Convex Optimization of the Basic Reproduction Number

Francesco Bullo Center for Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.me.ucsb.edu

Tutorial Session: Modeling, Estimation, and Control of COVID-19 Modeling, Estimation and Control Conference (MECC 2021) Online, Oct 24-27, 2021

Kevin D. Smith PhD student, Electrican & Computer Engineering UC Santa Barbara

• K. D. Smith and F. Bullo. Convex optimization of the basic reproduction number. *IEEE Transactions on Automatic Control*, October 2021. URL: https://arxiv.org/abs/2109.07643 Basic Reproduction Number (R₀): "Typical" number of secondary infections that arise in a completely susceptible population.

U.S. TH	E NUMI	BERS									
The	N	un	ner	ica	l La	ngu	lage	of	Cov	rid-1	9: A
Pri	me	r				U	U				

Understanding terms like R0, R and herd immunity is vital to understanding spread of pandemic

The Wall Street Journal, 3/15/20

Disease	Outbreak	R_0
Spanish Flu	Spring 1918	1.5
Spanish Flu	Fall 1918	3.8
H1N1	2009, S. Africa	1.3
Ebola	2014, Guinea	1.5
COVID-19	2020	~ 3
COVID-19 (δ)	2021	5–9

THE INTERPRETER

R0, the Messy Metric That May Soon Shape Our Lives, Explained

'R-naught' represents the number of new infections estimated to stem from a single case. You may be hearing a lot about this.

The New York Times, 4/23/20

- **1** Mathematical definition of R_0
- **2** Useful new characterization of R_0
- **③** Optimal resource allocation with R_0
- Santa Barbara County Case Study

Dynamics of infected $(x \in \mathbb{R}^n_{\geq 0})$ and non-infected $(y \in \mathbb{R}^m_{\geq 0})$ compartments:

O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz. On the definition and the computation of the basic reproduction ratio R_0 in models for infectious diseases in heterogeneous populations. *Journal of Mathematical Biology*, 28(4):365–382, 1990.

Dynamics of infected $(x \in \mathbb{R}^n_{\geq 0})$ and non-infected $(y \in \mathbb{R}^m_{> 0})$ compartments:

O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz. On the definition and the computation of the basic reproduction ratio R_0 in models for infectious diseases in heterogeneous populations. *Journal of Mathematical Biology*, 28(4):365–382, 1990.

Dynamics of infected $(x \in \mathbb{R}^n_{\geq 0})$ and non-infected $(y \in \mathbb{R}^m_{> 0})$ compartments:

O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz. On the definition and the computation of the basic reproduction ratio R_0 in models for infectious diseases in heterogeneous populations. *Journal of Mathematical Biology*, 28(4):365–382, 1990.

Dynamics of infected $(x \in \mathbb{R}^n_{\geq 0})$ and non-infected $(y \in \mathbb{R}^m_{\geq 0})$ compartments:

Infected subsystem decouples from y when

 $R_0 = \rho(FV^{-1})$ $x_1 = \int_0^\infty Fe^{Vt} x_0 \ dt = \underbrace{-FV^{-1}}_{NGM} x_0$ O. Diekmann, J. A. P. Heesterbeek, and J. A. J. Metz. On the definition and the computation of the basic reproduction ratio R_0 in models for infectious diseases in beterogeneous populations.

reproduction ratio R_0 in models for infectious diseases in heterogeneous populations. Journal of Mathematical Biology, 28(4):365–382, 1990.

Example: SEIR Model

Infected subsystem:

$$\begin{bmatrix} \dot{e} \\ \dot{i} \end{bmatrix} = \begin{bmatrix} \underbrace{\beta si}_{f} - \underbrace{(\gamma + \mu)e}_{v} \\ \underbrace{\gamma e - (\delta + \mu)i}_{v} \end{bmatrix} \approx \begin{bmatrix} -(\gamma + \mu) & \beta s^{*} \\ \gamma & -(\delta + \mu) \end{bmatrix} \begin{bmatrix} e \\ i \end{bmatrix}$$

Computation of R_0 :

$$F = \begin{bmatrix} 0 & \beta s^* \\ 0 & 0 \end{bmatrix}, \qquad V = \begin{bmatrix} -(\gamma + \mu) & 0 \\ \gamma & -(\delta + \mu) \end{bmatrix}, \qquad R_0 = \rho(FV^{-1}) = \frac{\beta \gamma s^*}{(\gamma + \mu)(\delta + \mu)}$$

Theorem (Epidemic Threshold)

- The equilibrium (0_n, y*) is locally asymptotically stable
- 2 the spectral abscissa of F + V is negative

3 $R_0 < 1$

P. Van den Driessche and J. Watmough. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. *Mathematical Biosciences*, 180(1):29–48, 2002.

doi:10.1016/S0025-5564(02)00108-6

Theorem (Epidemic Threshold)

- The equilibrium (0_n, y*) is locally asymptotically stable
- 2 the spectral abscissa of F + V is negative

3 $R_0 < 1$

P. Van den Driessche and J. Watmough. Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. *Mathematical Biosciences*, 180(1):29–48, 2002.

doi:10.1016/S0025-5564(02)00108-6

 R_0 is the solution to a convex optimization problem:

Theorem (GP Characterization of R_0)

Decompose $V = V_{od} - V_d$ into its off-diagonal and diagonal part, respectively. Then R_0 is the infimum of the following geometric program:

```
\begin{array}{ll} \mbox{minimize:} & r \\ \mbox{variables:} & r > 0, \ w > \mathbb{O}_n \\ \mbox{subject to:} & (F + rV_{od})w \leq rV_dw \end{array}
```

K. D. Smith and F. Bullo. Convex optimization of the basic reproduction number. *IEEE Transactions on Automatic Control*, October 2021.

URL: https://arxiv.org/abs/2109.07643

- $R_0 =$ "typical" number of secondary infections
- Widely-known parameter reflecting epidemic spreading rate
- Distinct from the spectral abscissa
- Equivalent mathematical definitions:

$$R_0 = \rho(FV^{-1}) = \underbrace{\inf_{\substack{r > 0, w > 0_n}} \{r : (F + rV_{od})w \le rV_dw\}}_{\text{Geometric Program}}$$

Problem: allocate limited resources $\theta \ge \mathbb{O}_k$, including...

- distribution of limited pharmaceuticals: vaccines, antivirals
- NPI: lockdowns, closures, distancing measures with social / economic impact Choose θ to balance epidemic mitigation against cost $c(\theta)$

Typical approach: Minimize spectral abscissa $\alpha(F + V)$

 C. Nowzari, V. M. Preciado, and G. J. Pappas. Optimal resource allocation for control of networked epidemic models. *IEEE Transactions on Control of Network Systems*, 4:159–169, 2017. doi:10.1109/TCNS.2015.2482221

 A. R. Hota, J. Godbole, and P. E. Paré. A closed-loop framework for inference, prediction, and control of SIR epidemics on networks.
 IEEE Transactions on Network Science and Engineering, 8(3):2262–2278, 2021.
 doi:10.1109/TNSE.2021.3085866 **Proposal**: minimize R_0 instead of the spectral abscissa

- easier objective to communicate with the public
- reflects spreading rate more directly

Can our geometric program characterization of R_0 be extended into a resource allocation program?

Optimizing R_0

Intuitive GP transcriptions for resource allocation problems:

Optimizing R_0

Intuitive GP transcriptions for resource allocation problems:

Optimizing R_0

Intuitive GP transcriptions for resource allocation problems:

Santa Barbara County COVID-19 Case Study

• Cost-constrained allocation of:

vaccines (reduce local transmission rates β_i) antivirals (increase local recovery rates δ_i)

• Cost models:

V. M. Preciado, M. Zargham, C. Enyioha, A. Jadbabaie, and G. J. Pappas. Optimal resource allocation for network protection against spreading processes. *IEEE Transactions on Control of Network Systems*, 1(1):99–108, 2014.

doi:10.1109/TCNS.2014.2310911

87 census tracts in Santa Barbara County

Santa Barbara County COVID-19 Case Study

Model:

- 87-group SEIR model, with additional "external group" to model forcing from contact with people outside of SB county
- Time-varying inter-group contact rates estimated from SafeGraph cell phone mobility data

County-Wide Detected Cases

County-Wide Deaths

Allocation Results

 R_0 -minimizing allocation leads to fewer cases than abscissa-minimizing allocation!

Conclusions

Summary:

- R_0 useful metric for epidemic resource allocation
- Compared to spectral abscissa, R_0 easier to communicate, more directly reflects spreading rate
- Efficient resource allocation to minimize or constrain R_0 via geometric programming

Future directions:

- Robust resource allocation with uncertain or dynamic model parameters
- Rigorous performance guarantees when applied to nonlinear model

Geometric Programming

• Monomial: Function $f : \mathbb{R}_{>0}^n \to \mathbb{R}_{>0}$ of form

$$f(x) = \alpha x_1^{\beta_1} x_2^{\beta_2} \cdots x_n^{\beta_n}$$

where $\alpha > 0$ and $\beta_i \in \mathbb{R}$.

- Posynomial: Sum of monomials.
- Geometric program: Given posynomials f_i , i = 0, 1, 2, ..., m:

$$\begin{array}{ll} \text{minimize}: & f_0(x) \\ \text{variables}: & x > \mathbb{O}_n \\ \text{subject to}: & f_i(x) \leq 1, \ \forall i = 1, 2, \dots, m \end{array}$$

• Transformed into convex problem with change of variables $x_i
ightarrow e^{y_i}$

GP Characterization: Proof Outline

- Lemma: if H is Hurwitz and Metzler and $E \ge 0$, then H + E is Hurwitz if and only if $\rho(EH^{-1}) < 1$.
- Lemma: if M is Metzler, then M is Hurwitz if and only if Mw < 0 for some w > 0.
- Recall $R_0 = \rho(FV^{-1})$. Then:

$$R_{0} = \inf_{r>0} \{r : \rho(FV^{-1}) < r\}$$

= $\inf_{r>0} \{r : \rho(F(rV)^{-1}) < 1\}$
= $\inf_{r>0} \{r : F + rV \text{ is Hurwitz}\}$
= $\inf_{r>0, w>0} \{r : (F + rV)w < 0\}$

• Relaxing < to \leq is correct (if $F \neq 0$) but nontrivial to prove.

Santa Barbara County COVID-19 Case Study Model Details

Multigroup SEIR model with N = 87 groups (census tracts):

$$\dot{s}_{i} = -\beta_{i}s_{i}\sum_{j=1}^{N}a_{ij}x_{j} - \beta_{i}a_{i0}s_{i}u \qquad \dot{e}_{i} = \beta_{i}s_{i}\sum_{j=1}^{N}a_{ij}x_{j} + \beta_{i}a_{i0}s_{i}u - \gamma_{i}e_{i}$$
$$\dot{x}_{i} = \gamma_{i}e_{i} - \delta_{i}x_{i} \qquad \dot{r}_{i} = \delta_{i}x_{i}$$

u(t) is estimate of external cases

System Identification:

- Time-varying contact rates $a_{ij}(t)$ from cell phone mobility data
- Constant β_i , γ_i , δ_i fit to county data on detected cases + deaths

Santa Barbara County COVID-19 Case Study

Learning Architecture

Results aggregated into 10 reporting areas

Allocation Results

Vaccine Allocation

Antidote Allocation

