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Lectures on Network Systems

Lectures on Network Systems, Francesco Bullo,
Createspace, 1 edition, 2018, ISBN 978-1-986425-64-3

Lectures on
1. Self-Published and Print-on-Demand at:
NetWOI'k Systems https://www.amazon.com/dp/1986425649

2. PDF Freely available at
http://motion.me.ucsb.edu/book-1ns:
For students: free PDF for download
For instructors: slides, classnotes, and answer keys

3. incorporates lessons from 2 decades of research:
robotic multi-agent, social networks, power grids

4. now v1.3
v2.0 will expand nonlinear coverage

Francesco Bullo

With contributions by 316 pages )
Jorge Cortés 205 pages solution manual
Florian Dorfler 4.4K downloads Jun 2016-Aug 2019
soniaMartines 164 exercises with solutions

33 instructors in 15 countries
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Linear Network Systems and Metzler Matrices

X. Duan, S. Jafarpour, and F. Bullo. Graph-theoretic small gain theorems for
Metzler matrices and monotone systems.

IEEE Transactions on Automatic Control, June 2019.

Submitted.

URL: https://arxiv.org/pdf/1905.05868.pdf

9 An emerging theory for Nonlinear Network Systems )

© Kuramoto Synchronization (existence and lack of uniqueness) ]
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Linear network systems

network structure <= function = asymptotic behavior

Model Dynamics Asy Behavior Graph property
averaging flow x = —Lx consensus 3 globally reach node
(Abelson '64) Laplauan matrix

network flow x=—LTx stationary dis- 3 globally reach node
(Noy Meir '73) transpose Laplacian tribution

network flow with x = Cx stability outflow-connected

decay (outflows) C=—L" —diag(d)
compartmental matrix

network flow with x = Mx stability unknown
decay/growth M= —LT +diag(g — d)
Metzler matrix
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Network flow systems

evaporation, drainage, runoff —

uptake ——+| plants transpiration—s

drinking herbivory
{

;~ animals evaporation—

Water flow model for a desert ecosystem (Noy-Meir '73)

C compartmental matrix:

qi = Zj_ (Fjmi — Fisj) — Fiso + u;

@ Fij = fiqi, F=[fj]

= (F" —diag(F1,+f)) q+u

=:C

quasi-positive (off-diag > 0) and non-positive column sums (fy > 0)
analysis tools: PF for quasi-positive, inverse positivity, algebraic graph

system (= each condensed sink)

is outflow-connected

<) C is Hurwitz

[:> lim: oo q(t) = —Ctu>0

(-C7'u); >0 <= ith compartment is inflow-connected
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Stability of network flow systems

A Metzler M is Hurwitz iff any following equivalent condition hold:
O there exists £ € R” such that £ > 0, and M¢ < 0;
@ there exists ) € R” such that > 0, and n' M < 0/ ; or
© there exists a diagonal matrix P = 0 such that M" P + PM < 0.

> > >
(a) maxieqa,...,n} Xi/&i (b) " x (c) x " Px

Goal: graph-theoretic conditions for stability
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Reducible and acyclic graphs
Reducible graphs

M € R™" is Hurwitz

0

Strongly connected components
are Hurwitz

Implication: large-scale system may be decomposed into smaller systems

Directed acyclic graphs

kg M € R"™*" is Hurwitz
ce»oo i
g—»g diagonal entries are negative

Implication: study cycles!

v
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Basic ideas: a simple cycle

mii mio 0 cee 0
0 moy  Mo3 cee 0

M=| :
0 0 e Mp_1,n—1 Mp—_1,n
Mp1 0 e 0 Mpp

M Hurwitz <— <m12><m23>.”<m,,1><1
—mi1 —mo2 —Mpnp

° —7'"”"4'” represents a “gain” for subsystem i with respect to j

where

@ test: composition of “gains” along the cycle is less than 1

v
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Basic ideas: Small-gain network stability
Cyclic Small-Gain Theorem

a network of systems with input is ISS if

cycle gain <1

about each simple cycle,
for appropriate interconnection gains

@ V. Lakshmikantham, V. M. Matrosov, and S. Sivasundaram. Vector Lyapunov
Functions and Stability Analysis of Nonlinear Systems.
Kluwer Academic Publishers, 1991

@ S. N. Dashkovskiy, B. S. Riiffer, and F. R. Wirth. Small gain theorems for large
scale systems and construction of ISS Lyapunov functions.
SIAM Journal on Control and Optimization, 48(6):4089-4118, 2010.
doi:10.1137/090746483

@ T. Liu, D. J. Hill, and Z.-P. Jiang. Lyapunov formulation of ISS cyclic-small-gain in
continuous-time dynamical networks.
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Summary of results

Thm 1: Input-to-state interconnection gains for Metzler systems
Thm 2: Max-interconnection gains and graph-theoretic conditions

Thm 3: Sum-interconnection gains and graph-theoretic conditions

X. Duan, S. Jafarpour, and F. Bullo. Graph-theoretic small gain theorems for Metzler
matrices and monotone systems.

IEEE Transactions on Automatic Control, June 2019.
Submitted.

URL: https://arxiv.org/pdf/1905.05868.pdf
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Possible notions of ISS gains

An interconnected nonlinear system with subsystem dynamics

).(i = f;'(Xivx./\f,'v U,‘), Vi e {17 N '7n}'

system has sum-interconnection gains {~;} if

()l < Bi(i(O) ) + D villixilio.) + villluilloo)-

JEN;

where 3; € KL, v € K, and v; € K.

system has max-interconnection gains {1} if

xi(t)| < jn;%{ﬁf(lxl'(o)l,t), Dii(Ixillo.4), billluillso)}-

where 3; € KL, v € K, and 9; € K.

v
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Thm 1: ISS gains for Metzler systems
Thm 1: ISS gains for Metzler systems

For Metzler system x = Mx + u, M with negative diagonals,
@ sum-interconnection gains {v;} satisfy

m; : .
— <, Vie{l,...,n}jeN;

—

@ max-interconnection gains {1);;} satisfy

mij -1 .
Z<_mﬁ>% <1, Vie{1,...,n}

For ¢ = (i1, 2, ..., Ik, 1) be a simple cycle
© the sum-cycle gain of cis Ye = (7i2i1) (7i3i2) s (’)/I'll'k)
@ a max-cycle gain of c is ¥c = (Viriy) (Visiy) - - - (Viyi,)
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Thm 2: Max-cycle gains and graph conditions
Thm 2: Conditions based on max-cycle gains

Given an irreducible Metzler matrix M € R™" with negative diagonal
elements and the set of simple cycles ®, the followings are equivalent:

Q@ M is Hurwitz;
@ for every i € V and j € NV, there exists 1 > 0 such that

mij 1 )
Z(_mh,)w,-j <1, vie{l,...n},

¢C<1) VCGCD

@ ‘“cycle gain < 1 about each simple cycle” is now IFF

@ convex problem
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Thm 3: Sum-cycle gains and graph conditions
Thm 3: Conditions based on sum-cycle gains

Given an irreducible Metzler matrix M € R™ " with negative diagonal
elements, the followings are equivalent:
@ M is Hurwitz;
@ for each i, let ®; be simple cycles over {1,...,i} (or renumbered)
i—1
Z Ya — Z YaYe T F Z (1) Ve o Ve, <1
ceP; {c1,0}CP; {Cl,...,crl.}Cq),'
ciNe=0 ciNe=0

@ condition 2 <= certain sums of products of gains < 1

@ computation of sum-cycle gains and “sums of products” is
straightforward (not iterative)
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Thm 3: Example

. Vo= {14} = {10 <1)
c Vs =1{1,4,2} = {74 +7. <1}
Vi=1{1,4,2,3} = {74 +74 <L,
€ c Ya T Yoo + Ve T Yoo — Ya Ve < 1}

Hence, stability certificate

Ya + Ve <1
Yo + Ve +Ves + Ver — VoV <1
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© Linear Network Systems and Metzler Matrices )

An emerging theory for Nonlinear Network Systems

[2) F. Bullo. Lectures on Network Systems.
Kindle Direct Publishing, 1.3 edition, July 2019.
With contributions by J. Cortés, F. Dorfler, and S. Martinez.
URL: http://motion.me.ucsb.edu/book-1ns

© Kuramoto Synchronization (existence and lack of uniqueness) ]
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Nonlinear network systems

Rich variety of emerging behaviors
@ equilibria / limit cycles / extinction in populations dynamics
@ epidemic outbreaks in spreading processes

© synchrony and multi-stability in coupled oscillators

Rich variety of analysis tools
@ nonlinear stability theory
@ passivity, small gain theorems, and dissipativity

© contractivity and monotonicity

B (infection rate)
Susceptible

+ (recovery rate)
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Example: Population systems in ecology

(Vito Volterra, Universita’ di Torino, 1860-1940)

Lotka-Volterra: x; = quantity/density

x bt ZJ. ajjX;
A~ ‘ ol 2 -
x = diag(x) (Ax + b)

Mutualism clownfish / anemones (Takeuchi et al '78)
”

interaction matrix A:
(4, +) mutualism, (4, —) predation, (—, —) competition
rich behavior: persistence, extinction, equilibria, periodic orbits, ...

© mutualism: a; > 0

@ ceither unbounded evolution or

:> exists unique steady state —A~1bh > 0
lims—y00 x(t) = —A~1b from all x(0) > 0
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Dichotomy in mutualistic Lotka-Volterra system

—— /
%/i/?,;; \\ NN \\\ ,},/ Lz null lrnT
N iv%//'j'/j § i:i\\: — 7 S
e /A ==
et i / | (’/////:/ ,‘\\\\:I —=
W //J{\m e W /tr N ——
N i /{& \ N(////(/// j/\ T
T 7 T
e /;(é N ////'«J//:‘\ e
Z?=7T1/a11 o1 = —ri/an
Case I: a;2 > 0, a1 > 0, Case ll: a;2 > 0, a1 > 0,
ai2a2 > aiiax. I here exists no aipaz < aiiax. There exists a
positive equilibrium point. All unique positive equilibrium point.
trajectories starting in R% diverge. All trajectories starting in R2

converge to the equilibrium point.
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Research questions in Nonlinear Network Systems

what are key example systems?

what is a useful underlying structure?

what is a practical, simple, rich technical approach?

how do we treat dichotomy and richer behaviors?

000 O©60

how do we automatically generate Lyapunov functions?
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Example systems

Kuramoto oscillators ('75)
é,' = Wj — Zj:l ajj sin(9,- - GJ)

Metzler Jac: phase cohesive region

Ex: active power flow, motion patterns

Yorke network propagation (’76)

x = B(I, — diag(x)) Ax — yx

Metzler Jac and positive
Ex: network SIR, patchy SIS

Lotka-Volterra population ('20)
x = diag(x)(Ax +r)
Metzler Jac: mutualistic interactions

Ex:

with 2 genes

biochemical networks, repressilator

Daganzo cell transmission (’'94)
pe = £"(p) — £2*(p)

Metzler Jac: free flow region
Ex: monotone distributed routing (Como,
Savla, et al), Maeda '78, Sandberg '78

).(,':f;'(Xl,.--,Xn,U,’) =

Metzler Jac and positive

Matrosov interconnection of ISS systems ('71)

v<—-A(v)+T(v)+ G(w)
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A review of Contraction Theory

given norm, the matrix measure of A is

|+ hA -1
o W+ hAl— 1

A) = |
,u( ) hl>0+ h

assume: vector field f is infinitesimally contracting over C, that is,
p(Df(x)) <c <0, forallxeC

assume: set C is f-invariant, closed and convex

Desirable consequences

O flow of f is a contraction, i.e.,
distance between solutions exponentially decreases with rate ¢

@ there exists an equilibrium x*, unique, globally exponentially stable
with global Lyapunov functions

xv—>Hx—x*H2 and x»—>Hf(x)H2

v
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Figure: Any two trajectories of an infinitesimally contracting system converge.
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Common matrix measures

Vector norm Matrix measure
n n
bl =320 bl (A = max (DT lal)
= max column “absolute sum” of A
n A+ AT
HXH2 = Zi:l Xi2 /J/Z(A) - Ama><< 2 >
n
X = max |x; A) = max (a-- + aj; )
Ixlec ie{1,...,n} bl Hoo(A) ie{l,onp \ j=1j#i 1251

= max row “absolute sum” of A

Simplifications for a Metzler matrix M

n

pi(M) = max ~_mj;; = max(M'"1,) = max column sum of M
je{lv“'7n} =1
n
too(M) = ie?;,?‘).(,n} ijl mj; = max(M1,) = max row sum of M
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The Euclidean case: works by Krasovskii & Vidyasagar

Vidyasagar '78: Lyapunov functions and matrix measures
Given P > 0 and c € R,

p2.p(A) < ¢ — ATP 4+ PA < 2cP

O A Hurwitz <= A has negative weighted 2-norm (w.r.t. some P)

@ inf up p(A) = spectral abscissa of A
P>0

Krasovskii '60: method to design Lyapunov function
f is weighted 2-norm contracting if 3P > 0 and ¢ < 0

P Df (x) + Df(x)T P < 2¢P,  for all x € R"

Constant Lyapunov weight P at each x implies desirable consequences
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The non-Euclidean case for Metzler Jacobians

Coogan '16: matrix measures of a Metzler matrix M

Given vectors n,& > 0, and ¢ € R,

P diag(n)(M)  <c — n'"M<cn', and
:uoo,diag(f)*l(M) <c — M§ < C‘£7

Q@ M Hurwitz <= M has negative weighted 1- or co-measure
o ni>ngm 141, diag(n) (M) = égrfn [oo diag(e)-1 (M) = spectral abscissa of M

v

Sum-separable and max-separable Lyapunov functions

f with Metzler Jac is weighted 1-norm contracting if 9n > 0, and ¢ < 0

n' Df(x) < cn', forall x e R"

Constant column weights 77 at each x implies desirable consequences

V.
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Krasovskil Lyapunov functions

for systems with Metzler Jacobians and constant weights

Weighted diagonal 2-norm:

Ix =x*3 =) pili —x)* and [If(x Z
i=1

=1

Weighted 1-norm

n
1= milxi = x| and ||f(x ||1n—277:|f(><
i=1

Weighted oco-norm

l|x — x*

xi — 7|

|fi(x)|
and f(x cof-1 = max ———
H ( )H €1 ie{l,..,.nt &

[X = x|l oo e-1 = max

ie{1,...,n} &

Recall: sublevel sets of Lyapunov functions are f-invariant
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Example application to Lotka-Volterra

© change of variable y = Inx, so that x € RZ; maps into y € R"” and
y =Aexp(y) + r = five(y)
@ pick v > 0, such that v A < 0, and show
v! Dfive(y) = v' Adiag(exp(y)) < —cv' diag(exp(y)) < 0.

© five, and so fiy, has a unique globally exponentially stable equilibrium
with sum-separable global Lyapunov functions

||.y_y* 1,diag(v) and ”fLVe(y)Hl,diag(v)

that is,
n n
x =) vilin(a/xH), x =) vil(Ax )il
i=1 i=1

FB et al (UCSB) Network Systems Torino, 26 September 2019 29 / 56



Weakly contracting systems

For a vector field f a and norm

C1 there exists a convex and f-invariant set C,

C2 f is infinitesimally weakly contractive on the set C

Desirable consequences (under additional incremental assumptions)

Then one of the following mutually-exclusive conditions hold: either

@ £ has no equilibrium in C and every trajectory in C is unbounded, or
@ f has at least one equilibrium x* € C and:
@ every trajectory starting in C is bounded and each equilibrium x** is
stable with weak Lyapunov function x — [|x — x**||,
@ if the norm || - || is a (p, R)-norm, p € {1,000} and f is piecewise real
analytic, then every trajectory converges to the set of equilibria,
@ if x* is locally asy stable, then x* is globally asy stable in C,

0 if u(Df(x*)) <0, then x — [[x — x*|| is a global Lyapunov function
and x — ||f(x)|| is a local Lyapunov function.

v
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Why is this relevant for infrastructure networks?

Consider a network flow system x = f(x) preserving a commodity

constant = 1 x(t)
— 0=1,x(t) =1, f(x(t))
— 0, =1, Dfx(t)

If additionally f has Meztler Jacobian, then f is automatically weakly
contracting (non-expansive) with respect to the ¢; norm.
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© Linear Network Systems and Metzler Matrices ]

9 An emerging theory for Nonlinear Network Systems )

Kuramoto Synchronization (existence)

o S. Jafarpour and F. Bullo. Synchronization of Kuramoto oscillators via cutset projections.
IEEE Transactions on Automatic Control, 64(7):2830-2844, 2019.
doi:10.1109/TAC.2018.2876786

@ problem statement
@ solution

Kuramoto Multi-Stability (lack of uniqueness)

S. Jafarpour, E. Y. Huang, K. D. Smith, and F. Bullo. Multistable synchronous power
Q flows: From geometry to analysis and computation.

SIAM Review, January 2019.

Submitted.

URL: https://arxiv.org/pdf/1901.11189.pdf
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Today: Sync & Multi-Stability in Coupled Oscillators

Oﬁm‘-

@ n oscillators with angle 0; € St

e non-identical natural frequencies w; € R! i /

o coupling with strength a; = aj; -

— Z a,-j sin(0,- — Qj)
j=1
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Model #1: Spring network analog and applications

Coupled swing equations
Euler-Lagrange eq for spring network on ring:

m,-é,- + dié,' =T — Z k,J sin(9,~ — 91)
J

Kuramoto coupled oscillators
0,‘ = Wi — Zj ajj sin(0,- — 01)
Kuramoto equilibrium equation

0= Wi — Z ajj sin(9,- — HJ)
J
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Model #2: Active Power Flow Problem

AC, Kirckhoff and Ohm, quasi-sync, lossless lines, constant voltages.

supply/demand p;, max power coeff aj;, voltage phase 6;

n .
Pi = Zj:l f,:,', f,'j = a,-j sm(@,- — 01')

power flow

fij

0 30 50 90 120 150 180

power angle 6; — 0;

Given: network parameters & topology, load & generation profile,
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Phenomenon #1: Transition from incoherence to sync

Function = synchronization g n .
0 = wi — ijl ajjsin(6; — 0;) J

']

o

0i(t) 0i(t)

o 10 20 30

s 10

large |w; — wj| & small coupling ~ small |w; —wj| & large coupling
= incoherence = no sync = coherence = frequency sync
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Phenomenon #2: Multiple power flows

Theoretical observation: multiple solutions exist

Practical observations:
sometimes undesirable power flows around loops
sometimes sizable difference between predicted and actual power flows

Figure 8: Average unscheduled flows for the years 2011 and 2012, MWh/h®
DK

MISO
Il Average counter-clockwise direction of Lake Erie Loop Flow
New York Independent System Operator, Lake Erie THEMA Consulting Group, Loop-flows - Final ad-
Loop Flow Mitigation, Technical Report, 2008 vice, Technical Report prepared for the European

Commission, 2013
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Primer on algebraic graph theory (slide 1/2)

Weighted undirected graph with n nodes and m edges:

Incidence matrix: n X m matrix B s.t. (BTpactv)(ij) =pi—p
Weight matrix: m x m diagonal matrix A

Laplacian stiffness: L= BABT >0

Linearization of Kuramoto equilibrium equation:

pactv = BAsin(B'0) =  p.aww ~ BA(B'0) = L6

Algebraic connectivity:

A2(L) = second smallest eig of L

= notion of connectivity and coupling
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Primer on algebraic graph theory (slide 2/2)

Laplacian linear balance equation

8
S
<
<
=
=
3
<
z
=
3
LAAAA
VYVVYV

(a) spring network (b) resistive circuit

Ltitfness X = fioad and Leonductance V = Cinjected

Laplacian linear balance equation: pactv = L6

if Zi pi = 0 in pacty = L6, then equilibrium exists : 0 = LTpact\,

pairwise displacements : BTo = BTLTpact\,
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From Old to New Tests

Question: Given balanced pycty, do angles exist satisfying

Pactv = BAsin(BT0)

Old Tests: Equilibrium angles (neighbors within /2 arc) exist if

1B pactvll2 < X2(L)  for unweighted graphs (Old 2-norm T)
1B LT pactylos < 1 for trees, complete (Old co-norm T)

R

New Tests: Equilibrium angles (neighbors within /2 arc) exist if

HBTLTpact\,Hg <1 for unweighted graphs  (New 2-norm T)
1B LT pactvlloo < (P loo) for all graphs  (New oco-norm T)
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where g is monotonically decreasing

g :[1,00) — [0,1]

o Y sin(y(x)) - y(x) —sin(y(x)) ‘

2 2

x—1

7)

y(x) = arccos(

X+

0.0

I I I I )
1 10 20 30 40 50
X
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and where P is a projection matrix

P =B"L'TBA = oblique projection onto Im(B ") parallel to Ker(B.A)

) )

2 1 2

1 (
@3 +@ @ +—+@®

R™ = Im(B" & Ker(BA
R7 (B") (BA)
edge space cutset space weighted cycle space

flow vectors cycle vectors

Q if G unweighted, then P is orthogonal and ||P|2 =1
Q if G acyclic, then P = I, and ||P|, =1
© if G uniform complete or ring, then ||P|lcc =2(n—1)/n <2
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New Tests: Equilibrium angles (neighbors within 7 /2 arc) exist if

IBT LT paer2 <1 for unweighted graphs  (New 2-norm T)
1B L pactv|loo < ([P loo) for all graphs  (New oco-norm T)

|<ﬂ

Unifying theorem with a family of tests

Equilibrium angles (neighbors within - arc) exist if, in some p-norm,

BT LT pactv|lp < verp(7) for all graphs (New ap T)

where nonconvex optimization problem:

ap(y) := min amplification factor of P diag[sinc(x)]
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Proof sketch 1/2: Rewriting the equilibrium equation

For what B, A, psctv does there exist 8 solution to:

Pactv = BA sin(BTG)

STEP 1: For what flow z and projection P onto cutset/flow space,
does there exist a flow x that solves

Psin(x) =z

<= Pdiag[sinc(x)]x = z
— x = (Pdiag[sinc(x)]) "tz =: h(x)
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Proof sketch 2/2: Amplification factor & Brouwer

STEP 1: look for x solving

x = h(x) = (P diag[sinc(x)]) "z

IDEA: assume ||x||, <~ and ensure ||h(x)|, < v )

STEP 2: if one defines min amplification factor
ap(y) := min  min ||Pdiag[sinc(x)]y|p
Ixllp<v llyll,=1

then [[A(x)]lp < maxmax /(P diag[sinc(x)]) |, - 1[I,

2]l

o . -1
= (mxm min | P diag[sinc(x)]yllp) llzll, < ()

STEP 3: ||z||, < vap(7), then ||h(x)||p < 7 so that h satisfies Brouwer
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Comparison of sufficient and approximate sync tests

Any test predicts max transmittable power (before bifurcation).
Compare with numerically computed.

ratio of test prediction to numerical computation

Test Case old 2-norm  new oo-norm  g([|Pllec) ®1 oo test
approximate fmincon
IEEE 9 16.54 % 73.74 % 92.13 % 85.06 %!
|EEE 14 8.33 % 59.42 % 83.09 % 81.32 %
IEEERTS 24  3.86 % 53.44 % 89.48 % 89.48 %!
IEEE 30 2.70 % 55.70 % 85.54 % 85.54 %!
IEEE 118 0.29 % 43.70 % 85.95 % —
IEEE 300 0.20 % 40.33 % 99.80 % —
Polish 2383 0.11 % 29.08 % 82.85 % —*

T fmincon with 100 randomized initial conditions
* fmincon does not converge
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Summary: Kuramoto equilibrium and active power flow

Given topology (incidence B), admittances (Laplacian L), injections pacty,

pi = Zj:l ajj sin(0,- - 9])

Equilibrium angles exist if, in some p-norm,
IBT L pactvlp < verp(7) for all graphs (New o T)

For p = oo, after bounding,

187 LT pactvlloo < g(IIPll) (New oo-norm T)

v

Q1: 3 a stable operating point (with pairwise angles < 7)?
Q2: what is the network capacity to transmit active power?
Q3: how to quantify robustness as distance from loss of feasibility?
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Phenomenon #2: Multiple power flows

Theoretical observation: multiple solutions exist

Practical observations:
sometimes undesirable power flows around loops
sometimes sizable difference between predicted and actual power flows

Figure 8: Average unscheduled flows for the years 2011 and 2012, MWh/h®
DK

MISO
Il Average counter-clockwise direction of Lake Erie Loop Flow
New York Independent System Operator, Lake Erie THEMA Consulting Group, Loop-flows - Final ad-
Loop Flow Mitigation, Technical Report, 2008 vice, Technical Report prepared for the European

Commission, 2013
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Lack of uniqueness and winding solutions

Given topology (incidence B), admittances (Laplacian L), injections pacty,

n .
pi = ijl ajjsin(6; — 0;)

@ is solution unique?

@ how to localize/classify solutions?

triangle graph, homogeneous weights (ajj = 1), pacty =0

@/ TEETHETEE\@

phase sync splay state

v
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Winding number of n angles

Given undirected graph with a cycle o = (1,..., n,) and orientation

@ winding number of § € T" along ¢ is:

wo(0) = Z dec (0, 0i41)
w(@) =0 w(f) = £1

@ given basis 01, ...,0, for cycles, winding vector of 0 is

w(f) = (Wo, (6), .- -, wo, ()
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“Kirckhoff Angle Law" and partition of the n-torus

Theorem: Kirchhoff angle law on T”

wo(0) =0,£1,...,£|n,/2]
= w(#) is piecewise constant

— w(0) takes value in a finite set

|<ﬂ

Theorem: Winding partition

For each possible winding vector u, define
WindingCell(u) := {6 € T" | w(0) = u}

Then
T" = U, WindingCell(u)

v
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Winding partition of triangle graph

w=-1 w=+1
@ each winding cell is connected ‘
@ each winding cell is invariant under rotation
@ bijection: $
reduced winding cell +— open convex polytope
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The Kuramoto model and the winding partition

Given topology (incidence B), admittances
(Laplacian L), injections pacty,

é,’ = pi — ZJ_ ajj sin(9,— — 91)

Theorem: At-most-uniqueness and extensions

@ each WindingCell has at-most-unique equilibrium with Af < /2
@ equilibrium loop flow increases monotonically wrt winding number

© existence + uniqueness in WindingCell(u) with Af <7/2 if

1B Lt pacty + Culloo < (|| P]lo), oF (Static T)
3 a trajectory inside WindingCell(u) with A@<m/2 (Dynamic T)

v
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Summary and Future Work

\ // 3 a>
ol
V) %
(Y ) s —
=P, ] [
N
averaging compartmental flows mutualism virus spread coupled oscillators social systems

Review
© a rather comprehensive theory of linear network systems
@ an emergent theory of nonlinear network systems based on
contractivity and monotonicity
© existence and multistability for Kuramoto

Future research
O a little bit more on Metzler matrices
@ much work on monotonicity and contractivity
© applications to other dynamic flow networks
© outreach/collaboration opportunities for our community with
sociologists, biologists, economists, physicists ...
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