oF (z)

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = {/c > 1

© the map Id +aF is a contraction map with respect to || - || for

0 -
<a<cm(1+;@)

@ the optimal step size minimizing and minimum contraction factor:

iem ke 0l )

. 1 1 1
e =1- 53+ 5o+ ()




Example: ¢,.-contracting neural networks

Recurrent neural network dynamics

& =—x+ ®(Az + Bu)

Average iteration

Tpr1 = (1 — a)xg + a®(Axg + Bu)

Uoo(A) < 1 (i.e., ai; + Z la;j| <1 for all ’1')
J

Then, with norm | - ||oo,

@ dynamics is contracting with rate 1 — po(A)+

1_:uoo(A)+ at o = 1

@ average iteration is contracting with factor 1 - ——————— = —————
1-— mmi(aii)_ = mlni(aii)—




Conclusions

From Contracting Dynamics to Contracting Algorithms:
@ contraction theory and monotone operator theory are deeply connected

@ well established methodologies to tackle control, optimization and learning problems via
fixed point strategies

© same methods on Euclidean, Riemannian and non-Euclidean spaces

© example application to recurrent neural networks



Spectacular Teacher
Thoughtful Researcher and Generous Collaborator
Marvelous Mentor

Thank you, Dr. Masry!
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