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Acknowledgments Contraction theory: definition

[ \ Given & = F(t, ), vector field F is contractive if its flow is a contraction map
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Contraction theory: historical notes

@ Origins
S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.
Fundamenta Mathematicae, 3(1):133-181, 1922. d
S. M. Lozinskii. Error estimate for numerical integration of ordinary differential equations. |. /zvestiya
Vlysshikh Uchebnykh Zavedenii. Matematika, 5:52-90, 1958

C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit
analysis. IEEE Transactions on Circuit Theory, 19(5):480-486, 1972. d

@ Application in control theory: W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear
systems. Automatica, 34(6):683-696, 1998. ¢

@ Reviews:
Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some
open problems. In /EEE Conf. on Decision and Control, pages 38353847, Dec. 2014. @

M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of
complex networks via contraction theory. In J. Lii, X. Yu, G. Chen, and W. Yu, editors, Complex Systems
and Networks, pages 313-339. Springer, 2016. ISBN 978-3-662-47824-0. ¢

H. Tsukamotoa, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and
learning-based control: A tutorial overview, 2021. URL https://arxiv.org/abs/2110.00675

Contraction theory: properties of contracting systems

@ contraction conditions on vector field do not necessarily involve Jacobians

@ contraction conditions without Jacobians have been studied under many different names:

o uniformly decreasing maps in: L. Chua and D. Green. A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of
autonomous networks. |EEE Transactions on Circuits and Systems, 23(6):355-379, 1976. ¢

e one-sided Lipschitz maps in: E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations |. Nonstiff Problems. Springer,
1993. & (Section 1.10, Exercise 6)
maps with negative nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis
for Hopfield-type neural networks. /EEE Transactions on Neural Networks, 12(2):360-370, 2001. ¢

o dissipative Lipschitz maps in: T. Caraballo and P. E. Kloeden. The persistence of synchronization under environmental noise. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2059):2257-2267, 2005. 4
maps with negative lub log Lipschitz constant in: G. Séderlind. The logarithmic norm. History and modern theory. BIT Numerical Mathematics,
46(3):631-652, 2006. ¢
QUAD maps in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled ordinary differential systems. Physica D:
Nonlinear Phenomena, 213(2):214-230, 2006. d

o incremental quadratically stable maps in: L. D'Alto and M. Corless. Incremental quadratic stability. Numerical Algebra, Control and
Optimization, 3:175-201, 2013. @

Why fixed point computations?
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Highly ordered transient and asymptotic behavior:
@ time-invariant F: unique globally exponential stable equilibrium 7777777777
two natural Lyapunov functions
@ periodic F: contracting system entrain to periodic inputs
© contractivity rate is natural measure/indicator of robust stability

@ accurate numerical integration, and

@ there exist efficient methods for their fixed point computation

Fixed point strategies in data science = simplifying and unifying framework to model, analyze,
and solve advanced convex optimization methods, Nash equilibria, monotone inclusions, etc.

P. L. Combettes and J.-C. Pesquet. Fixed point strategies in data science. /EEE Transactions on Signal
Processing, 2021. d

Feedforward NN Implicit/Recurrent NN
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Advantages of implicit/equilibrium/fixed point formulation: simplicity, analogy with

neural circuits, accuracy, memory efficiency, input-output robustness, etc




Recent literature on implicit NNs Literature on recurrent NN ODEs

© S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. In Advances in Neural Information © J. J. Hopfield. Neurons with graded response have collective computational properties like those of
Processing Systems, 2019. URL https://arxiv.org/abs/1909.01377 two-state neurons. Proceedings of the National Academy of Sciences, 81(10):3088-3092, 1984. 4
@ L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Y. Tsai. Implicit deep learning. 2019. URL @ E. Kaszkurewicz and A. Bhaya. On a class of globally stable neural circuits. /EEE Transactions on
https:/ /arxiv.org/abs/1908.06315 Circuits and Systems I: Fundamental Theory and Applications, 41(2):171-174, 1994. 4
© E. Winston and J. Z. Kolter. Monotone operator equilibrium networks. In Advances in Neural © M. Forti, S. Manetti, and M. Marini. Necessary and sufficient condition for absolute stability of
Information Processing Systems, 2020. URL https://arxiv.org/abs/2006.08591 neural networks. /EEE Transactions on Circuits and Systems |: Fundamental Theory and
© M. Revay, R. Wang, and I. R. Manchester. Lipschitz bounded equilibrium networks. 2020. URL Applications, 41(7):491-494, 1994. 4
https:/ /arxiv.org/abs/2010.01732 @ Y. Fang and T. G. Kincaid. Stability analysis of dynamical neural networks. /EEE Transactions on
@ A. Kag, Z. Zhang, and V. Saligrama. RNNs incrementally evolving on an equilibrium manifold: A Neural Networks, 7(4):996-1006, 1996. 4
panacea for vanishing and exploding gradients? In International Conference on Learning © H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability
Representations, 2020. URL https://openreview.net/forum?id=HylpgA4FwS analysis for Hopfield-type neural networks. |[EEE Transactions on Neural Networks, 12(2):360-370,
@ K. Kawaguchi. On the theory of implicit deep learning: Global convergence with implicit layers. In 2001. ¢
International Conference on Learning Representations, 2021. URL @ W. He and J. Cao. Exponential synchronization of chaotic neural networks: a matrix measure

https://openreview.net/forum?id=p-NZluwqghl4 approach. Nonlinear Dynamics, 55:55-65, 2009. ¢
@ S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin. Fixed point networks: Implicit

depth models with Jacobian-free backprop, 2021. URL https://arxiv.org/abs/2103.12803.
ArXiv e-print

@ H. Zhang, Z. Wang, and D. Liu. A comprehensive review of stability analysis of continuous-time
recurrent neural networks. |[EEE Transactions on Neural Networks and Learning Systems, 25(7):
1229-1262, 2014. ¢

Primer on monotone operator theory and contractions Primer on monotone operator theory and contractions: Addendum
x = G(x)
Banach Contraction Theorem Lin?’s L(.emma . .
If Lip(G) < 1, then Picard iteration xj+1 = G(zx) is a Banach contraction J 15 & iibeed] fpoiins o & = Giln, w) 2mel Lig, @ < 1., dhem
ot = abll < T2 P o

For Lip(G) > 1, define the average/damped/Mann-Krasnosel'skii iteration
One-sided Lim’s Lemma

Tpp1 = (1 = @)y, + aG(zy) x} is a fixed point of z = G(z,u) and osL,(G) < 1, then

Lip, (G
Infinitesimal Contraction Theorem |3 — zoll < Pu—)”u — |
. . _ . 1 —osL,(G)
@ there exists 0 < a < 1 such that the average iteration is a Banach contraction
@ the map G satisfies osL(G) < 1

@ the dynamics & = —x + G(xz) is infinitesimally contracting




Background on Infinitesimal Contraction Theorem

@ there exists 0 < a < 1 such that the average iteration is a Banach contraction
@ the map G satisfies osL(G) < 1

© the dynamics & = F(z) := —x + G(z) is infinitesimally contracting

o the equivalence (2) <= (3) is just a transcription:
o F = —1d+G contracting with rate ¢ <= o0sL(F) < —¢ <= o0sL(G) <1 —¢, for¢>0
o in ({2, P), osL(F) < —c is usual Krasovskii: P.J(z)+ J(z)T P = —2¢cP for all x and J = DF
@ (2) = (1): known in monotone operator theory (page 15 “forward step method” in')
o vector field F is contracting with rate ¢ <= —F is strongly monotone with parameter ¢
@ Theorem 1 in? proves the equivalence (1) <= (2) for any norm, i.e., the implication (2)
= (1) for any norm (with proper osL definitions) and the converse direction (1) =
(2) for £, P. Theorem 3 in? proves the one-sided Lim Lemma (see next slide).

1E. K. Ryu and S. Boyd. Primer on monotone operator methods. Applied Computational Mathematics, 15(1):3-43, 2016

25. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in Neural Information
Processing Systems, Dec. 2021. URL http://arxiv.org/abs/2106.03194

Scalar maps and vector field

F :R — R is one-sided Lipschitz with osL(F') = b if

F'(z) <b, Y
<~ F(z)—F(y) <blz—y), Ve >y
—  (z—y)(F(z) = F(y)) < bz —y)?, v,y

o Fis osL with b = 0 iff F' weakly decreasing
o if F'is Lipschitz with bound ¢, then F is osL with b </
e For

& = F(z)

the Gronwall lemma implies |z(t) — y(t)| < e |z(0) — y(0)]

Outline

o Overview and motivation

@ Contraction on Euclidean and inner product spaces

© Contraction on Riemannian manifolds

@ Contraction on non-Euclidean normed vector spaces

Contraction theory on inner product space (R", )

For x € R™ and differentiable time-dep
& =F(x)
=z Px

For P=PT » 0, define [|z]|3 .,/

Main equivalences: For ¢ > 0, map F is c-strongly contracting if

O osL (F(z) — F(y)) T P(z —y) < —c||z — y||§,p1/2 for all z,y
© d-osL : PDF(z)+ DF(z)"P < —2cP for all x
© dIs : DFz(t) —y®)llyprre < —cllz(t) —y@)llpprz  forall soltns (), y(")




Contraction theory on inner product space (R", {s)

For differentiable V' : R® — R, equivalent statements:
@ V is strongly convex with parameter m

@ —gradV is m-strongly contracting, that is

(— gradV (@) + gradV (y)) ' (z — y) < —ml|z — y|3

For map F : R — R", equivalent statements:
© F is a monotone operator (or a coercive operator) with parameter m,

© —F is m-strongly contracting

Contraction theory on inner product space (R", {5)

Equilibria of contracting vector fields:
For a time-invariant F, c-strongly contracting with respect to || - |5 p1/2

@ flow of F is a contraction,
i.e., distance between solutions exponentially decreases with rate ¢

@ there exists an equilibrium z*, that is unique, globally exponentially stable with global
Lyapunov functions

vz =22 and @ [F@E e

E. K. Ryu and W. Yin. Large-Scale Convex Optimization via Monotone Operators. Cambridge, 2022

Contraction theory on inner product space (R", {5)

Given F: R — R™

x* € zero(F) < 2" € fixed(G), where G=Id+F
consider forward step = Euler integration for ' = averaged iteration for G:
g1 = (ld+aF)z, = zp + aF (x) = (1 —a)ld+aG

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = £/c > 1

@ the map Id +aF is a contraction map with respect to || - || p1/2 for

2
0<Oé<—2
CK

@ the optimal step size minimizing and minimum contraction factor:
1
cK?

Outline

o Overview and motivation

@ Contraction on Euclidean and inner product spaces

© Contraction on Riemannian manifolds

@ Contraction on non-Euclidean normed vector spaces




Outline

Contraction theory on Riemannian manifold (M, G)

1/1

F contracting if geodesic distances from x to y diminishes along the flow of F

integral test: the inner product between F and the geodesic velocity vector 7/wy at z and y
differential test: condition on covariant differential of F
OF oF
G(z)

a—x(m) + B:E( z)G(z) + G(z) = —2¢G(x)

Contraction theory on the normed vector spaces (R", ¢1/{~)

From LMls to
log norms

Norms

From inner products to
sign and max pairings

lel2 piz =2 Pz [a,y)ypre = Py t1y,p1/2(A) = min{b | ATP + PA = 2bP)

lally = > _lai Lo, o1, = Iyl sigay) =

pi(A4) = max(a”—i—z |U)

2
l2lloo = max|z| L2yl = max yizi poo(A) = max (as + Y o)
where Ioo(z) = {i € {1,...,n} | |zi] = |#]lco }

o Overview and motivation

@ Contraction on Euclidean and inner product spaces

© Contraction on Riemannian manifolds

@ Contraction on non-Euclidean normed vector spaces

A weak pairing is [-, -] : R™ x R™ — R satisfying
Q [z1 + z2,y] < [21,y] + [x2,y] and z — [z,y] is continuous,

2] [[b{I},y]] = [[l',by]] =b [[iE,y]] for b > 0 and [[_$7 _y]] = [[Iay]]'
Q [z,z] > 0, for all z # 0,
O |[z.y]| < [z, 2] [y 4]
Given norm || - ||, compatibility: [z, z] = ||z||? for all =
Sup of non-Euclidean numerical range: u(A) = sup [Az,z]
llxll=1
Norm derivative formula: DT |z(t)|* = [(2), z(t)]

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. /EEE
Transactions on Automatic Control, July 2021. URL https://arxiv.org/abs/2103.12263. Submitted




The log norm of A € R™ ™ wrt to || - ||:

. |I, + hA| — 1
A) =1 e
u(A) = lim, 2

Basic properties:

(A + B) < p(A) + u(B)

A), Vb >0
A)+ (1 —0)u(B), Vo € [0, 1]

subadditivity:
scaling: w(bA) = bu
convexity: uw(@A+(1—-0)B) < 6u

—_—

T. Strdm. On logarithmic norms. SIAM Journal on Numerical Analysis, 12(5):741-753, 1975. ¢

Contraction theory on the normed vector spaces (R", ¢1/{~)

Contraction theory on the normed vector spaces (R", (1 /{~)

For € R™ and differentiable time-dep
i = F(z) (1)

For norm || - || with log norm f(-) and compatible weak pairing [-, |

Main equivalences: for ¢ > 0
QO osL : [F(z
@ d-osL : w(DF(x)) < —c for all =

) —F(y),z —y] < —cllz —yl? for all z,y

© d-1S : DYflz(t) —y(O)ll < —cllz(t) —y(®)  for soltns z(-), y(")

Example: /. -contracting neural networks

Consider a norm || - || with compatible weak pairing [-, -]
Recall forward step method  z4y; = (Id +aF)x, = 2 + oF ()

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = £/c > 1

O the map ld +aF is a contraction map with respect to || - || for

0 - -
sas ck(l + k)

@ the optimal step size minimizing and minimum contraction factor:

e 13~ s +0()

ne =1 4 8/<;3 (i)

Recurrent neural network dynamics

& =—x+ ®(Ax + Bu)

Average iteration

i1 = (1 — @)z, + a®(Azy + Bu)

too(4) < 1 (i.e., Qg + Z la;j| < 1 for all 1)
J
Then, with norm || - ||oo,
o dynamics is contracting with rate 1 — oo (A)+
1— :U'oo(A)-i- @ = 1

@ average iteration is contracting with factor 1 — -
1 — min;(a;)—




From Contracting Dynamics to Contracting Algorithms:

@ contraction theory and monotone operator theory are deeply connected

@ well established methodologies to tackle control, optimization and learning problems via
fixed point strategies

© same methods on Euclidean, Riemannian and non-Euclidean spaces
@ example application to recurrent neural networks

Spectacular Teacher
Thoughtful Researcher and Generous Collaborator
Marvelous Mentor

Thank you, Dr. Masry!




