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New text “Lectures on Robotic Planning and Kinematics”

New text “Lectures on Network Systems”

Lectures on

Network Systems

Francesco Bullo
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Jorge Cortés

Florian Dorfler

Sonia Martinez

Stochastic

Lectures on Network Systems, Francesco Bullo,
KDP, 1.4 edition, 2020, ISBN 978-1-986425-64-3

1. Self-Published and Print-on-Demand at:
https://www.amazon.com/dp/1986425649

2. PDF Freely available at
http://motion.me.ucsb.edu/book-1ns:
For students: free PDF for download
For instructors: slides and solution manual

3. incorporates lessons from 2 decades of research:
robotic multi-agent, social networks, power grids

version 1.4

332 pages

171 exercises, 220 pages solution manual
6K downloads Jun 2016 - Dec 2020

50 instructors in 17 countries
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Lectures on Lectures on Robotic Planning and Kinematics, ver .92
- - - - For students: free PDF for download
Robotic Planning and Kinematics

For instructors: slides and answer keys
http://motion.me.ucsb.edu/book-1lrpk/

Robotic Planning:
@ Sensor-based planning
@ Motion planning via decomposition and search
© Configuration spaces
@ Sampling and collision detetion
© Motion planning via sampling
Robotic Kinematics:
@ Intro to kinematics

@ Rotation matrices
Francesco Bullo

Stephen L. Smith

@ Displacement matrices and inverse kinematics

@ Linear and angular velocities
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© Introduction

@ Overview of research program
© Max Return Time Entropy




Stochastic surveillance: Motivating example 1/2 Stochastic surveillance: Motivating example 2/2

@ San Francisco
@ crime rate at 12 locations

@ all-to-all driving times
(quantized in minutes)

@ define m ~ crime rate

Rational intruder (bank robber model): /
e Markovian surveillance agents with visit frequency constraints ) ( ) N ) ) BANE
. . . @ Picks a node i with probability 7; for duration 7
e Intelligent intruders can sense position/observe path of agent ) o o )
@ Learns the inter-visit time statistics of police

@ Goal: fast unpredictable motion patterns for the surveillance agents o Attacks at time with minimum detection likelihood
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Approach: Markov chains for routing and planning Fundamental objects: first hitting times

First hitting time from location / to location j

unweighted: Tj = min {k | Xo = i, X = j, k > 1}

P12 . . _ 1 | |

P21

Discrete-time affine system with delays

Advantages of adopting Markov chains:
Let Fi(i,j) =P(T;j = k) and FY(i,j) = P(TZ" = k), for k € Z-y,

© quantify and optimize speed, randomness & unpredictability

@ vast body of work on Markov chains (eg, fastest mixing) g
Fi(i,j) = pilik=1) + Z pinFr—1(h, )
h=1,h+j

FI\(N(IL/) = pfjl{k:w,-j} aF Z Pthl\(N_W’_h(h,_j)
h=1,hj

© finite-dimensional opt problem

@ note: TSP may be written as Markov transition matrix

where 1y, indicator function and Fy(i,j) = 0 for all k <0 and i,
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Fundamental objects: first hitting times

Fundamental objects: stationary distribution

Mean first hitting times

my =E[Ty],  mj =E[Ty

Linear matrix equation for mean hitting times

By conditioning on the first step
mij = pj+ ) pi(L+ myg)
ki

In matrix form
M =1,1} + P(M — diag(M)),

where diag(-) takes the diagonal elements and forms a diagonal matrix
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Approach 1: Fast surveillance: minimizing traversal time

Kemeny's constant: average time to travel between locations

IC(P) = ZZTI’;ﬂ'jmij

i=1 j=1

’CW(P) = ZZTF,‘ijE-/ =

i=1 j=1

(7T (P o W)1,)-K(P)

i

Approach 2: Unpredictable surveillance: maximizing randomness

@ entropy rate (classic notion)

7-[rate('D) - - Z Ui Z Pij IOg Pij
i=1 j=1

@ return time entropy

Hret—time(P) - ZH(TI)N)
i=1

Perron-Frobenius theorem

Let P € R™" be an irreducible row-stochastic matrix, then there exists a
T €RTyand 71, =1 such that

7 P=nmxl

The stationary distribution encodes the visit frequency information

t
1 as t—o0
1 E l1¢x,—iy — ™ almost surely

k=0

Reversible Markov chains
A Markov chain P is reversible if for all i,j € {1,...,n}

TiPjj = TjPji
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Fast surveillance: minimizing traversal time
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Minimize X Problem

Given stationary distribution 7 and a weighted digraph G = {V, &, W},
in K"(P
min (P)
subject to

@ P is transition matrix with stationary distribution 7
@ P is consistent with G

e irreducibility automatically ensured (reducible solution has oo value)
o a difficult optimization problem of combinatorial nature

@ numerical solutions available without optimality guarantees
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Fast surveillance: minimizing traversal time

Fast surveillance: minimizing traversal time

Minimize K Problem

Given stationary distribution 7 and a weighted digraph G = {V, &, W},
: w(p
min KY(P)

subject to
© P is transition matrix with stationary distribution 7
@ P is consistent with G
© P is reversible

@ restrict the search space to a “proper” subspace
@ a convex optimization problem with optimality guarantees

@ a semidefinite reformation allows for utilizing existing SDP solvers
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(a) SF map (b) Nonreversible (c) Reversible

@ San Francisco map with crime rate data at 12 locations
@ a weighted graph with travel times between pairs of locations
e performance metric K% (P): 22.19 (nonreversible) < 44.77 (reversible)

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9

© @ N o o s w N e

© @ N o o s w N e

(a) Graph topology (b) Nonreversible (c) Reversible

@ the nonreversible solution has a sparser pattern
e performance metric IC(P): 6.78 (nonreversible) < 12.43 (reversible)

o tradeoffs between computational tractability and performance metric
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Meeting times for two moving agents

Meeting times for a pursuer and an evader (two Markov chains)
T; =min{k > 1| X} = X5, X0 =i, X5 =/}
Linear equations for mean meeting times

L P e
mj =1+ § : Pik, Pjhy Mkyhy -
ki#hy

The expected meeting time

n n
K(PP,PS)=> " nPrsmy.

i=1 j=1

F Bullo (UCSB)

Stochastic Surveillance MSU 28jan21 17 / 46

F Bullo (UCSB) Stochastic Surveillance MSU 28jan21




Extended applications of the mean hitting times 1/2

Minimize IC(PP, P¢) Problem

Given stationary distribution 7P, a digraph G = {V,£} and P*®

min IC(PP, P°)
Pp

subject to
© PP is transition matrix with stationary distribution 7P
@ PP is consistent with G

@ irreducibility is not sufficient to ensure finite-time capture

e Kemeny's constant optimization is a special case (static intruder)
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Extended applications of the mean hitting times 2/2

Hitting times for a team of robots

Hitting times for a team of N robots to a location j

Thinj =min{k > 1| Xt =jor X2 =j-- or X} =,
Xg =iy for he {1,...,N}}

Linear equations for mean hitting times

_ § 1 N .
mj, _iyj = 1+ Z T Pirky = Pinky Mky...knsj
ki#j kn#j

which can be reorganized in matrix form

@ the exponential growth of dimensionality becomes an issue

@ reliable and efficient formulation of optimization problems is lacking
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Extended applications of the mean hitting times 1/2

7
(a) Graph topology (b) Strategy PP

Figure: Optimal strategy against a randomly walking evader

@ the evader walks to neighboring locations with equal probabilities

@ surveillance strategy is sparse and has similar pattern as MinKemeny
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© Introduction

@ Overview of research program
© Max Return Time Entropy
©® Problem setup and motivation
@ Markov chains with maximum return time entropy

©® Performance of proposed solution
@ Conclusion and future directions




Unpredictable surveillance: maximizing randomness

Approach: Entropy of random variable

Given a discrete random variable X € {1,..., k}, the Shannon entropy is

k
H(X) == pilogpi.
i=1

Unbiased coin: P[X = Head] = 0.5 H(X) = 0.693
Biased coin: P[X = Head] = 0.75 H(X) = 0.562
Predictable coin: P[X = Head] =1 H(X)=0
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The entropy of what variable?
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#1:

sequence of random locations

Q

Google
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Advantages maximizing entropy

© entropy = well-defined fundamental concept for the randomness

@ if the surveillance agent is highly entropic, it is hard for the intruders
to learn the patterns in the behavior of the agent

© since the behaviors of the intruders may not be exactly
known /modeled in any case, optimizing the surveillance strategies
against certain intruder behaviors may not be generally wise

@ simulations illustrate that MaxReturnEntropy chain works well for
bank robber model

Stochastic Surveillance

#1:. The entropy rate of a Markov chain

A classic notion from information theory
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entropy rate of sequence of symbols/locations

n n

Hlocation(P) - — Zi:1 ﬂ'izjzl Pij Iog Pij

Maximizing the location entropy rate

Given stationary distribution 7 & adjacency matrix A

mgx Hlocation(P)

@ P is transition matrix with stationary distribution 7
@ P is consistent with A

MSU 28jan21 24 / 46
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#2: Return time entropy of Markov chain

Better entropy notion

For a transition matrix P

Tii(P) = first time agent starting at / returns back to i

Given irreducible Markov chain P over weighted digraph G = {V,&, W}
and stationary distribution 7, the return time entropy is

Hreturn-time('D) = Z?T,H(T,,(P))
i=1

Return time entropy of Markov chain

Main problem statement

Maximize Hyetyrn-time Problem

Given stationary distribution 7 and a weighted digraph G = {V, &, W},

mgx Pz ( P)

subject to
@ P is transition matrix with stationary distribution 7
@ P is consistent with G

directed graphs and travel weights
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© Problem setup and motivation
© Markov chains with maximum return time entropy
© Performance of proposed solution

@ Conclusion and future directions
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Summary of results

Maximize Hyetyrn-time Problem

Given stationary distribution 7 and a weighted digraph G = {V, &, W},

MSU 28jan21 27 / 46

mgx Hreturn—time(P)

subject to
@ P is transition matrix with stationary distribution 7.
@ P is consistent with G.

Thm 1:
Thm 2:
Thm 3:
Thm 4:
Thm 5:

Hitting time probability dynamics

Max Hieturn-time 1S well-posed

Upper bound and solution for complete graph
Relations with the location entropy rate

Truncation, approximation and computation
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‘ Basic ideas

. k—1 . .
Tij = min { Zs:o WX, X, 11 |X0 = I,Xk =/, k > 1}
Fi(i,j) = P[Tjj = k]

9
Hreturn—time(Tii) - - Z Fk(i; ’) |Og Fk(ia ’)
k=1

Recursive formula, for k € Z~,

Fi(i,J) = pilik=w;y + Z PinFk—wy,(h,J) (1)
h=1,h#j

where 1{.} indicator function and
where Fi(i,j) =0 for all k <0 and /,j
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Thm 1: Hitting time probability dynamics

Given an irreducible Markov chain P € R™" on weighted digraph G,
O hitting time probabilities satisfy

n
vec(Fy) = Z pii([1n — el @ eie] ) vec(Fr_w;)
ij=1

+ vec(Polgg,1m—w))

@ discrete-time affine system with delays — is exponentially stable

Little example with summable series

Only other example is complete homogeneous graph

P12
p21
For this special case
P11, if k= 17
P(Ti=k)= Ko )
P12Pys P21, if k> 2.

p12p22 log p22
P21
Hreturn-time(P) = —2m1p11 log(p11) — 2m2p22 log(p22)
— 2m1p12 log(p12) — 2mapo1 log(p21).

H(T11) = —p11log p11 — p12 log(pi2p21) —

In general, Hieturn-time(P) does not admit a closed form.
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Thm 2: Max Hyeturn-time is Well-posed

Hreturn-time 1S @ continuous function over a compact set

The uniform limit of any sequence of continuous functions is continuous. J

Consider a sequence of functions {fi : X = R}ycz_,. If there exists a
sequence of Weierstrass scalars { My }xez., such that

Zf_l Mi < oo and |fi(x)| < My, forall x € X,k € Zso,

then >"77 , fx converges uniformly. Today i = Fy(i,i)log Fi(i, 1)

o

Given compact set of Schur A C R™", let p4 := maxaec4 p(A) < 1. For
any A € (p4,1) and for any || - ||, there exists ¢ > 0 s.t.

|AK|| < ek, forall A€ A and k € Zs.
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at fixed mean p, maxentropic distribution over N is

geometric P[k] = (1 — 1/u)*"1/p

Thm 3: Upper bound and solution for complete graph

© the return time entropy function is upper bounded by

n

Hreturn—time(P) < - Z(Tri Iog i + (1 - 7Ti) |Og(1 - 7Ti))
i=1

Q if G is complete, the upper bound is achieved with P = 1,7 "

F Bullo (UCSB)
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Given accuracy 7, truncation duration N, and tail probability satisfy

Ny =20 =1 = P[Ty > Ny + 1] <
T min

The conditional return time entropy is of interest:

(Hreturn time cond M 'D) Zﬂ-l Tu‘ Tii < Nr])
n Nn -
Fi(i, i) Fi(i, i)
==X m Z W g,
=t ZFk(”’) ZFk(’a’)
k=1 k=1
In practice, the truncated return time entropy is
n Nn
(Hreturn-time)trunc,n(P) = - Z i Z Fk(i; ’) |Og Fk(i> ’)
i=1 k=1

Thm 4: Relations with the location entropy rate

Given an irreducible Markov chain P € R"*" over an unweighted digraph
G and stationary distribution 7, Hyeturn-time(P) and Hiocation(P) satisfy

Hlocation(P) S Hreturn-time(P) S n Hlocation(P)-

lower bound: due to concavity of -x log x

lower bound: achieved with P is a permutation matrix, 0 = 0

upper bound: proof by analyzing the entropy of trajectories

upper bound: achieved when different return paths = different lengths

Lesson: Hyeturn-time(P) can be very different from Hiocation(P)

Stochastic Surveillance
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Thm 5: Truncation, approximation and computation

Given a strongly connected weighted digraph G, stationary distribution T,

© Asymptotic agreement

Hreturn—time(P) = lim (Hreturn-time)cond,n(P) - Iim+(Hreturn—time)trunc,n(P)

n—0t n—0

@ The gradient of (Hreturn-time )trunc,n(P) can be computed via

n Nn

where Gk = [M 0 vec(Fy)

O(Fi(i,i)log Fi(i, 1))
OF (i, 1)

Hre urn-time Jtrunc P
vec(a( turn-time )trunc,n ( )) _ Gy €(i—1)n+

oP

op11 o OPnn

} satisfies a delayed linear system

o

Proof: exp stability of affine delayed system + uniform bound + chain rule

F Bullo (UCSB)
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Gradient projection algorithm

1: select: minimum edge weight ¢ < 1,
select: truncation accuracy n < 1, and
select: initial condition Po in Pg

for iteration parameter s = 0 : (number-of-steps) do
{Gk}ke{l,...,Nn} := solution to Thm 4 at P;

As = gradient of (Hreturn-time)trunc,n(Ps)
P51 := projectionpe (Ps + (step size) - Ag)

end for

F Bullo (UCSB)
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Q@ MaxReturnEntropy
m,gx Hreturn—time(P)

© MaxLocationEntropy
mI;iX Hlocation(P)

entropy rate of sequence of symbols/locations
n n
Hlocation('D) = - Z Wiz Pij |Og Pij
, =

i=1

© MinCaptureTime: mlin E[K(P)]

Minimize the mean capture time:

k=Y ElTidm =k
i

Stochastic Surveillance
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© Problem setup and motivation
© Markov chains with maximum return time entropy
© Performance of proposed solution

@ Conclusion and future directions

Comparison over a ring and a grid graph 1/2

Unit travel times.
Ring weights = 4 high, 4 low. Grid weights ~ node degree.

0.2

0.2

o
i
]
o
i
&

o
o

Return Proability
o
a

Return Proability
Return Proability

o
°
@

0.05

0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Return times Return times Return times

(a) MaxReturnEntropy (b) MaxLocationEntropy (c) MinCaptureTime

. 3
=

0.1
0.05 ”
Ll
0 10 20 30 40 50 60 0 10 20 30 40 50 60 0 10 20 30 40 50 60
Return times Return times Return times

Return Proability
Return Proability
Return Proability

o

2

o

MSU 28jan21 39 / 46

NA o D NA o o oo L o
F Bullo (UCSB) Stochastic Surveillance




Comparison over a ring and a grid graph 2/2

. Capture
Graph Markov chains Hreturn-time(P) | Hiocation(P) TI.D
ime
8-node ring | MaxReturnEntropy 2.49 0.86 10.04
MaxLocationEntropy 2.35 0.98 19.53
MinCaptureTime 1.96 0.46 6.16
MaxReturnEntropy 3.65 0.94 16.35
4-by-4 grid | MaxLocationEntropy 3.28 1.40 30.86
MinCaptureTime 2.09 0.21 10.09
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Comparison over San Francisco map 2/3
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MaxReturnEntropy chain combines speed and unpredictability.
MaxReturnEntropy is nonreversible and thus faster in general.
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(g) MaxReturnEntropy (h) MinCaptureTime

Figure: Pixel image of the Markov chains with row sum being 1
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@ MinCaptureTime chain is close to a shortest tour with self weights

@ MaxReturnEntropy chain is dense and creates more return entropy

Stochastic Surveillance
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Comparison over San Francisco map 1/3

Stochastic surveillance: Motivating example 2/2

@ San Francisco
@ crime rate at 12 locations

@ complete by-car travel times
(quantized in minutes)

@ T ~ Ccrime rate

ANK
MSU 28jan21

Comparison over San Francisco map 3/3: high vs. low

Rational intruder (bank robber model):

@ Picks a node i with probability m; for duration 7

@ Learns the inter-visit time statistics of police

@ Attacks at time with minimum detection likelihood
Stochastic Surveillance
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MaxReturnEntropy versus MinCaptureTime: high importance node
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Comparison in catching the rational intruder 1/2

Comparison in catching the rational intruder 2/2

Rational intruder:
@ Picks a node / to attack with probability 7;
@ Collects the inter-visit (return) time statistics of the agent
@ Attacks when the agent is absent for s; timesteps since last visit

s,-:armin{ ! P(T;=s+k T,-,->s},
orgmir Zk:l( | )

where 7 is the attack duration and S; is determined by the degree of
impatience §, i.e., P(T;; > S5;) <

ANK
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Conclusion and future directions

Conclusion

© new metric for unpredictability in stochastic surveillance
@ analysis and computation for maximum return time entropy chain

© applicability (and comparison) in stochastic surveillance

Ongoing and Future Work
@ Trade-of between unpredictability and speed
@ Stackelberg games
© Multi-vehicle resource allocation
© Discretization strategies

o .
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1 T —
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BOTTOM LINE:
@ 4 x 4 grid: MaxReturnEntropy > MaxLocationEntropy
@ 4 x 4 grid: MaxReturnEntropy > MinCaptureTime for short attacks
e SF w-dig: MaxReturnEntropy > MinCaptureTime for short attacks
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