Acknowledgments

Stochastic Strategies for Robotic Surveillance

Francesco Bullo

Center for Control, Dynamical Systems & Computation University of California at Santa Barbara

http://motion.me.ucsb.edu

Robotics and Control Webinar Michigan State University, Jan 28, 2021

F Bullo (UCSB)

Stochastic Surveillance

Systems

Technology

Pushkarini Agharkar, Google

MSU 28jan21

3 / 46

Outline (UCSB)	Stochastic Surveillance	MSU 28jan21 1 / 46	Related work: moi	stochastic Surveillance nitoring, surveillance,	MSU 28jan21 2 / 40 learning:
 Introduction Overview of research Max Return Time E 	h program Entropy		 T. Sak, J. Wainer, and Brazilian Symposium of (2) K. Srivatsava, D.M. Sta surveillance problem. G. Cannata and A. Sgo coverage. IEEE Trans S. Alamdari, E. Fata, a algorithms for monito Robotics X, 139-155, 2 D. Portugal and R. Ro learning. Autonomous N. Basilico and S. Car adversarial patrolling pages 762–777. 2020. 	S. Goldenstein. Probabilistic m on Artificial Intelligence, Springer ipanovic, and M.W. Spong. On <i>IEEE Conf. on Decision and Con</i> orbissa. A minimalist algorithm <i>actions on Robotics</i> , 27(2):297–3 and S.L. Smith. Min-max latence oring vertex-weighted graphs. A 2013. Incha. Cooperative multi-robot p Robots, 40(5):929–953, 2016 pin. Balancing unpredictability settings . In <i>Algorithmic Founda</i>	nultiagent patrolling. , 2008. a stochastic robotic ntrol, 8567-8574, 2009. for multirobot continuous 312, 2011. :y walks: Approximation Algorithmic Foundations of patrol with Bayesian and coverage in tions of Robotics XIII,

Selected publications	New text "Lectures on Network Systems"			
 R. Patel, P. Agharkar, and F. Bullo. Robotic surveil minimal weighted Kemeny constant. <i>IEEE Trans. A</i> 60(12):3156–3167, 2015. doi:10.1109/TAC.2015. P. Agharkar and F. Bullo. Quickest detection over r <i>Robotics</i>, 32(1):252–259, 2016. doi:10.1109/TRD. R. Patel, A. Carron, and F. Bullo. The hitting time <i>SIAM J Matrix Analysis & Apps</i>, 37(3):933–954. 20 	lance and Markov chains with utom. Control, 2426317 obotic roadmaps. <i>IEEE Trans</i> 2015.2506165 of multiple random walks. 116. doi:10.1137/15M1010737	Lectures on Network Syster	NS Lectures KDP, 1.4 e 1. Self-Put ht 2. PDF Fre	on Network Systems, Francesco Bullo, dition, 2020, ISBN 978-1-986425-64-3 vlished and Print-on-Demand at: stps://www.amazon.com/dp/1986425649 eely available at
 (4) X. Duan, M. George, R. Patel, and F. Bullo. Roboti meeting time of random walks. <i>IEEE Trans Robotic</i> doi:10.1109/TRD.2020.2990362 (5) M. George, S. Jafarpour, and F. Bullo. Markov chai robotic surveillance. <i>IEEE Trans. Autom. Control</i>, 6 doi:10.1109/TAC.2018.2844120 		For study For instr 3. incorpor robotic r	http://motion.me.ucsb.edu/book-lns: ents: free PDF for download uctors: slides and solution manual ates lessons from 2 decades of research: nulti-agent, social networks, power grids	
 (6) X. Duan, M. George, and F. Bullo. Markov chains with maximum return time entropy for robotic surveillance. <i>IEEE Trans. Autom. Control</i>, 65(1):72–86, 2020. doi:10.1109/TAC.2019.2906473 (7) X. Duan and F. Bullo. Markov chain-based stochastic strategies for robotic surveillance. <i>Annual Review of Control, Robotics, and Autonomous Systems</i>, 4, 2021. To appear. doi:10.1146/annurey-control-071520-120123 		Francesc With co	co Bullo pontributions by Jorge Cortés Florian Dörfler Sonia Martínez	.4 s cises, 220 pages solution manual loads Jun 2016 - Dec 2020 ctors in 17 countries
F Bullo (UCSB) Stochastic Surveillance	MSU 28jan21 4 / 46	F Bullo (UCSB)	Stochastic Surveillance	MSU 28jan21 5 / 46
New text "Lectures on Robotic Plann	ing and Kinematics"	Outline		
Lectures on Robotic Planning and Kinematics	botic Planning and Kinematics, ver .92 e PDF for download lides and answer keys me.ucsb.edu/book-lrpk/ ng: d planning ning via decomposition and search n spaces d collision detetion ning via sampling ning via sampling ttics: matics trices	 Introduction Overview of rese Max Return Time 	earch program Entropy	

Stochastic Surveillance

MSU 28jan21 6 / 46

Stochastic surveillance: Motivating example 2/2

- Markovian surveillance agents with visit frequency constraints
- Intelligent intruders can sense position/observe path of agent
- Goal: fast unpredictable motion patterns for the surveillance agents

Rational intruder (bank robber model):

• Learns the inter-visit time statistics of police

- San Francisco
- crime rate at 12 locations
- all-to-all driving times (quantized in minutes)
- define $\pi \sim$ crime rate

F Bullo (UCSB)	Stochastic Surveillance	MSU 28jan21	7 / 46	F Bullo (UCSB)	Stochastic Surveillance	MSU 28jan21	8 / 46
	chains for fourning al			r undamentar objec	ts. mst mitting times	,	
				First hitting time from lo	ocation <i>i</i> to location <i>j</i>		
				unweighted: $T_{ij} = 1$	$\min\left\{k X_0=i, X_k=j, k\right\}$	$\geq 1 \Big\}$	
<i>p</i> ₁₁ ($\begin{array}{c} p_{12} \\ \hline rain \\ p_{21} \\ \end{array} \\ \begin{array}{c} sun \\ p_{21} \\ \end{array}$) P 22		weighted: $T_{ij}^{w} = 1$	$\min\left\{\sum_{s=0}^{k-1} w_{X_s X_{s+1}} X_0 = \right\}$	$=i, X_k=j, k\geq 1\Big\}$	
Advantages of adoptin • quantify and optimi	g Markov chains: ze speed, randomness & u	npredictability		Discrete-time affine system Let $F_k(i,j) = \mathbb{P}(T_{ij} = k)$	em with delays) and $F^{\sf w}_k(i,j)=\mathbb{P}({\mathcal T}^{\sf w}_{ij}=k)$	k), for $k\in\mathbb{Z}_{>0}$,	

- 2 vast body of work on Markov chains (eg, fastest mixing)
- Inite-dimensional opt problem
- note: TSP may be written as Markov transition matrix

$$F_{k}(i,j) = p_{ij}\mathbf{1}_{\{k=1\}} + \sum_{h=1,h\neq j}^{n} p_{ih}F_{k-1}(h,j)$$
$$F_{k}^{w}(i,j) = p_{ij}\mathbf{1}_{\{k=w_{ij}\}} + \sum_{h=1,h\neq j}^{n} p_{ih}F_{k-w_{ih}}^{w}(h,j)$$

where $\mathbf{1}_{\{.\}}$ indicator function and $F_k(i,j) = 0$ for all $k \leq 0$ and i,j

Fundamental objects: first hitting times	Fundamental objects: stationary distribution
Mean first hitting times $m_{ij} = \mathbb{E}[\mathcal{T}_{ij}], \qquad m_{ij}^{\sf w} = \mathbb{E}[\mathcal{T}_{ij}^{\sf w}]$	Perron-Frobenius theorem Let $P \in \mathbb{R}^{n \times n}$ be an irreducible row-stochastic matrix, then there exists a $\pi \in \mathbb{R}_{>0}^n$ and $\pi^\top \mathbb{1}_n = 1$ such that $\pi^\top P = \pi^\top$
Linear matrix equation for mean hitting times By conditioning on the first step $m_{ij} = p_{ij} + \sum_{k \neq j} p_{ik}(1 + m_{kj})$ In matrix form $M = \mathbb{1}_n \mathbb{1}_n^T + P(M - \text{diag}(M)),$ where diag(·) takes the diagonal elements and forms a diagonal matrix	The stationary distribution encodes the visit frequency information $\frac{1}{t+1} \sum_{k=0}^{t} 1_{\{X_k=i\}} \xrightarrow{as t \to \infty} \pi_i \text{almost surely}$ Reversible Markov chains A Markov chain <i>P</i> is reversible if for all $i, j \in \{1,, n\}$ $\pi_i \rho_{ij} = \pi_j \rho_{ji}$ (EVIII) (1998)
Approach 1: Fast surveillance: minimizing traversal time Kemeny's constant: average time to travel between locations $\mathcal{K}(P) = \sum_{i=1}^{n} \sum_{j=1}^{n} \pi_i \pi_j m_{ij}$ $\mathcal{K}^{W}(P) = \sum_{i=1}^{n} \sum_{j=1}^{n} \pi_i \pi_j m_{ij}^{W} = (\pi^{\top}(P \circ W)\mathbb{1}_n) \cdot \mathcal{K}(P)$ Approach 2: Unpredictable surveillance: maximizing randomness • entropy rate (classic notion) $\mathcal{H}_{rate}(P) = -\sum_{i=1}^{n} \pi_i \sum_{j=1}^{n} p_{ij} \log p_{ij}$ • return time entropy $\mathcal{H}_{ret-time}(P) = \sum_{i=1}^{n} \mathcal{H}(T_{ii}^{W})$	Fast surveillance: minimizing traversal time Minimize \mathcal{K} Problem Given stationary distribution π and a weighted digraph $\mathcal{G} = \{V, \mathcal{E}, W\}$, $\min_{P} \mathcal{K}^{w}(P)$ subject to P is transition matrix with stationary distribution π P is consistent with \mathcal{G} • irreducibility automatically ensured (reducible solution has ∞ value) • a difficult optimization problem of combinatorial nature • numerical solutions available without optimality guarantees

Stochastic Surveillance

MSU 28jan21 13 / 46

F Bullo (UCSB)

Stochastic Surveillance

MSU 28jan21 14 / 46

Fast surveillance: minimizing traversal time	Fast surveillance: minimizing traversal time		
 Minimize <i>K</i> Problem Given stationary distribution π and a weighted digraph <i>G</i> = {<i>V</i>, <i>E</i>, <i>W</i>}, min <i>K</i>^w(<i>P</i>) subject to <i>P</i> is transition matrix with stationary distribution π <i>P</i> is consistent with <i>G</i> <i>P</i> is reversible restrict the search space to a "proper" subspace a convex optimization problem with optimality guarantees a semidefinite reformation allows for utilizing existing SDP solvers 	(a) Graph topology (b) Nonreversible (c) Reversible (c) Reversibl		
F Bullo (UCSB) Stochastic Surveillance MSU 28jan21 15 / 46 Fast surveillance: minimizing traversal time	F Bullo (UCSB) Stochastic Surveillance MSU 28jan21 16 / 46 Extended applications of the mean hitting times 1/2		
<figure><figure><figure><figure><figure><figure><figure><figure></figure></figure></figure></figure></figure></figure></figure></figure>	Meeting times for two moving agents Meeting times for a pursuer and an evader (two Markov chains) $T_{ij} = \min\{k \ge 1 \mid X_k^p = X_k^e, X_0^p = i, X_0^e = j\},$ Linear equations for mean meeting times $m_{ij} = 1 + \sum_{k_1 \ne h_1} p_{ik_1}^p p_{jh_1}^e m_{k_1h_1}.$ The expected meeting time		
 a weighted graph with travel times between pairs of locations performance metric K^w(P): 22.19 (nonreversible) < 44.77 (reversible) 	$\mathcal{K}(\mathcal{P}^p,\mathcal{P}^e) = \sum_{i=1}^n \sum_{j=1}^n \pi_i^p \pi_j^e m_{ij}.$		

Extended applications of the mean h	hitting tin	hes $1/2$
-------------------------------------	-------------	-----------

Stochastic Surveillance

Extended applications of the mean hitting times 1/2

Minimize $\mathcal{K}(P^{p}, P^{e})$ Problem Given stationary distribution π^{p} , a digraph $\mathcal{G} = \{V, \mathcal{E}\}$ and P^{e} $\min_{P^{\mathsf{p}}} \mathcal{K}(P^{\mathsf{p}}, P^{\mathsf{e}})$ subject to **1** P^{p} is transition matrix with stationary distribution π^{p} (b) Strategy P^p (a) Graph topology **2** P^{p} is consistent with \mathcal{G} Figure: Optimal strategy against a randomly walking evader • irreducibility is not sufficient to ensure finite-time capture • the evader walks to neighboring locations with equal probabilities • Kemeny's constant optimization is a special case (static intruder) • surveillance strategy is sparse and has similar pattern as MinKemeny F Bullo (UCSB) Stochastic Surveillance 19 / 46 F Bullo (UCSB) MSU 28jan21 **Stochastic Surveillance** MSU 28jan21 20 / 46 Extended applications of the mean hitting times 2/2Outline Hitting times for a team of robots Hitting times for a team of N robots to a location i $T_{i_{k}, i_{k}, i} = \min\{k > 1 \mid X_{k}^{1} = i \text{ or } X_{k}^{2} = i \cdots \text{ or } X_{k}^{N} = i,$ $X_0^h = i_h$ for $h \in \{1, ..., N\}$ Introduction Linear equations for mean hitting times Overview of research program $m_{i_1...i_N,j} = 1 + \sum_{k_1 \neq i} \cdots \sum_{k_N \neq i} p_{i_1k_1}^1 \cdots p_{i_Nk_N}^N m_{k_1...k_N,j}$ **3** Max Return Time Entropy **O** Problem setup and motivation 2 Markov chains with maximum return time entropy which can be reorganized in matrix form **3** Performance of proposed solution Onclusion and future directions • the exponential growth of dimensionality becomes an issue • reliable and efficient formulation of optimization problems is lacking

MSU 28jan21

21 / 46

Unpredictable surveillance: maximizing randomness	Advantages maximizing entropy
Approach: Entropy of random variable Given a discrete random variable $X \in \{1, \ldots, k\}$, the Shannon entropy is	entropy = well-defined fundamental concept for the randomness
$\mathbb{H}(X) = -\sum_{i=1}^k p_i \log p_i.$	if the surveillance agent is highly entropic, it is hard for the intruders to learn the patterns in the behavior of the agent
	 since the behaviors of the intruders may not be exactly known/modeled in any case, optimizing the surveillance strategies against certain intruder behaviors may not be generally wise
Unbiased coin: $\mathbb{P}[X = \text{Head}] = 0.5$ $\mathbb{H}(X) = 0.693$ Biased coin: $\mathbb{P}[X = \text{Head}] = 0.75$ $\mathbb{H}(X) = 0.562$ Predictable coin: $\mathbb{P}[X = \text{Head}] = 1$ $\mathbb{H}(X) = 0$	simulations illustrate that MaxReturnEntropy chain works well for bank robber model
F Bullo (UCSB)Stochastic SurveillanceMSU 28jan2122 / 46The entropy of what variable?	F Bullo (UCSB) Stochastic Surveillance MSU 28jan21 23 / 46 #1: The entropy rate of a Markov chain
The entropy of what valuable.	
	A classic notion from information theory
#1: sequence of random locations	A classic notion from information theory entropy rate of sequence of symbols/locations $\mathbb{H}_{\text{location}}(P) = -\sum_{i=1}^{n} \pi_i \sum_{j=1}^{n} p_{ij} \log p_{ij}$
#1: sequence of random locations	A classic notion from information theory entropy rate of sequence of symbols/locations $\mathbb{H}_{\text{location}}(P) = -\sum_{i=1}^{n} \pi_i \sum_{j=1}^{n} p_{ij} \log p_{ij}$ Maximizing the location entropy rate
<figure><figure><figure></figure></figure></figure>	A classic notion from information theory entropy rate of sequence of symbols/locations $\mathbb{H}_{\text{location}}(P) = -\sum_{i=1}^{n} \pi_i \sum_{j=1}^{n} p_{ij} \log p_{ij}$ Maximizing the location entropy rate Given stationary distribution π & adjacency matrix A $\max_{P} \mathbb{H}_{\text{location}}(P)$ • P is transition matrix with stationary distribution π • P is consistent with A

MSU 28jan21 24 / 46

F Bullo (UCSB)

Stochastic Surveillance

MSU 28jan21 25 / 46

#2: Return time entropy of Markov chain	Main problem statement
Better entropy notion	
For a transition matrix P $T_{ii}(P) = $ first time agent starting at i returns back to i Return time entropy of Markov chain	Maximize $\mathbb{H}_{return-time}$ ProblemGiven stationary distribution π and a weighted digraph $\mathcal{G} = \{V, \mathcal{E}, W\}$,max $\mathbb{H}_{return-time}(P)$
Given irreducible Markov chain P over weighted digraph $\mathcal{G} = \{V, \mathcal{E}, W\}$ and stationary distribution π , the return time entropy is $\mathbb{H}_{\text{return-time}}(P) = \sum_{i=1}^{n} \pi_i \mathbb{H}(T_{ii}(P))$	subject to P is transition matrix with stationary distribution π P is consistent with G
directed graphs and travel weights F Bullo (UCSB) Stochastic Surveillance MSU 28jan21 26 / 46 Outline	F Bullo (UCSB) Stochastic Surveillance MSU 28jan21 27 / 46 Summary of results
 Problem setup and motivation Markov chains with maximum return time entropy Performance of proposed solution Conclusion and future directions 	 Maximize ℍ_{return-time} Problem Given stationary distribution π and a weighted digraph G = {V, E, W}, max ℍ_{return-time}(P) subject to P is transition matrix with stationary distribution π. P is consistent with G. Thm 1: Hitting time probability dynamics Thm 2: Max ℍ_{return-time} is well-posed Thm 3: Upper bound and solution for complete graph Thm 4: Relations with the location entropy rate Thm 5: Truncation, approximation and computation

$$T_{ij} = \min\left\{\sum_{s=0}^{k-1} w_{X_s X_{s+1}} \mid X_0 = i, X_k = j, k \ge 1\right\}$$
$$F_k(i,j) = \mathbb{P}[T_{ij} = k]$$
$$\mathbb{H}_{\text{return-time}}(T_{ii}) = -\sum_{k=1}^{\infty} F_k(i,i) \log F_k(i,i)$$

Recursive formula, for $k \in \mathbb{Z}_{>0}$,

$$F_{k}(i,j) = p_{ij} \mathbf{1}_{\{k=w_{ij}\}} + \sum_{h=1,h\neq j}^{n} p_{ih} F_{k-w_{ih}}(h,j)$$
(1)

where $\mathbf{1}_{\{\cdot\}}$ indicator function and where $F_k(i,j) = 0$ for all $k \leq 0$ and i,j

F Bullo (UCSB)

Thm 1: Hitting time probability dynamics

Given an irreducible Markov chain $P \in \mathbb{R}^{n \times n}$ on weighted digraph \mathcal{G} ,

Stochastic Surveillance

In the probabilities satisfy

$$\operatorname{vec}(F_k) = \sum_{i,j=1}^{n} p_{ij}([\mathbb{1}_n - \mathbb{e}_i] \otimes \mathbb{e}_i \mathbb{e}_j^\top) \operatorname{vec}(F_{k-w_{ij}}) + \operatorname{vec}(P \circ \mathbf{1}_{\{k\mathbb{1}_n \mathbb{1}_n^\top = W\}})$$

2 discrete-time affine system with delays – is exponentially stable

Little example with summable series Only other example is complete homogeneous graph

For this special case

F Bullo (UCSB)

F

$$P(T_{11} = k) = \begin{cases} p_{11}, & \text{if } k = 1, \\ p_{12}p_{22}^{k-2}p_{21}, & \text{if } k \ge 2. \end{cases}$$

$$\mathbb{H}(T_{11}) = -p_{11} \log p_{11} - p_{12} \log(p_{12}p_{21}) - \frac{p_{12}p_{22} \log p_{22}}{p_{21}} \\ \mathbb{H}_{\text{return-time}}(P) = -2\pi_1 p_{11} \log(p_{11}) - 2\pi_2 p_{22} \log(p_{22}) \\ -2\pi_1 p_{12} \log(p_{12}) - 2\pi_2 p_{21} \log(p_{21}).$$

Stochastic Surveillance

In general, $\mathbb{H}_{\text{return-time}}(P)$ does not admit a closed form.

MSU 28jan21 30 / 46

Thm 2: Max $\mathbb{H}_{return-time}$ is well-posed

 $\mathbb{H}_{\text{return-time}}$ is a continuous function over a compact set

The uniform limit of any sequence of continuous functions is continuous.

Consider a sequence of functions $\{f_k : \mathcal{X} \to \mathbb{R}\}_{k \in \mathbb{Z}_{>0}}$. If there exists a sequence of Weierstrass scalars $\{M_k\}_{k \in \mathbb{Z}_{>0}}$ such that

$$\sum_{k=1}^{\infty} M_k < \infty \quad \text{and} \quad |f_k(x)| \le M_k, \quad \text{for all } x \in \mathcal{X}, k \in \mathbb{Z}_{>0},$$

hen $\sum_{k=1}^{\infty} f_k$ converges uniformly. Today $f_k = F_k(i, i) \log F_k(i, i)$

Given compact set of Schur $\mathcal{A} \subset \mathbb{R}^{n \times n}$, let $\rho_{\mathcal{A}} := \max_{A \in \mathcal{A}} \rho(A) < 1$. For any $\lambda \in (\rho_{\mathcal{A}}, 1)$ and for any $\| \cdot \|$, there exists c > 0 s.t.

$$\|A^k\|\leq c\lambda^k, \quad ext{for all } A\in\mathcal{A} ext{ and } k\in\mathbb{Z}_{\geq 0}.$$

MSU 28jan21

29 / 46

tl

Gradient projection algorithm	Outline
 select: minimum edge weight ε ≪ 1, select: truncation accuracy η ≪ 1, and select: initial condition P₀ in P^ε_{G,π} for iteration parameter s = 0 : (number-of-steps) do {G_k}_{k∈{1,,N_η} := solution to Thm 4 at P_s Δ_s := gradient of (H_{return-time})_{trunc,η}(P_s) P_{s+1} := projection_{P^e_{G,π}}(P_s + (step size) · Δ_s) end for 	 Problem setup and motivation Markov chains with maximum return time entropy Performance of proposed solution Conclusion and future directions
F Bullo (UCSB) Stochastic Surveillance MSU 28jan21 37 / 46	Comparison over a ring and a grid graph 1/2
Compare three chains	Comparison over a ring and a grid graph 1/2
• MaxReturnEntropy $\max_{P} \mathbb{H}_{return-time}(P)$	Unit travel times. Ring weights = 4 high, 4 low. Grid weights \sim node degree.
MaxLocationEntropy $\max_{P} \mathbb{H}_{\text{location}}(P)$ entropy rate of sequence of symbols/locations $\mathbb{H}_{\text{location}}(P) = -\sum_{i=1}^{n} \pi_{i} \sum_{j=1}^{n} p_{ij} \log p_{ij}$	(a) MaxReturnEntropy (b) MaxLocationEntropy (c) MinCaptureTime
3 MinCaptureTime: min $\mathbb{E}[K(P)]$ Minimize the mean capture time: $k_i = \sum_i \mathbb{E}[T_{ij}]\pi_j = k_j$	$0.3 \\ 0.25 \\ 0.45 \\ 0.$

Comparison over a ring and a grid graph 2/2

Graph	Markov chains	$\mathbb{H}_{return-time}(P)$	$\mathbb{H}_{location}(P)$	Capture Time
8-node ring	MaxReturnEntropy	2.49	0.86	10.04
	MaxLocationEntropy	2.35	0.98	19.53
	MinCaptureTime	1.96	0.46	6.16
4-by-4 grid	MaxReturnEntropy	3.65	0.94	16.35
	MaxLocationEntropy	3.28	1.40	30.86
	MinCaptureTime	2.09	0.21	10.09

MaxReturnEntropy chain combines speed and unpredictability. MaxReturnEntropy is **nonreversible** and thus faster in general.

Comparison over San Francisco map 1/3

Stochastic surveillance: Motivating example 2/2

- San Francisco
- crime rate at 12 locations
- complete by-car travel times (quantized in minutes)

BANK

• $\pi \sim$ crime rate

Rational intruder (bank robber model):

- Picks a node *i* with probability π_i for duration τ
- Learns the inter-visit time statistics of police
- Attacks at time with minimum detection likelihood

43 / 46

Stochastic Surveillance

Comparison in catching the rational intruder 1/2

Comparison in catching the rational intruder 2/2

Rational intruder:

F Bullo (UCSB)

- Picks a node i to attack with probability π_i
- Collects the inter-visit (return) time statistics of the agent
- Attacks when the agent is absent for s_i timesteps since last visit

$$s_i = \underset{0 \leq s \leq S_i}{\operatorname{argmin}} \Big\{ \sum_{k=1}^{\tau} \mathbb{P}(T_{ii} = s + k \mid T_{ii} > s) \Big\},$$

where τ is the attack duration and S_i is determined by the degree of impatience δ , i.e., $\mathbb{P}(T_{ii} \geq S_i) \leq \delta$

Stochastic Surveillance

BOTTOM LINE:

- 4 × 4 grid: MaxReturnEntropy > MaxLocationEntropy
- 4×4 grid: MaxReturnEntropy > MinCaptureTime for short attacks
- SF w-dig: MaxReturnEntropy > MinCaptureTime for short attacks

F Bullo (UCSB)	Stochastic Surveillance	MSU 28jan21	44 / 46	F Bullo (UCSB)	Stochastic Surveillance	MSU 28jan21	45 / 46
Conclusion and fut	ure directions						
Conclusion							
 new metric for unpr 	edictability in stochastic su	urveillance					
analysis and compute	ation for maximum return	time entropy chai	n				
applicability (and control	mparison) in stochastic su	rveillance					
Ongoing and Future W	/ork						
 Trade-of between un 	predictability and speed						
Stackelberg games							
Multi-vehicle resource	ce allocation						
Oiscretization strate	gies						
5							

MSU 28jan21

46 / 46