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Contraction theory: a brief overview

Contraction theory: a brief overview

Definition

f is contractive if its flow is a contraction map

unit disk with radius e~

Contraction theory: a brief overview

Historical notes
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Contraction theory: a brief overview

Properties of contracting systems

Highly ordered transient and asymptotic behavior:

et

@ initial conditions are forgotten, and
monotonic decrease (no overshoot) in distance between trajectories

time-invariant f: unique globally exponential stable equilibrium
two natural Lyapunov functions

(2]

© periodic f: unique globally exponentially stable periodic, and solution
contracting system entrain to periodic inputs

(%)

robustness properties:
input-to-state stability
finite input-state gain
contraction margin wrt unmodeled dynamics
input-to-state stability under delayed dynamics
=  contractivity rate is natural measure/indicator of robust stability

© accurate numerical integration and fixed point computation

Contraction theory vs Lyapunov stability theory

Contraction theory combines in unified coherent framework results from:

@ stability notions and Lyapunov functions for incremental stability or stability
of equilibrium points and trajectories,

© Banach contraction and Brower fixed point theorems,
© monotone systems theory, and

@ geometry of Banach, Riemannian and Finsler spaces

nonlinear robust stability theory




Outline

© Main equivalence theorem

© Analysis of dynamic behavior and robustness

e Network contraction theory: Small gain theorems

@ Network contraction theory: Weakly contracting systems

© Network contraction theory: Semi-contracting systems

Contraction theorem on R” and ¢, norm

For x € R" and differentiable time-dep
x = f(t,x) (2)

For P=PT = 0, define ||x||% = x " Px

Main equivalences:

Q osL (f(t,x) — f(t,y))TP(x —y) < b||x —y||%, for all x,y,t

Q d-osL : PDf(t,x) + Df(t,x)" P < 2bP for all x, t

© d-IS DF[[x(t) = y(t)llp < bl[x(t) — y(t)p, for all soltns x(-), y(-)

- Ix(£) = y(t)llp < e®*=9)||x(to) — y(to)|p. for all soltns x(-), y(-)

v

If f not differentiable, then osL <= d-IS <= IS

Contraction analysis for scalar vector field

f : R — R is one-sided Lipschitz (osL) continuous if there exists b € R s.t.

f'(x) < b, Vx (d-osL)
—  f(x)—fly) < blx—vy), Vx >y
= (x=y)(f(x) = f(y) < b(x —y)?, Vx,y (osL)
o f is osL with b = 0 iff f weakly decreasing
@ if f is Lipschitz with bound /¢, then f is osL with b= ¢
e For
x = f(x) (1)

the Gronwall lemma implies [x(t) — y(t)| < e*|x(0) — y(0)|

Equivalent rewriting with inner products

For x € R™ and differentiable time-dep
x = f(t,x)

For P=PT = 0, define {(x,y)p = x' Py and ||x||3 = x" Px,

Main equivalences:

Q osL (f(t,x) — f(t,y),x —yNp < bllx — y||3, for all x,y,t >0

Q d-osL : {(Df(t,x)v,v))p < b|v||3 for all x,v,t >0,

© d-IS DT |Ix(t) — y(t)||p < b||x(t) — y(t)||p, for all soltns x(-), y(+)
QIS Ix(t) — y(t)||p < e?t=0)||x(to) — y(to)]||p, for all soltns x(-), y(-)

v




Linear algebra detour: Matrix measures

The matrix measure of A € R™" wrt to || - ||:

e+ hA[ -1
HA) = i, h

2(A) = Dman( A+ AT)
HI(A) = max aﬂ + Z ‘3,_, ,uoo(A = max au + Z |aIJ

Basic properties:

subadditivity: w(A+ B) < u(A) + u(B)
(bA) = by(bA),

H(6A+ (1 —6)B) < 9u(A) + (1 — 6)u(B),

Vb >0
Vo € [0,1]

scaling:

convexity:

T. Stréom. On logarithmic norms. SIAM Journal on Numerical Analysis, 12(5):741-753, 1975. 4

Connection between osL and matrix measure

norm/spectrum: Re(N) < u(A) < ||A]], VA € spec(A)
x A
A € spec(A) alA) = max R(N)
—lAlIN —p(=4)  minR(A) x , n(A) Al
X logarithmic norm
inefficiency
X
A norm || - || is

© logarithmically optimal for A if u(A) = a(A), and
@ logarithmically e-efficient for A if a(A) < u(A) < a(A) +e.

ly VA,
VM Metzler,

AP >0, s.t. || -||p is efficient

In > 04, st || - ||, is efficient

lp,p €[1,00] :

Weak pairing

The best osL constant:

osLo(f) := sup (f(x) = fly),x —y)

T x—yIB
— sup 1a(DF ()

if f differentiable

Proof for affine vector fields:

{Ax — Ay, x —y)

osLo(Ax + b) = sup

xAy Ix = yl3
TA
= sup X = X (Rayleigh quotient)
x#0, X X
= %)\max(A + AT) (sup of numerical range)
= p2(A)

A weak pairing (WP) is [-,-] : R” x R” — R satisfying
Q [x1 +x,y] < [x1,y] + [*2,y] and x — [x, y] is continuous,
Q [bx,y] = [x,by] = b[x,y] for b >0 and [—x, —y] = [x, y],
Q [x,x] >0, for all x # 0,,

© [[xy] < I A1 [y, ¥,

Given norm || - ||, compatibility: [x, x] = ||x||? for all x

1(A) = sup
<20 |Ix|I?

3T X1 = [x(1). x(1)]

Sup of non-Euclidean numerical range:

Norm derivative formula:

G. Lumer. Semi-inner-product spaces. Transactions of the American Mathematical Society, 100:
29-43, 1961.




Norm WP Matrix measure

115 p1/2(A) = min{b | AP + PA < 2bP}

—1 T
ﬂxyyl]g’pl/Z = XTPy = %)\max(PAP + A )

<
= max x PAx
[Ixllp=1

||X||2,P1/2 = VxTPx

Iello = (3 bal?)

—2\T
Byl = I3 (o lyP~?) T #e(A) = max (x o [x|"7) " Ax

- x|lp=
p €1, o0
p(A) = AR (aﬂ +Y |a,-j|)
_ : . jeft,., n T
Ixlle = I [x, v]; = llyll sign(y) "x L7
i = sup sign(x) Ax
lxlla=1

heelA) = e (a3 Lo
J#i
= max max x;(Ax);

[IXllco=1 i€lo0 (x)

[x, ¥l = max yix

Iloe = maxx max

Table of norms, WPs, and matrix measures for weighted ¢2, ¢, for p € |1, 00], 1, and £
norms. Note: lo(x) ={i € {1,...,n} | |xi| = ||x]|oo}-

One-sided Lipschitz
condition

(x =y)TP(f(x) = £(y)) < blix = yl[7a2

Demidovich
condition

Measure
bound

p2,p(Df(x)) < b PDf(x) + Df(x)" P < 2bP

mp(DFO)) < b (volvIP) DF(v < blIvIE  ((x = y)olx = yIP7*) " (F(x) = f(¥)) < bllx — v}

m(Df(x)) < b sign(v)" Df(x)v < bllvs sign(x — y) " (F(x) = () < bllx =yl

peo(DF(x) < b max v (DF(x)v), < bllv|%

max. max (x — y)((x) = f(y)) < bllx -yl

i€loc (x—y

Table of equivalences between measure bounded Jacobians, differential Demidovich and
one-sided Lipschitz conditions. Note: l(v) = {i € {1,...,n} | |vi| = |[v]~}-

J. A. Jacquez and C. P. Simon. Qualitative theory of compartmental systems. SIAM Review, 35(1):43-79, 1993. 4

H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new approach to exponential stability analysis for Hopfield-type neural networks.
IEEE Transactions on Neural Networks, 12(2):360-370, 2001. 4

G. Como, E. Lovisari, and K. Savla. Throughput optimality and overload behavior of dynamical flow networks under monotone
distributed routing. |[EEE Transactions on Control of Network Systems, 2(1):57-67, 2015. 4

Contraction theorem on R" with arbitrary norm

For x € R" and differentiable time-dep
x = f(t, x)

For norm || - || with matrix measure p(-) and compatible WP [-, -],

Main equivalences:

O osL [F(t,x) = £(t.¥),x — y] < blx — y||* for all x,y, t > 0,
Q d-osL : [Df(t,x)v,v] < b||v|?, forall v,x, t >0, or
wu(Df(t,x)) < b, for all x,t >0,
@ s D*x(t) — y(t)ll < bllx(t) — y()]]. for soltns x(), (")
QIS Ix(2) = y(t)| < e |[x(to) — y(to)[], for all soltns x(-), y(-)

Metzler matrices and monotone systems

e For Metzler M and monotonic || - ||, u(M) = sup
x>0,

e For n,{ € RY,
1,11 (M) = max(n" M[n] ™) = min{fbeR | n"M < by}
fioo (e]-1 (M) = max([¢] 7' ME) = min{b € R | M¢ < bE}

f monotone if Df(x) Metzler for all x

Q osL [£(x) — f(y),x — y] < bllx — y|? for all x >y
Q d-osL : [Df(x)v,v] < b|v|]?, for all v >0 and x

N DF(x) < bn" " (F(x) = f(y)) < by’ (x —y) forall x>y

F(x) — F(y) < blx— y) for all x = y + 8,3 > 0

#, i (DF(x)) < b

foo -1 (DF(x)) < b Df(x)& < b¢




Infinitesimally contracting systems

Outline

Given vector field f over normed space with WP:

[F(t,x) = f(t,y),x —y] < bllx —y|?,  forallx,y,t >0
b=—-c,¢c>0 strongly contracting with rate ¢
b =0 and strict inequality : strictly contracting
b=0 : weakly contracting (or non-expansive)

For differentiable V' over convex set C, equivalent statements:
© V is strongly convex with parameter m

@ —gradV is strongly contracting with rate m wrt /5, that is

(—gradV(x) +gradV(y))  (x —y) < —mlx — y|3

Globally exponentially stable equilibrium

For time-invariant vector field f and norm || - ||
© there exists a convex and f-invariant set C,

@ f is strongly contracting with rate c on C

Then

@ flow of f is a contraction, i.e.,
distance between solutions exponentially decreases with rate ¢

@ there exists an equilibrium x*, unique, globally exponentially stable
with global Lyapunov functions

XI—)HX—X*HZ and x»—>Hf(x)||2

© Main equivalence theorem

© Analysis of dynamic behavior and robustness

e Network contraction theory: Small gain theorems

@ Network contraction theory: Weakly contracting systems

© Network contraction theory: Semi-contracting systems

Globally exponentially stable periodic orbits

a.k.a., Entrainment to periodic inputs

For time-varying vector field f and norm || - ||
© there exists a convex, closed f-invariant set C,

@ f is strongly contracting with rate ¢ on C,
© f is T-periodic.

Then
© there exists a unique periodic solution x* : R>g — C with period T
@ for every initial condition xg € C,

Ix(t, x0) = x*(£)|] < e™[lxo — x*(0)] (5)

G. Russo, M. Di Bernardo, and E. D. Sontag. Global entrainment of transcriptional systems to
periodic inputs. PLoS Computational Biology, 6(4):€1000739, 2010. 4
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Input-state stability and gain of contracting systems

For a time and input-dependent vector f,

x = f(t,x,u(t)), x(0) = xp € R", u(t) € R (6)

Assume || - ||x with compatible [-,-],, a norm || - |7, and ¢, ¢ > 0 such that
o osL: [f(t,x,u) = f(t,y,u),x = y[, < —clx = y|%, forall t,x,y,u,

o Lip: ||[f(t,x,u) —f(t,x,v)|lx <l|lu— vy, forall t,x,u,v.

Signal norms and system gains

Given norm || - ||x on R” (or || - ||z on R¥),

° Eg(, q € [1, 00, is vector space of continuous signals, x : R>g — R", with
well-defined bounded norm

Ix() | . = (/000 ||X(t)||qxdt)1/q if g€ [1,00]

sup>o [|1X(t)[|x

(7)
if g =00

e Input-state system has L9, , -induced gain upper bounded by v > 0 if, for all
u € L], the state x from zero initial state satisfies

(8)

IxCllx.g < v llu-)le.q

Input-state stability and gain of contracting systems
Then

© any two soltns x(t) and y(t) to (6) with inputs uy, uy

D¥||x(t) = y(t)llax < —cllx(t) = y(t)lla + Ll () — uy () s

@ f is incrementally input-to-state stable, i.e., for all xg, yo

et ((1—e)
[x(t) = y(D)llx < e “lxo — yolla + =——— sup [Jux(7) — uy(7)l[es
c T€[0,t]
© f has incremental E}’M gain equal to //c, for g € [1, 0],
14
IXC) = yOllag < Z llux() =y (llerg (For xo = yo)

Robustness to unmodeled dynamics

Given a norm || - ||, consider
x = f(t,x) + g(t,x)

If f has one-sided Lipschitz constant —c < 0 and
g has one-sided Lipschitz constant d > 0, then

© (contractivity under perturbations) if d < c, then f + g is strongly
contracting with rate ¢ — d,

@ (equilibrium point under perturbations) if additionally f and g are
time-invariant, then the unique equilibrium point x* of f and x** of f + g

satisfy
g (x™)l

* *k
— < = 70
s — x| < £

(10)

v
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© Main equivalence theorem

© Analysis of dynamic behavior and robustness

e Network contraction theory: Small gain theorems

@ Network contraction theory: Weakly contracting systems

© Network contraction theory: Semi-contracting systems

Networks of contracting systems

Interconnected subsystems

forie{1,...,n}, (11)

).(i = f;(tu X,‘,Xf,‘),

where x; € RM, N =37 | N;, and x_; € RN-N:

If
@ osL: [[f;‘(t,X,‘,X_,') - f;'(tvyiax—i)vxi _yi]]i < _Ci||Xi _yl||12

n

o Lip: [|fi(t, xi, x—i) — it xi, y—i)li < 2250 s Vil — vills

-G Yin

@ the gain matrix is Hurwitz

Vn1 —Cn
then the interconnected system is strongly contracting
wrt appropriate composite norm and with rate = (-) abscissa gain matrix
V.

Hurwitz Metzler Theorem
Q@ M is Hurwitz,
Q there exists n € R7, such that n" M < 0] or, equivalently, 47 ;,;(M) <0,
O there exists { € RZ, such that M¢ < 0, or, equivalently, i [¢-1(M) < 0,
and

Q there exists a diagonal P = PT = 0 satisfying M" P + PM < 0 or,
equivalently, g1, p1/2(M) < 0.

@ DAG interconnections of contracting systems are strongly contracting
@ 2-dimensional matrix: small gain condition cic, > ¢145

X. Duan, S. Jafarpour, and F. Bullo. Graph-theoretic stability conditions for Metzler matrices and monotone systems. SIAM
Journal on Control and Optimization, 59(5):3447-3471, 2021. 4

Networks of ISS systems

Interconnections scalar ISS subsystems

X = —aj(x) + Z#l_y,-j(@) +u,  forie{l,...,n}. (12)

where a; are of class Ko, and +j; are of class K. Define

Ai(x) = ai(x;), and T;(x) = Z#i»y,-j(@-)

If there exist n € RZ, and ¢ > 0 satisfying
nT(A(v) - A(w)) > nT(F(v) —T(w) + c(v —w)), forall v>w >0,

then the interconnected system is strongly contracting
with respect to || - [|1,;,; and with rate ¢

V.

Proof: osLy () < b if and only if T (F(x) — f(y)) < bn'(x — y)




Outline

© Main equivalence theorem

© Analysis of dynamic behavior and robustness

9 Network contraction theory: Small gain theorems

@ Network contraction theory: Weakly contracting systems

© Network contraction theory: Semi-contracting systems

Weakly-contracting systems

Definition and examples

x = f(t, x) is weakly-contracting wrt || - |:

osL(f) <0

© Lotka-Volterra population dynamics (Lotka, 1920; Volterra, 1928) (¢1-norm for
mutualistic)

@ Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill,
1981) (¢1-norm and {.o-norm)

© Daganzo’s cell transmission model for traffic networks (Daganzo, 1994), (/1-norm for
non-FIFO intersection)

© compartmental systems in biology, medicine, and ecology (Sandberg, 1978; Maeda et al.,
1978). (¢1-norm)

@ saddle-point dynamics for optimization of weakly-convex functions (Arrow et al., 1958).
(¢2-norm)

Contraction theory for networks

Challenge: many real-world networks are not contracting.

For a vector field f and positive vectors 7,{ € RZ,,

conservation law n' Df(x) =0 Vx

Df (x)§ =0 Vx

n'f(x)=n"f(y) Vx,y
f(x+af) =f(x) Vx,«a

—

translation invariance <=

V.

If f satisfyies a conservation or resp. invariance, then
Q osL(f) >0,
@ if, additionally, f is monotone, then osLl’[n](f) =0 or resp. osLoo,[S]q(f) =0

V.

Weakly-contracting systems

Part I: Dichotomy in asymptotic behavior

Theorem: Dichotomy for weakly-contracting systems For a
weakly-contracting system x = f(x), either

© £ has no equilibrium and every trajectory is unbounded, or

@ f has at least one equilibrium x* and every trajectory is bounded.




Weakly-contracting systems

Part Il: bounded trajectory case

Theorem If x = f(x) is weakly-contracting and f has at least one equilibrium x*
then:

(i) each equilibrium x** is stable with weak Lyapunov function x — ||x — x**||,

(i) if the norm || - || is a (p, R)-norm, p € {1,00} and f is piecewise real analytic,
then every trajectory converges to the set of equilibria,

(i) x* is locally asy stable = x* is globally asy stable.

Example: Distributed primal-dual algorithm

If each f; is continuously differentiable in x;:

Lagrangian
L(x,v) =31, fi(x)+vT(L® I)x J

Distributed primal-dual algorithm (component form):

. oL "

X; = “x = —Vfi(x) — E st ajj(vi — vj),
i oL @

= g, — D 2805 %)

Distributed primal-dual algorithm (vector form):

x=—=Vf(x)— (L k)v,
U= (L X Ik)X

Example: Distributed primal-dual algorithm

Optimization problem

Distributed implementation
@ n agents communicate over a undirected weighted graph G,

@ agent i have access to function f; and can exchange x; with its neighbors.

n
min E fi(xi
xERK i=1 I( I)
X1 =Xo=...=Xp
v
In matrix form by assuming x = (x{',...,x, )T € R :

Example: Distributed primal-dual algorithm

© f has a minimum x* € Rk,

Q f: is twice differentiable, V2£(x) = 0 for all x, and V2£;(x*) = 0, and
© the undirected weighted graph G is connected with Laplacian L.

Theorem: Distributed primal-dual dynamics The distributed primal-dual
algorithm

@ is weakly-contracting wrt £>-norm,
Q (x(t),v(t)) = (1h®x*, 1, ®v*), with v* =7 14(0),

_\/2 * _
© exponential convergence rate is —aess< VEF(x*) L ) where
L& I 0

Qess(A) == max{R(A) | X € spec(A) \ {0}}.

Proof: pp(A) = 0 and there exists locally asy stable equilibrium point
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© Main equivalence theorem

© Analysis of dynamic behavior and robustness

e Network contraction theory: Small gain theorems

@ Network contraction theory: Weakly contracting systems

© Network contraction theory: Semi-contracting systems

Semi-contracting systems

Matrix semi-measures

The matrix semi-measure of A € R™" wrt ||-||:

-l + hAJ - 1
pyp (A) = lim, - :

if Ker [|-|| is invariant under A,

then R(A) < gy (A), for every X € specy,, ”H”L(AT).

Semi-contracting systems

Semi-norms

Definition: Semi-norms

ll-ll is @ semi-norm if
Q |lev|| = |c|||v]l], for every v € R" and ¢ € R;
Q |[[v+wll < Ivil + lllwll, for every v, w € R".

o define the subspace Ker|||-|| = {v € R" | ||v]| = 0}
o Example: for k < n, R € R**" and norm || - ||, we get [|x||r = || Rx||

Semi-norms for network systems

For undirected G with edge set &, incidence matrix B and Laplacian L

lixllg := max. [xi = x| = 18 x]lo

For connected graphs Ker ||-||| = span{1,}

The orthogonal projection MM, : R” — span{1,}+

n-1 _1 _1
R | 1
n n n
MNy=1,—11,17 = . "l =0
1 1 n—1
n t n

Logarithmically-optimal semi-norm

p2,n,(—L) = —Xo(L)




Semi-contracting systems

Definition and examples

Semi-contracting systems

Semi-contraction and asymptotic behavior

x = f(t, x) is semi-contracting wrt the semi-norm ||-|| with rate ¢ > 0:
osLyy(F) < —¢

or, for differentiable systems, s (Df(t,x)) < —c

© Kuramoto oscillators (Kuramoto, 1975) and coupled swing equations (Bergen and Hill,
1981), (¢1-norm)

@ Chua’s diffusively-coupled circuits (Wu and Chua, 1995), (¢»-norm)

© morphogenesis in developmental biology (Turing, 1952), (¢1-norm, over some param
ranges)

@ Goodwin model for oscillating auto-regulated gene (Goodwin, 1965). (¢1-norm, over some
param ranges)

Consider x = f(t, x) with f continuously differentiable in x and assume
e f is semi-contracting wrt the semi-norm |||-|| with rate ¢ > 0, and
o (Affine invariance): there exists x* such that f(t,x* + Ker |||-||) C Ker|||||

Then,
Q for every trajectory x(t),
Ix(2) = x*[I < e"[Ix(0) — x*|ll, ~ for every t > 0.

@ every trajectory converges to x* + Ker |||-|||.

' Example: Diffusively-coupled oscillators

@ n agents connected by a weighted undirected graph G,
e identical internal dynamics f : R>o x Rk — R¥

xj = f(t,x;) — 2}7:1 aj(xi — x;), i€ {1,...,n}J

e synchronization:

limoo || — Xj|| =0 for every i, j J

@ synchronization of diffusively-coupled oscillators:

@ contractivity of the internal dynamics
@ strength of the diffusive coupling

Introduce local-global mixed norm: (2, p)-tensor norm on R™ = R" @ Rk

1
. r i in2)?2 T i
lulloy =inf { (327 IVIBIWIZ)" [u=3"" view].

@ global norm: />-norm for the interactions between agents
@ local norm: £,-norm for internal dynamics of each agent

@ closely related to, but different from, the projective tensor product norm
R. A. Ryan. Introduction to Tensor Products of Banach Spaces. Springer, 2002. ISBN
9781852334376

(M, ® Ix)x measures dissimilarity of the states x;:

x=1,9x" = (M, ®@hk)x=MN,® k)(1,®x")=MN,1,® x* = O(n—1)xk




Example: Diffusively-coupled oscillators

Example: Diffusively-coupled oscillators

Xl:f(t7xl)_ZaU(Xl_XJ)7 IE{l,,n}
j=1

G is an undirected weighted graph with Laplacian L

Suppose there exist p € [1,00], Q € Rk*k
OSLP7Q(f) < )\2(L)

then semi-contraction wrt || - ||(2,p),(n,@q) and rate ¢ = Ay(L) — osL, q(f),
Q for every trajectory x(t),

[x(t) = 1n ® Xave(t)ll(2,0),(M@@) < € IIX(0) — 11 ® Xave(0)ll(2,p),(Mm2Q)

@ synchronization: lim;_,eo X(t) = 1, ® Xave(t)  Where xave(t) = £ 37 | xi(¢)

Summary

0sL o (f) < Ao(L) J

@ trade off between internal dynamics and coupling strength
e f time-invariant: every trajectory converges to the unique equilibrium point.
e f periodic: every trajectory converges to the unique periodic orbit.

e for any Lipschitz unstable dynamics f,
there exists sufficiently strong coupling A2(L) s.t. the network synchronizes.

Incremental ISS for strongly contracting delay ODEs

@ main equivalence theorem
notion of one-sided Lipschitz constant and weak pairing

@ characterization of contraction wrt non-Eulidean /1, ., norms
@ robustness and iss properties

@ network contraction theory

e small-gain theorems
e weak contraction
@ semi-contraction

Future work
@ forthcoming: fixed point algorithms and theorems
@ maybe: Halanay inequalities

© maybe: optimal control problems for osL control systems

x(t) = f(x(t), x(t — ), u(t)),0 < s < S, I 1aes I lleg (13)
assume there exist positive constants ¢, £74, £ x such that, for all variables,
os x : [F(x, dy ) = F(y, dy ), x — vl < —cllx — vl% (14)
Lip x(t — s) : 1(x xg, u) = Flx, %, W)l < €xlixy — xllx (15)
Lipu: 1F(x, d,u) — F(x, d, Il x < Lyyllu — vy (16)

By the curve norm derivative formula, subadditivity, and Cauchy-Schwarz inequality,

Ix(O) =yl 2 DT lIx(8) = y(B)ll ¢ = [FO(), x(£ = 5), ux(8) = FO(2), vt = 5, uy (0), x(6) — ¥(O)]
< [F(x(2), x(t — 5), ux(t)) — Fy(8), x(t — 5), ux(8)), x(t) — y()] x
+ [y (), x(t = 5), ux(t)) — F(y(8), y(t — ), ux(8)), x(t) — ¥()]
+ [F (), y(t = ), ux(£) — Fly(t), y(t — ), uy (6)), x(t) — ¥(O)] »
< —clix(t) — Y(t)l\zxf +x lIx(t —s) — y(t = s)llgg lIx(t) — y(O)ll x
+ Ly lux(t) — uy (D)llgg lI1x(t) = y(O)ll x -
Thus, with m(t) = [|x(t) — y(t)|| . delay differential inequality:
D m(t) < —em(r) + Ly supp<s< s Mt — s) + Ly [lux(t) — uy(D)llgg» 17

Halanay inequality is applicable. If ¢ > £y, then

m(t) < mge ™ PET10) 4 o, /tt e Pl (7) = uy (7 llggdr, (18)
0

where p > 0 is the unique positive root of p = ¢ — EXepS and mg = supg< <5 M(ty — 5)-




Networks of contracting systems with time delays

Background on one-sided Lipschitz continuity

Interconnected subsystems i € {1,...,n}

x;p = fi(xi, x_i, x_i(t — s), ui), 0<s<S, Il I - 11720 (19)
Assume there exist positive constants st

osL x; : Ifi(xi,...) = fi(yi,--. ), xi — yill; < —cil|xi — y,-H,2
1) = iy D < D0 il =yl
Lip 7t 1 xS ) = Ay T < D Al = el

Wh(u) = GG vi)lli < Giullui — villiu

Lip x_; :

Lip u; :

With m;(t) = ||xi(t) — yi(t)||;, delay differential inequality:
D*m(t) < —Cm(t) + Tm(t) + T supg<scs m(t — s) + bullux(t) — uy ()|l

and, if the Metzler matrix —C + T —|—F is Hurwitz, then (19) is incremental ISS

F. Mazenc, M. Malisoff, and M. Krstic. Vector extensions of Halanay's inequality. /[EEE Transactions on Automatic Control,
2021. 4. to appear

@ the uniformly decreasing condition in: L. Chua and D. Green. A qualitative analysis of the
behavior of dynamic nonlinear networks: Stability of autonomous networks. |[EEE
Transactions on Circuits and Systems, 23(6):355-379, 1976. ¢

@ no-name in: A. F. Filippov. Differential Equations with Discontinuous Righthand Sides.
Kluwer, 1988. ISBN 902772699X (Chapter 1, page 5)

© one-sided Lipschitz condition in: E. Hairer, S. P. Ngrsett, and G. Wanner. Solving Ordinary
Differential Equations |. Nonstiff Problems. Springer, 1993. 4 (Section 1.10, Exercise 6)

@ nonlinear measure in: H. Qiao, J. Peng, and Z.-B. Xu. Nonlinear measures: A new
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@ dissipative Lipschitz condition in: T. Caraballo and P. E. Kloeden. The persistence of
synchronization under environmental noise. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 461(2059):2257-2267, 2005. 4

Q@ logarithmic Lipschitz constant in: G. Soderlind. The logarithmic norm. History and
modern theory. BIT Numerical Mathematics, 46(3):631-652, 2006. ¢/ and Z. Aminzare and
E. D. Sontag. Logarithmic Lipschitz norms and diffusion-induced instability. Nonlinear
Analysis: Theory, Methods & Applications, 83:31-49, 2013. ¢

@ QUAD condition in: W. Lu and T. Chen. New approach to synchronization analysis of
linearly coupled ordinary differential systems. Physica D: Nonlinear Phenomena, 213(2):
214-230, 2006. 4

@ incremental quadratic stability in: L. D'Alto and M. Corless. Incremental quadratic
stability. Numerical Algebra, Control and Optimization, 3:175-201, 2013. ¢

© equivalent differential conditions!




