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Daniel Bernoulli 1760: controversial smallpox variolation

@ “the greatest killer in history”
@ variolation, i.e., inoculation with a mild strain
@ controversy: long-term benefit vs risk of immediate death



Daniel Bernoulli 1760: controversial smallpox variolation

@ “the greatest killer in history”
@ variolation, i.e., inoculation with a mild strain
@ controversy: long-term benefit vs risk of immediate death

based on empirical data, Bernoulli proved that inoculation could increase life
expectancy at birth up to three years
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W. Hamer 1906: nonlinear incidence

@ compartments: S, | and R
@ incidence = number of new cases per unit time
depends on the product of the densities of S and |

THE LANCET, MArcH 3, 1906.

i i b s still of this primitive
character ; ] ere s no standard case of typhus fever
Cl}t mﬂrﬂg Eff,flll’bs deposited at Kew and no one proposes to test strains of
small-pox by their ability to kill unvaccinated vagrants of
given weights in specified times.

EPIDEMIC DISEASE IN ENGLAND—THE Murchison has remarked that ‘‘in distinguishing the

different forms of continued fever too much reliance has

EVIDENCE OF VARIABILITY AND been placed on their symptoms and pathology, while thero
- as been a want of sufficient investigation of their causes.
OF PERSISTENCY OF TYPE. With elaboration of the germ theory the pendulum has

irere sioi swung to the other extreme and it is now quite orthodox
Delivered before the Royal. College of Physicians of London, | qfteds ™5 1d that the presence of a particular gorm

By W. H. HAMER, M.A., M.D. CANTAB., spells specific disease; indeed, it may be questioned whether
some modern bacteriologists, in the light of the demonstra-
F.R.C.P. Loxp. tion of diphtheria, cholera, and enteric fever bacilli in
persons presentmg no symptoms of illness, would not feel
LECTURE 1.} uch the inherent in
h the co- of all
Delévered on March 1t orgamsms in one individual. ‘‘The germ,” Sir William
MR. PRESIDENT AND GENTLEMEN,—Changes of type in epi- | Collins says, ‘‘has perhaps been too much with us, and the
demic diseases was the subject chosen by Dr.B.A Whi of soil has been absurdly underrated.”

for the Milroy lectures of 1893, to which the reader perforce Or, o quote Dr. G. Newman, *The early school of preventive
returns again and again, as if inorease of appetite had grown | Medicine declared for the health of the individual and laid
N . 1 the empbhasis upon predisposition; the modern school have
by what it fed on. The same topic has been variously | geclared for the infecting agent and have laid emphasis upon
approached and in recent years more particularly from the | the bacillus. The truth is to be found in a right percephon
evolutionary standpoint. Already towards the close of the | of the action and interaction of the tissues and the bacillus.”
century Sydenb had been ded a Pisgah Or as Dr. F. G. Clemow it, ** Though
sight of the land to be explored, but prior to the Registrar- spoken of as if it were a material tanglble entity disease is,
: “ ™ | in fact, no such thing. It is only a morbid phenomenon, or
General and to Darwin no considerable advance into this

: 1 a rather a group of morbid processes, in the tissues of a
new territary was nossibhle Fven in the ¢ fifties ” there was ] Tt P Tmrta 26 e




Kermack and McKendrick 1927: epidemic thresholds and outbreaks

@ epidemic threshold: the density of susceptibles must exceed a critical value in order for
an epidemic outbreak to occur
o differential equations, calculus

A Contribution to the Mathematical Theory of Epidemics.
By W. 0. Kermack and A. G. McKendrick.

(Communicated by Sir Gilbert Walker, F.R.S.—Received May 13, 1927.)

(From the Laboratory of the Royal College of Physicians, Edinburgh.)

Introduction.

(1) One of the most striking features in the study of epidemics is the difficulty
of finding a causal factor which appears to be adequate to account for the
magnitude of the frequent epidemics of disease which visit almost every popula-
tion. It was with a view to obtaining more insight regarding the effects of the
various factors which govern the spread of contagious epidemics that the present
investigation was undertaken. Reference may here be made to the work of Ross
and Hudson (1915-17) in which the same problem is attacked. The problem is




Lajmanovic and Yorke 1976: multigroup models and network science

@ multi-group models
@ equilibrium theorem
@ spectral radius of contact graph

A Deterministic Model for Gonorrhea
in a Nonhomogeneous Population*

ANA LAJMANOVICH
AND

JAMES A. YORKE
Institute for Fluid Dy ics and Applied Mathematics,
University of Maryland, College Park, Maryland 20742

Communicated by J. Hearon

ABSTRACT

The spread of gonorrhea in a population is highly nonuniform. The mathematical
model discussed takes this into account, splitting the population into n groups. The
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Hethcote's leading survey in 2000

motivated by a range of infectious diseases and outbreaks,
one thousand and one models have been analyzed mathematically

threshold theorems for epidemic outbreaks

SIAM REVIEW (© 2000 Society for Industrial and Applied Mathematics
Vol. 42, No. 4, pp. 599-653

The Mathematics of Infectious
Diseases*

Herbert W. Hethcote!

Abstract. Many models for the spread of infectious diseases in populations have been analyzed math-
ematically and applied to specific diseases. Threshold theorems involving the basic repro-
duction number Ry, the contact number o, and the replacement number R are reviewed
for the classic SIR epidemic and endemic models. Similar results with new expressions for
Ry are obtained for MSEIR and SEIR endemic models with either continuous age or age
groups. Values of Ry and o are estimated for various diseases including measles in Niger
and pertussis in the United States. Previous models with age structure, heterogeneity, and
spatial structure are surveyed.

Key words. thresholds, basic reproduction number, contact number, epidemiology, infectious discases



Historical review of mathematical epidemiology

Daniel Bernoulli. Essai d'une nouvelle analyse de la mortalité causée par la petite vérole, et des avantages de
I'inoculation pour la prévenir. Mémoires de Mathématiques et de Physique, Académie Royale des Sciences,
pages 1-45, 1760

o W. H. Hamer. On epidemic disease in England. The Lancet, 167(4305):569-574, 1906.
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o W. O. Kermack and A. G. McKendrick. A contribution to the mathematical theory of epidemics.
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o N. T. J. Bailey. The Mathematical Theory of Infectious Diseases. Griffin, 1957

A. Lajmanovich and J. A. Yorke. A deterministic model for gonorrhea in a nonhomogeneous population.
Mathematical Biosciences, 28(3):221-236, 1976. doi:10.1016/0025-5564(76)90125-5

o H. W. Hethcote. The mathematics of infectious diseases. SIAM Review, 42(4):599-653, 2000.
doi:10.1137/50036144500371907
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Compartmental Models: SIR model #1

each individual is in one of multiple possible states:

Susceptible |——>| TInfected || Recovered




Compartmental Models: SIR model #1

each individual is in one of multiple possible states:

Susceptible |——>| TInfected || Recovered

Two types of transitions:
@ S — I: interaction between a susceptible and an infected
@ | — R: spontaneous, independent of interactions

given infection rate 5 and recovery rate v,
given initial values s(0), x(0), r(0):
s = —fsx

X = Bsx — yx

r=yx




Multigroup model #2

Susceptible M

n = # individuals OR  # of homogeneous groups in heterogeneous population, based on
spatial position, age, behavior, social degree



Multigroup model #2

Susceptible M

n = # individuals OR  # of homogeneous groups in heterogeneous population, based on
spatial position, age, behavior, social degree

@ contact rate matrix A

@ infection rate B > 0: if susceptible i is in contact with infected j for At, then infection
probability a;j8At

© each infected recovers with rate ~;



An approximate deterministic model #2

infection rate 3, contact rates A and recovery 7;
define infection variable X;(t) € {1,0} and x; = E[X;(t)] = P[Xi(t) = 1]

© The probabilities of infection satisfy

%E[X] Z L3 E[(1 — Xi)Xj] — v E[Xi] (No closure)


https://doi.org/10.1109/TNET.2013.2239658

An approximate deterministic model #2

infection rate 3, contact rates A and recovery 7;
define infection variable X;(t) € {1,0} and x; = E[X;(t)] = P[Xi(t) = 1]

© The probabilities of infection satisfy

d
S EXi] = Z L35 BI(1 = X)X — v ELXi] (No closure)
@ independence assumption: E[Xi(t)X;(t)] = E[Xi(t)]| E[X;(t)],
multigroup SIR model (contact based):
s = — [ diag(s)Ax (1a)
x = [ diag(s)Ax — yx (1b)

F. D. Sahneh, C. Scoglio, and P. Van Mieghem. Generalized epidemic mean-field model for spreading processes over multilayer complex networks.
IEEE/ACM Transactions on Networking, 21(5):1609-1620, 2013. doi:10.1109/TNET.2013.2239658


https://doi.org/10.1109/TNET.2013.2239658

Equivalence with degree-based model

Let p;(t) fraction of infective nodes with degree i:
pi = —nipi + (L= pi)A(1)O(p), i €{l,..., dmax}

where A(/) transmission rate,
©(p) probability that link points to infected

Degree-based model = multi-group contact SIR model,
where parameters 3 and a;; have specific form

R. Pastor-Satorras and A. Vespignani. Epidemic spreading in scale-free networks. Physical Review Letters, 86(14):3200-3203, 2001. doi:
10.1103/PhysRevLett.86.3200

A. d'Onofrio. A note on the global behaviour of the network-based SIS epidemic model. Nonlinear Analysis: Real World Applications, 9(4):1567—
1572, 2008. doi:10.1016/j.nonrwa.2007.04.001


https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1103/PhysRevLett.86.3200
https://doi.org/10.1016/j.nonrwa.2007.04.001

Patchy model with population dispersal /mobility #3

Individuals travel /disperse to other regions, according to Markov chain

@ contact rate matrix A (often diagonal in dispersal models)
@ mobility/transition rate matrix @ = Al —diag(A/! _1,)

travel travel =N

@ infection and recovery rates 5 and ~

Combination: multigroup SIR model with contact and mobility:

s = —f[diag(s)Ax + Qs (2a)
x = [ diag(s)Ax — yx + Qx (2b)

L. Sattenspiel and K. Dietz. A structured epidemic model incorporating geographic mobility among regions. Mathematical Biosciences,
128(1):71—91, 1995. doi:10.1016/0025-5564(94)00068-B


https://doi.org/10.1016/0025-5564(94)00068-B

Simplicial and higher interactions, model #4

from pair-wise contagion models to
simplicial and higher-order graphical models to describe transmission events during large
gatherings or other social aggregation phenomena
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P. Cisneros-Velarde and F. Bullo. Multi-group SIS epidemics with simplicial and higher-order interactions. IEEE Transactions on Control of
Network Systems, May 2020. Submitted. URL: https://arxiv.org/pdf/2005.11404.pdf
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Research directions on modeling

@ when do mean-field approximation leads to a guaranteed upper-bound
@ more accurate models

e more realistic compartments

e higher-order moment closure approximations
e non-Markovian non-Poisson setting

S I D
INFECTED diagnosis DIAGNOSED
SUSCEPTIBLE i
nfected, € infected,
undetected detected
Q 1symp(0ms n 1\vmpmn\s
H healing A R
K AILING diagnosis RECOGNISED'
HEALED i i
. infected, ] infected,
vaccination undetected detected
critical
I 6 ; \ v ‘critical
birth . healing T
——>| Susceptible | Infected | Recovered THREATENED
acutely.
A
death death death

loss of immunity

G. Giordano, F. Blanchini, R. Bruno, P. Colaneri, A. Di Filippo, A. Di Matteo, and M. Colaneri. Modelling the covid-19 epidemic and imple-
mentation of population-wide interventions in Italy. Nature Medicine, 26:855-860, 2020. doi:10.1038/s41591-020-0883-7
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Scalar and Multigroup SIR

$ = —fsx
X = fBsx — yx

r=yx

s = — [ diag(s)Ax
x = [ diag(s)Ax — yx

r=ryx



Analysis SIR model #1: Reproduction number & epidemic threshold

Ro = expected # cases produced by typical infective at epidemic start
=B x1/vy xs(0)
= ((contacts/day) X (transmission)) x (infective days) x s(0)

Ro>1 = exponential growth

s x(t), % infected individuals A ' x(t), % infected individuals
100% 100%

80% 80%

60% 60%

Q%G [-+-emefheceeofbare e 40%

20%




Analysis SIR model #1

from sp > 0, xo > 0 and ry > 0, define Rg = Bsp/7y

O limioo(s(t),x(t), r(t)) = (5%, 0, r~), where ry, solves

1—r =5 e_g (r°°_r°) (3)

@ if Ry < 1, then x(t) monotonically/exponentially vanishes as t — co

@ if Ro > 1, then x(t) first increases to a peak and then vanishes as t — oo; the peak
infection density and time:

Xmax = X0 -+ So — %(Iog(so) +1—log (%))

% 1 (4)
tmax = ds
/y/ﬁ Bs(x0 + so — s) + s log(s/s0)



Question 1: what are individual factors in Ry? For thought experiments — without
evidence — imagine

Ro =~ <(contacts/day) X (transmission)) X (infective days) x s(0)

2.5 persons 2 persons/day 25% 5 days 100%

Question 2: how to compute the doubling time? While s ~ 1,

_ In(2) — In(2)
tdoubling ~ (B—n) 12-1/5

~ 2.3days

Question 3 (Herd Immunity): what percentage of the population x* needs to have
immunity in order for R(t) = 1?7 Assume all population is susceptible s(0) = 100%, then

1
1=R(t) = Ros(t) = x"=1-s(t") =1 — =60%
0



Analysis of multigroup SIR model #2

corresponding analysis of multigroup SIR model is incomplete

W. Mei, S. Mohagheghi, S. Zampieri, and F. Bullo. On the dynamics of deterministic epidemic propagation over networks. Annual Reviews in
Control, 44:116-128, 2017. doi:10.1016/j.arcontrol.2017.09.002


https://doi.org/10.1016/j.arcontrol.2017.09.002

Analysis of multigroup SIR model #2

take A irreducible, and
define (Amax(t), Vmax(t) := Perron left eigenpair of matrix  diag(s(t))A

R(7) := BAmax(T) /7 and, specifically, Ro := SAmax(0)/7 |

Q t— Amax(t) and t — R(t) are monotonically decreasing
@ there exists 7 > 0 such that R(7) < 1

b 8
30 _>\max t
S (t)




@ (behavior above the threshold = epidemic outbreak) if Ro > 1 and xp > 0, then for
small time, t — vmax(0) " x(t) grows exponentially fast with rate v(Rqo — 1)

© (behavior below the threshold) pick 7 > 0 satisfying R(7) < 1. For t > 7,
t > Vmax(7) " x(t) is monotonically/exponentially vanishing

Q lims 00 x(t) = 0 so that epidemic asymptotically disappears

14 vmaX(O)Tr(t)
0.8
06
04 Vma (0) T2 ()
02 ¢
vmaX(O)TS(ﬂ




Existence, uniqueness, & computation of asymptotic recovered fraction

O Given initial conditions (so, X0, f0), final state (s, 0, rx) satisfies

(InsOo — Inso) = A(sOo 1,4+ ro)

™[

O 5w = limi00 y(k) where y(k + 1) = H(y(k)) with

H(y) :=exp (f diag(A(y —-1,+ ro)))so

0n§Y(O)§1n_r0



Conclusions

Today’s outline
O historical notes
@ mathematical models for epidemiology

© analysis of determistic multigroup/network models

Future work
@ peak time and value for multigroup SIR
@ multigroup SIR with contact and mobility

@ corresponding analysis of degree-based models



