Perspectives on Contraction Theory and Neural Networks

Francesco Bullo

Center for Control,
Dynamical Systems & Computation
University of California at Santa Barbara

http://motion.me.ucsb.edu

Professor Emeritus Elias Masry Memorial Symposium

UC San Diego, Jacobs School of Engineering Feb 5, 2022

Professor Emeritus Elias Masry Memorial Symposium February 5, 2022 UC San Diego JACOBS SCHOOL OF ENGINEERING Electrical and Computer Engineering

Acknowledgments

Alex Davydov PhD student UC Santa Barbara

Saber Jafarpour Postdoc GeorgiaTech

Anton Proskurnikov Politecnico Torino & Russian Academy of Sciences

- S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In *Advances in Neural Information Processing Systems*, Dec. 2021. URL http://arxiv.org/abs/2106.03194
- A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. *IEEE Transactions on Automatic Control*, July 2021. URL https://arxiv.org/abs/2103.12263. Submitted
- A. Davydov, A. V. Proskurnikov, and F. Bullo. Non-Euclidean contractivity of recurrent neural networks.
 In American Control Conference, 2022. URL https://arxiv.org/abs/2110.08298. Submitted

Contraction theory: definition

Given $\dot{x} = F(t,x)$, vector field F is contractive if its flow is a contraction map

Contraction theory: historical notes

- Origins
- S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fundamenta Mathematicae, 3(1):133–181, 1922.
- S. M. Lozinskii. Error estimate for numerical integration of ordinary differential equations. I. Izvestiya Vysshikh Uchebnykh Zavedenii. Matematika, 5:52-90, 1958
- C. A. Desoer and H. Haneda. The measure of a matrix as a tool to analyze computer algorithms for circuit analysis. IEEE Transactions on Circuit Theory, 19(5):480–486, 1972.
- Application in control theory: W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear systems. *Automatica*, 34(6):683–696, 1998.
- Reviews:
 - Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some open problems. In IEEE Conf. on Decision and Control, pages 3835–3847, Dec. 2014.
 - M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of complex networks via contraction theory. In J. Lü, X. Yu, G. Chen, and W. Yu, editors, Complex Systems and Networks, pages 313-339. Springer, 2016. ISBN 978-3-662-47824-0.
 - H. Tsukamotoa, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and learning-based control: A tutorial overview, 2021. URL https://arxiv.org/abs/2110.00675

- contraction conditions on vector field do not necessarily involve Jacobians
- contraction conditions without Jacobians have been studied under many different names:
 - 1 uniformly decreasing maps in: L. Chua and D. Green. A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of
 - autonomous networks, IEEE Transactions on Circuits and Systems, 23(6):355-379, 1976, one-sided Lipschitz maps in: E. Hairer, S. P. Nørsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff Problems. Springer 1993. 6 (Section 1.10, Exercise 6)
 - maps with negative nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. IEEE Transactions on Neural Networks, 12(2):360-370, 2001.
 - dissipative Lipschitz maps in: T. Caraballo and P. E. Kloeden. The persistence of synchronization under environmental noise. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2059):2257-2267, 2005.
 - maps with negative lub log Lipschitz constant in: G. Söderlind. The logarithmic norm. History and modern theory. BIT Numerical Mathematics, 46(3):631-652, 2006.
 - 6 QUAD maps in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled ordinary differential systems. Physica D: Nonlinear Phenomena, 213(2):214-230, 2006.
 - incremental quadratically stable maps in: L. D'Alto and M. Corless. Incremental quadratic stability. Numerical Algebra, Control and Optimization, 3:175-201, 2013.

Contraction theory: properties of contracting systems

Highly ordered transient and asymptotic behavior:

- 1 time-invariant F: unique globally exponential stable equilibrium---two natural Lyapunov functions
- 2 periodic F: contracting system entrain to periodic inputs
- 3 contractivity rate is natural measure/indicator of robust stability
- 4 accurate numerical integration, and
- there exist efficient methods for their fixed point computation

Why fixed point computations?

Fixed point strategies in data science = simplifying and unifying framework to model, analyze, and solve advanced convex optimization methods, Nash equilibria, monotone inclusions, etc.

P. L. Combettes and J.-C. Pesquet. Fixed point strategies in data science. *IEEE Transactions on Signal* Processing, 2021.

$$x = \phi(Ax + Bu + b),$$

$$y = Cx + d$$

Advantages of implicit/equilibrium/fixed point formulation: simplicity, analogy with neural circuits, accuracy, memory efficiency, input-output robustness. etc

Recent literature on implicit NNs

- S. Bai, J. Z. Kolter, and V. Koltun. Deep equilibrium models. In Advances in Neural Information Processing Systems, 2019. URL https://arxiv.org/abs/1909.01377
- 2 L. El Ghaoui, F. Gu, B. Travacca, A. Askari, and A. Y. Tsai. Implicit deep learning. 2019. URL https://arxiv.org/abs/1908.06315
- E. Winston and J. Z. Kolter. Monotone operator equilibrium networks. In Advances in Neural Information Processing Systems, 2020. URL https://arxiv.org/abs/2006.08591
- M. Revay, R. Wang, and I. R. Manchester. Lipschitz bounded equilibrium networks. 2020. URL https://arxiv.org/abs/2010.01732
- 6 A. Kag, Z. Zhang, and V. Saligrama. RNNs incrementally evolving on an equilibrium manifold: A panacea for vanishing and exploding gradients? In *International Conference on Learning Representations*, 2020. URL https://openreview.net/forum?id=HylpqA4FwS
- K. Kawaguchi. On the theory of implicit deep learning: Global convergence with implicit layers. In International Conference on Learning Representations, 2021. URL https://openreview.net/forum?id=p-NZluwqhl4
- S. W. Fung, H. Heaton, Q. Li, D. McKenzie, S. Osher, and W. Yin. Fixed point networks: Implicit depth models with Jacobian-free backprop, 2021. URL https://arxiv.org/abs/2103.12803. ArXiv e-print

Primer on monotone operator theory and contractions

$$x = \mathsf{G}(x)$$

Banach Contraction Theorem

If Lip(G) < 1, then Picard iteration $x_{k+1} = G(x_k)$ is a Banach contraction

For $Lip(G) \ge 1$, define the average/damped/Mann-Krasnosel'skii iteration

$$x_{k+1} = (1 - \alpha)x_k + \alpha \mathsf{G}(x_k)$$

Infinitesimal Contraction Theorem

- $oldsymbol{0}$ there exists 0<lpha<1 such that the average iteration is a Banach contraction
- $oldsymbol{Q}$ the map G satisfies osL(G) < 1
- **3** the dynamics $\dot{x} = -x + \mathsf{G}(x)$ is infinitesimally contracting

Literature on recurrent NN ODEs

- J. J. Hopfield. Neurons with graded response have collective computational properties like those of two-state neurons. Proceedings of the National Academy of Sciences, 81(10):3088–3092, 1984. [€]
- 2 E. Kaszkurewicz and A. Bhaya. On a class of globally stable neural circuits. *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, 41(2):171–174, 1994.
- M. Forti, S. Manetti, and M. Marini. Necessary and sufficient condition for absolute stability of neural networks. *IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications*, 41(7):491–494, 1994.
- Y. Fang and T. G. Kincaid. Stability analysis of dynamical neural networks. *IEEE Transactions on Neural Networks*, 7(4):996–1006, 1996. [™]
- H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks. *IEEE Transactions on Neural Networks*, 12(2):360–370, 2001.
- **(6)** W. He and J. Cao. Exponential synchronization of chaotic neural networks: a matrix measure approach. *Nonlinear Dynamics*, 55:55–65, 2009. **(6)**
- H. Zhang, Z. Wang, and D. Liu. A comprehensive review of stability analysis of continuous-time recurrent neural networks. *IEEE Transactions on Neural Networks and Learning Systems*, 25(7): 1229–1262, 2014.

Primer on monotone operator theory and contractions: Addendum

Lim's Lemma

 x_u^* is a fixed point of $x = \mathsf{G}(x,u)$ and $\mathsf{Lip}_x\,\mathsf{G} < 1$, then

$$||x_u^* - x_v^*|| \le \frac{\mathsf{Lip}_u \mathsf{G}}{1 - \mathsf{Lip}_v \mathsf{G}} ||u - v||$$

One-sided Lim's Lemma

 x_u^* is a fixed point of x = G(x, u) and $osL_x(G) < 1$, then

$$\|x_u^* - x_v^*\| \leq \frac{\mathsf{Lip}_u(\mathsf{G})}{1 - \mathsf{osL}_x(\mathsf{G})} \|u - v\|$$

- ${\bf 0}$ there exists $0<\alpha<1$ such that the average iteration is a Banach contraction
- $oldsymbol{0}$ the map G satisfies osL(G) < 1
- **3** the dynamics $\dot{x} = F(x) := -x + G(x)$ is infinitesimally contracting
- the equivalence (2) \iff (3) is just a transcription:
 - $\bullet \ \mathsf{F} = -\operatorname{Id} + \mathsf{G} \ \operatorname{contracting} \ \text{with rate} \ c \quad \Longleftrightarrow \quad \operatorname{osL}(\mathsf{F}) < -c \ \Longleftrightarrow \ \operatorname{osL}(\mathsf{G}) < 1-c, \ \text{for} \ c > 0$
 - in (ℓ_2, P) , osL(F) < -c is usual Krasovskii: $PJ(x) + J(x)^{\top}P \leq -2cP$ for all x and J = DF
- ullet (2) \Longrightarrow (1): known in monotone operator theory (page 15 "forward step method" in 1)
 - vector field F is contracting with rate $c \iff -\mathsf{F}$ is strongly monotone with parameter c
- Theorem 1 in² proves the equivalence (1) \iff (2) for any norm, i.e., the implication (2) \implies (1) for any norm (with proper osL definitions) and the converse direction (1) \implies (2) for ℓ_2 , P. Theorem 3 in² proves the one-sided Lim Lemma (see next slide).

Scalar maps and vector field

 $F: \mathbb{R} \to \mathbb{R}$ is one-sided Lipschitz with osL(F) = b if

$$F'(x) \le b,$$
 $\forall x$
 $\iff F(x) - F(y) \le b(x - y),$ $\forall x > y$
 $\iff (x - y)(F(x) - F(y)) \le b(x - y)^2,$ $\forall x, y$

- F is osL with b=0 iff F weakly decreasing
- if F is Lipschitz with bound ℓ , then F is osL with $b \leq \ell$
- For

$$\dot{x} = F(x)$$

the Grönwall lemma implies $|x(t) - y(t)| \le e^{bt}|x(0) - y(0)|$

- Overview and motivation
- 2 Contraction on Euclidean and inner product spaces
- 3 Contraction on Riemannian manifolds
- 4 Contraction on non-Euclidean normed vector spaces

Contraction theory on inner product space (\mathbb{R}^n,ℓ_2)

1 /

For $x \in \mathbb{R}^n$ and differentiable time-dep

$$\dot{x} = F(x)$$

For $P = P^{\top} \succ 0$, define $||x||_{2|P^{1/2}}^2 = x^{\top} P x$

Main equivalences: For c > 0, map F is c-strongly contracting if

osl :
$$(F(x) - F(y))^T P(x - y) \le -c ||x - y||_{2P^{1/2}}^2$$
 for all x, y

4 d-osL : $PDF(x) + DF(x)^{T}P \leq -2cP$ for all x

¹E. K. Ryu and S. Boyd. Primer on monotone operator methods. *Applied Computational Mathematics*, 15(1):3–43, 2016

²S. Jafarpour, A. Davydov, A. V. Proskurnikov, and F. Bullo. Robust implicit networks via non-Euclidean contractions. In Advances in Neural Information Processing Systems, Dec. 2021. URL http://arxiv.org/abs/2106.03194

For differentiable $V: \mathbb{R}^n \to \mathbb{R}$, equivalent statements:

- **1** V is strongly convex with parameter m
- \circ grad V is m-strongly contracting, that is

$$\left(-\operatorname{grad}V(x) + \operatorname{grad}V(y)\right)^{\top}(x-y) \le -m\|x-y\|_{2}^{2}$$

For map $F: \mathbb{R}^n \to \mathbb{R}^n$, equivalent statements:

- F is a monotone operator (or a coercive operator) with parameter m,
- \circ -F is *m*-strongly contracting

E. K. Ryu and W. Yin. Large-Scale Convex Optimization via Monotone Operators. Cambridge, 2022

Equilibria of contracting vector fields:

For a time-invariant F, c-strongly contracting with respect to $\|\cdot\|_{2.P^{1/2}}$

- flow of F is a contraction. i.e., distance between solutions exponentially decreases with rate c
- \odot there exists an equilibrium x^* , that is unique, globally exponentially stable with global Lyapunov functions

$$x \mapsto \|x - x^*\|_{2,P^{1/2}}^2$$
 and $x \mapsto \|\mathsf{F}(x)\|_{2,P^{1/2}}^2$

Contraction theory on inner product space (\mathbb{R}^n, ℓ_2)

Given $F: \mathbb{R}^n \to \mathbb{R}^n$

$$x^* \in \text{zero}(\mathsf{F})$$

 $x^* \in \text{zero}(\mathsf{F})$ $\iff x^* \in \text{fixed}(G), \text{ where } \mathsf{G} = \mathsf{Id} + \mathsf{F}$

consider forward step = Euler integration for F = averaged iteration for G:

$$x_{k+1} = (\operatorname{Id} + \alpha \operatorname{F}) x_k = x_k + \alpha \operatorname{F}(x_k) = (1 - \alpha) \operatorname{Id} + \alpha \operatorname{G}$$

Given contraction rate c and Lipschitz constant ℓ , define condition number $\kappa = \ell/c \ge 1$

1 the map $\operatorname{Id} + \alpha F$ is a contraction map with respect to $\|\cdot\|_{2P^{1/2}}$ for

$$0 < \alpha < \frac{2}{c\kappa^2}$$

2 the optimal step size minimizing and minimum contraction factor:

$$\alpha_{\mathsf{E}}^* = \frac{1}{c\kappa^2}$$

$$\ell_{\mathsf{E}}^* = 1 - \frac{1}{2\kappa^2} + \mathcal{O}\left(\frac{1}{\kappa^4}\right)$$

Outline

4/4

- Overview and motivation
- 2 Contraction on Euclidean and inner product spaces
- 3 Contraction on Riemannian manifolds
- Contraction on non-Euclidean normed vector spaces

Contraction theory on Riemannian manifold (M, G)

Outline

F contracting if geodesic distances from x to y diminishes along the flow of F

integral test: the inner product between F and the geodesic velocity vector γ'_{xy} at x and ydifferential test: condition on covariant differential of F

$$\mathbb{G}(x)\frac{\partial \mathsf{F}}{\partial x}(x) + \frac{\partial \mathsf{F}}{\partial x}(x)^{\top}\mathbb{G}(x) + \dot{\mathbb{G}}(x) \preceq -2c\mathbb{G}(x)$$

Contraction theory on the normed vector spaces $(\mathbb{R}^n, \ell_1/\ell_\infty)$

1/4

Norms

From inner products to sign and max pairings

From LMIs to log norms

$$||x||_{2|P^{1/2}}^2 = x^{\top} P x$$
 $[\![x,y]\!]_{2|P^{1/2}} = x^{\top} P y$

$$[x, y]_{0, D1/2} = x^{\top} P u$$

$$\mu_{2.P^{1/2}}(A) = \min\{b \mid A^{\top}P + PA \leq 2bP\}$$

$$||x||_1 = \sum_i |x_i|$$

$$[x, y]_1 = ||y||_1 \operatorname{sign}(y)^{\top}$$

$$\mu_1(A) = \max_{j} \left(a_{jj} + \sum_{i \neq j} |a_{ij}| \right)$$

$$||x||_{\infty} = \max_{i} |x_i|$$

$$[x, y]_{\infty} = \max_{i \in I_{\infty}(y)} y_i x$$

$$||x||_1 = \sum_i |x_i| \qquad ||x, y||_1 = ||y||_1 \operatorname{sign}(y)^\top x \qquad \mu_1(A) = \max_j \left(a_{jj} + \sum_{i \neq j} |a_{ij}| \right)$$
$$||x||_{\infty} = \max_i |x_i| \qquad ||x, y||_{\infty} = \max_{i \in I_{\infty}(y)} y_i x_i \qquad \mu_{\infty}(A) = \max_i \left(a_{ii} + \sum_{j \neq i} |a_{ij}| \right)$$

where
$$I_{\infty}(x)=\{i\in\{1,\ldots,n\}\mid |x_i|=\|x\|_{\infty}\}$$

Overview and motivation

2 Contraction on Euclidean and inner product spaces

3 Contraction on Riemannian manifolds

4 Contraction on non-Euclidean normed vector spaces

A weak pairing is $[\cdot,\cdot]:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}$ satisfying

② [bx, y] = [x, by] = b[x, y] for b > 0 and [-x, -y] = [x, y],

[x,x] > 0, for all $x \neq 0_n$,

4 $|[x,y]| < [x,x]^{1/2} [y,y]^{1/2}$

Given norm $\|\cdot\|$, compatibility: $[x,x] = \|x\|^2$ for all x

Sup of non-Euclidean numerical range:

 $\mu(A) = \sup_{\|x\|=1} [Ax, x]$

Norm derivative formula:

 $\frac{1}{2}D^{+}||x(t)||^{2} = [\dot{x}(t), x(t)]$

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. IEEE Transactions on Automatic Control, July 2021. URL https://arxiv.org/abs/2103.12263. Submitted

$$\mu(A) := \lim_{h \to 0^+} \frac{\|I_n + hA\| - 1}{h}$$

Basic properties:

subadditivity: $\mu(A+B) \leq \mu(A) + \mu(B)$

scaling: $\mu(bA) = b\mu(A), \qquad \forall b \geq 0$

convexity: $\mu(\theta A + (1-\theta)B) \leq \theta \mu(A) + (1-\theta)\mu(B), \qquad \forall \theta \in [0,1]$

T. Ström. On logarithmic norms. SIAM Journal on Numerical Analysis, 12(5):741-753, 1975.

Contraction theory on the normed vector spaces $(\mathbb{R}^n, \ell_1/\ell_\infty)$

For $x \in \mathbb{R}^n$ and differentiable time-dep

$$\dot{x} = \mathsf{F}(x) \tag{1}$$

For norm $\|\cdot\|$ with log norm $\mu(\cdot)$ and compatible weak pairing $[\![\cdot,\cdot]\!]$

Main equivalences: for c > 0

osl : $[\![\mathsf{F}(x) - \mathsf{F}(y), x - y]\!] \le -c \|x - y\|^2$ for all x, y

2 d-osL : $\mu(DF(x)) \le -c$ for all x

3 d-IS : $D^+ ||x(t) - y(t)|| \le -c||x(t) - y(t)||$ for soltns $x(\cdot), y(\cdot)$

Contraction theory on the normed vector spaces $(\mathbb{R}^n, \ell_1/\ell_\infty)$

Consider a norm $\|\cdot\|$ with compatible weak pairing $[\cdot,\cdot]$ Recall forward step method $x_{k+1} = (\operatorname{Id} + \alpha \operatorname{F})x_k = x_k + \alpha \operatorname{F}(x_k)$

Given contraction rate c and Lipschitz constant ℓ , define condition number $\kappa = \ell/c \ge 1$

• the map $\operatorname{Id} + \alpha \mathsf{F}$ is a contraction map with respect to $\|\cdot\|$ for

$$0 < \alpha < \frac{1}{c\kappa(1+\kappa)}$$

② the optimal step size minimizing and minimum contraction factor:

$$\begin{split} \alpha_{\mathsf{nE}}^* &= \frac{1}{c} \Big(\frac{1}{2\kappa^2} - \frac{3}{8\kappa^3} + \mathcal{O}\Big(\frac{1}{\kappa^4} \Big) \Big) \\ \ell_{\mathsf{nE}}^* &= 1 - \frac{1}{4\kappa^2} + \frac{1}{8\kappa^3} + \mathcal{O}\Big(\frac{1}{\kappa^4} \Big) \end{split}$$

Example: ℓ_{∞} -contracting neural networks

Recurrent neural network dynamics

$$\dot{x} = -x + \Phi(Ax + Bu)$$

Average iteration

$$x_{k+1} = (1 - \alpha)x_k + \alpha\Phi(Ax_k + Bu)$$

lf

4/4

Then, with norm $\|\cdot\|_{\infty}$,

- dynamics is contracting with rate $1 \mu_{\infty}(A)_{+}$
- average iteration is contracting with factor $1 \frac{1 \mu_{\infty}(A)_{+}}{1 \min_{i}(a_{ii})_{-}}$ at $\alpha = \frac{1}{1 \min_{i}(a_{ii})_{-}}$

Conclusions

From Contracting Dynamics to Contracting Algorithms:

- Ocontraction theory and monotone operator theory are deeply connected
- well established methodologies to tackle control, optimization and learning problems via fixed point strategies
- 3 same methods on Euclidean, Riemannian and non-Euclidean spaces
- example application to recurrent neural networks

Spectacular Teacher
Thoughtful Researcher and Generous Collaborator
Marvelous Mentor

Thank you, Dr. Masry!