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Contraction theory: definition

Given & = F(t,x), vector field F is contractive if its flow is a contraction map

ball centered at z(t) with radius e~



Contraction theory: historical notes
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S. Banach. Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.
Fundamenta Mathematicae, 3(1):133-181, 1922. d

S. M. Lozinskii. Error estimate for numerical integration of ordinary differential equations. |. /zvestiya
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Application in control theory: W. Lohmiller and J.-J. E. Slotine. On contraction analysis for non-linear
systems. Automatica, 34(6):683-696, 1998. ¢

Reviews:
Z. Aminzare and E. D. Sontag. Contraction methods for nonlinear systems: A brief introduction and some
open problems. In IEEE Conf. on Decision and Control, pages 3835-3847, Dec. 2014. 4

M. Di Bernardo, D. Fiore, G. Russo, and F. Scafuti. Convergence, consensus and synchronization of
complex networks via contraction theory. In J. Lii, X. Yu, G. Chen, and W. Yu, editors, Complex Systems
and Networks, pages 313-339. Springer, 2016. ISBN 978-3-662-47824-0. @

H. Tsukamotoa, S.-J. Chung, and J.-J. E. Slotine. Contraction theory for nonlinear stability analysis and
learning-based control: A tutorial overview, 2021. URL https://arxiv.org/abs/2110.00675


http://dx.doi.org/10.4064/fm-3-1-133-181
http://dx.doi.org/10.1109/TCT.1972.1083507
http://dx.doi.org/10.1016/S0005-1098(98)00019-3
http://dx.doi.org/10.1109/CDC.2014.7039986
http://dx.doi.org/10.1007/978-3-662-47824-0_12
https://arxiv.org/abs/2110.00675

@ contraction conditions on vector field do not necessarily involve Jacobians

@ contraction conditions without Jacobians have been studied under many different names:
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uniformly decreasing maps in: L. Chua and D. Green. A qualitative analysis of the behavior of dynamic nonlinear networks: Stability of
autonomous networks. |[EEE Transactions on Circuits and Systems, 23(6):355-379, 1976. €

one-sided Lipschitz maps in: E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff Problems. Springer,
1993. @ (Section 1.10, Exercise 6)

maps with negative nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis
for Hopfield-type neural networks. /EEE Transactions on Neural Networks, 12(2):360-370, 2001. L

dissipative Lipschitz maps in: T. Caraballo and P. E. Kloeden. The persistence of synchronization under environmental noise. Proceedings of the
Royal Society A: Mathematical, Physical and Engineering Sciences, 461(2059):2257-2267, 2005. €

maps with negative lub log Lipschitz constant in: G. Soderlind. The logarithmic norm. History and modern theory. BIT Numerical Mathematics,
46(3):631-652, 2006. 4

QUAD maps in: W. Lu and T. Chen. New approach to synchronization analysis of linearly coupled ordinary differential systems. Physica D:
Nonlinear Phenomena, 213(2):214-230, 2006. L

incremental quadratically stable maps in: L. D'Alto and M. Corless. Incremental quadratic stability. Numerical Algebra, Control and
Optimization, 3:175-201, 2013. 4
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Contraction theory: properties of contracting systems
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i ball centered at z(t) with radius e~

Highly ordered transient and asymptotic behavior:

Zo

@ time-invariant F: unique globally exponential stable equilibriumfmmm1
two natural Lyapunov functions

@ periodic F: contracting system entrain to periodic inputs
© contractivity rate is natural measure/indicator of robust stability

@ accurate numerical integration, and

@ there exist efficient methods for their fixed point computation

ct



Why fixed point computations?

Fixed point strategies in data science = simplifying and unifying framework to model, analyze,
and solve advanced convex optimization methods, Nash equilibria, monotone inclusions, etc.

P. L. Combettes and J.-C. Pesquet. Fixed point strategies in data science. /EEE Transactions on Signal
Processing, 2021. 4

Feedforward NN Implicit/Recurrent NN
@) @) @) @)
o |o] |o 9
u—1oro o~ oY -
@) @) @) @) U —- =Y
O O O O
T
1 T2 T3 L
Tiy1 = ¢(Aiz; + b;), T =, z = ¢(Az + Bu+0),
y=Cx,+d y=Cz+d
Advantages of implicit/equilibrium/fixed point formulation: simplicity, analogy with
neural circuits, accuracy, memory efficiency, input-output robustness, etc
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Recent literature on implicit NNs
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Literature on recurrent NN ODEs
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Primer on monotone operator theory and contractions
x = G(z)

Banach Contraction Theorem
If Lipschitz(G) < 1, then Picard iteration x;+1 = G(z) is a Banach contraction J

For Lipschitz(G) > 1, define the average/damped/Mann-Krasnosel 'skii iteration
Tp1 = (1 — a)zg + aG(2k)
Infinitesimal Contraction Theorem

@ there exists 0 < o < 1 such that the average iteration is a Banach contraction

@ the dynamics & = —z + G(x) is contracting




Addendum: Perturbed fixed point theorems

Classical Lim's lemma

x} is a fixed point of z = G(x,u) and Lip,G < 1, then

u

*
Ih — 23l < 7= gl

T. C. Lim. On fixed point stability for set-valued contractive mappings with applications to generalized differential equations. Journal of
Mathematical Analysis and Applications, 110(2):436-441, 1985. €

Generalized Lim's lemma

x} is a fixed point of z = G(x,u) and osL,G < 1, then

u

27, — 25|l < m|
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© Overview and motivation
@ Contraction on Euclidean and inner product spaces
© Contraction on Riemannian manifolds

@ Contraction on non-Euclidean normed vector spaces



Contraction theory on inner product space (R, ¢5)

For x € R™ and differentiable time-dep
= F(t,x)

For P = PT = 0, define ||x||g pijz = z! Px

Main equivalences: For ¢ > 0, map F is c-strongly contracting if
Q osL : (F(t,z) —F(t,y)) Pz —y) < —clla —yll3 pijo, for all z,y,¢

Q dosL : PDF(t,z) + DF(t,z)" P < —2cP for all z,¢

© d-IS : D) -y

o pis2 < —clla(t) = y(t)lly py, for all soltns (), y(-)




Contraction theory on inner product space (R, ¢5)

For differentiable V' : R™ — R, equivalent statements:
@ V is strongly convex with parameter m

@ —gradV is m-strongly contracting, that is

(- gradV (z) + gradV () ' (z — y) < —ml|z — y|I3

For map F : R® — R"™, equivalent statements:
© F is a monotone operator (or a coercive operator) with parameter m,

© —F is m-strongly contracting

E. K. Ryu and W. Yin. Large-Scale Convex Optimization via Monotone Operators. Cambridge, 2022



Contraction theory on inner product space (R, ¢5)

Equilibria of contracting vector fields:

For a time-invariant F, c-strongly contracting with respect to || - ||y p1/2

Q@ flow of F is a contraction,

i.e., distance between solutions exponentially decreases with rate ¢

@ there exists an equilibrium x*, that is unique, globally exponentially stable with global

Lyapunov functions

x|z — 1’*“3,131/2

and 2> [F(@)[2 e




Contraction theory on inner product space (R, ¢5)

Given F: R — R"™

x* € zero(F) < " € fixed(G), where G =Id+F
consider forward step = Euler integration for ' = averaged iteration for G:
1 = (Id+aF)x = z + aF (xg) =(1—a)ld+aG

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = {/c > 1

@ the map Id +aF is a contraction map with respect to || - ||, p1/2 for

2
0<Oé<—2
CK

@ the optimal step size minimizing and minimum contraction factor:

aE




© Overview and motivation
@ Contraction on Euclidean and inner product spaces
© Contraction on Riemannian manifolds

@ Contraction on non-Euclidean normed vector spaces



Contraction theory on Riemannian manifold (M, G)

F contracting if geodesic distances from x to y diminishes along the flow of F

integral test: the inner product between F and the geodesic velocity vector %’Cy at x and y
differential test: condition on covariant differential of F

G(:c)gl;(a:) + g;(m)TG(a;) + G(a:) = —2¢G(x)



© Overview and motivation
@ Contraction on Euclidean and inner product spaces
© Contraction on Riemannian manifolds

@ Contraction on non-Euclidean normed vector spaces



Contraction theory on the normed vector spaces (R", {1 /()

Norms From inner products to From LMIs to
sign and max pairings log norms
J@lZ pro =2 Pz [yl pre =37 Py 1z, p1/2(A) = min{b | ATP 4+ PA < 2P}
||.'L’||1 = Z |xl| [[q;,y]]l = ||y||1 Sign(y)-rx ,ufl(A) max (CL_” aF Z | A5 >
2
lalloc = masxlei|  [29le = max yia poo(A) = max (@i + Y Jay)

where Io(z) = {i € {1,...,n} | |z;| = ||z]|oc}



A weak pairing is [-,-] : R” x R" — R satisfying
Q [z1+ z9,y] < [z1,y] + [x2,y] and z — [z, y] is continuous,
Q [bz,y] = [z,by] = b[z,y] for b > 0 and [—z, —y] = [z, ],
Q [z,z] >0, for all x # Oy,
O [[z,9]| < [+,21"* [y 9],

Given norm || - ||, compatibility: [z, z] = ||z||? for all =
A
Sup of non-Euclidean numerical range: u(A) = sup L a:,;r]]
w40 ||
Norm derivative formula: %D+|\m(t)||2 = [z(t), z(t)]

A. Davydov, S. Jafarpour, and F. Bullo. Non-Euclidean contraction theory for robust nonlinear stability. /EEE
Transactions on Automatic Control, July 2021. URL https://arxiv.org/abs/2103.12263. Submitted
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The log norm of A € R™*™ wrt to || - ||:

. ”In + hAH -1
A):= lim ————
HA) = B
Basic properties:
subadditivity: u(A+ B) < u(A) + u(B)
scaling: wu(bA) = bu(A), Vb >0
convexity: @A+ (1—-0)B) <0u(A)+ (1 —0)u(B), Vo € [0,1]

T. Strém. On logarithmic norms. SIAM Journal on Numerical Analysis, 12(5):741-753, 1975. 4
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Contraction theory on the normed vector spaces (R", {1 /()

For x € R™ and differentiable time-dep
& =F(t,x) (1)

For norm || - || with log norm pu(-) and compatible weak pairing [, -]

Main equivalences: for ¢ > 0
Q osL  : [F(t,z) — F(t,y),z —y] < —c|lz — y||? for all z,y, t >0,
Q d-osL : u(DF(t,z)) < —¢, forall z,t >0

© d-1S : DTlz(t) —y®)ll < —cllz(t) —y(®)l], for soltns (), y(")




Contraction theory on the normed vector spaces (R", {1 /()

Consider a norm || - || with compatible weak pairing [-, ]
Recall forward step method x4 = (Id +aF)z, = z; + oF (z)

Given contraction rate ¢ and Lipschitz constant ¢, define condition number k = {/c > 1

© the map Id +aF is a contraction map with respect to || - || for

0 -
<a<cm(1+;@)

@ the optimal step size minimizing and minimum contraction factor:

iem ke 0l )

. 1 1 1
e =1- 53+ 5o+ ()




Example: ¢,.-contracting neural networks

Recurrent neural network dynamics
& =—x+ ®(Az + Bu)
Average iteration

Tpr1 = (1 — a)xg + a®(Axg + Bu)

Uoo(A) < 1

Then, with norm | - ||oo,

@ dynamics is contracting with rate 1 — po(A)+

@ average iteration is contracting with factor 1 —

(i.e., ai; + Z la;j| <1 for all ’1')

J

1_:uoo(A)+ at o = 1

1-— mini(aii)_ = mini(aii)—

v




Conclusions

From Contracting Dynamics to Contracting Algorithms:
@ contraction theory and monotone operator theory are deeply connected

@ well established methodologies to tackle control, optimization and learning problems via
fixed point strategies

© same methods on Euclidean, Riemannian and non-Euclidean spaces

© example application to recurrent neural networks
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