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Figure 2-5. City of Portland Water Supply Schematic Diagram

Portland water network Industrial chemical plant



Linear network systems

x(k + 1) = Ax(k) + b or ẋ(t) = Ax(t) + b

1 systems of interest

2 asymptotic behavior

3 tools

network structure ⇐⇒ function = asymptotic behavior
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These lecture notes provide a mathematical introduction to multi-agent 

dynamical systems, including their analysis via algebraic graph theory 

and their application to engineering design problems.  The focus is on 

fundamental dynamical phenomena over interconnected network 

systems, including consensus and disagreement in averaging systems, 

stable equilibria in compartmental flow networks, and synchronization 

in coupled oscillators and networked control systems.  The theoretical 

results are complemented by numerous examples arising from the 

analysis of physical and natural systems and from the design of 

network estimation, control, and optimization systems.
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300 pages (plus 200 pages solution manual)
3K downloads since Jun 2016
150 exercises with solutions

Linear Systems:

1 social, sensor, robotic & compartmental examples,

2 matrix and graph theory, with an emphasis on
Perron–Frobenius theory and algebraic graph theory,

3 averaging algorithms in discrete and continuous time,
described by static and time-varying matrices, and

4 positive & compartmental systems, dynamical flow
systems, Metzler matrices.

Nonlinear Systems:

5 nonlinear consensus models,

6 population dynamic models in multi-species systems,

7 coupled oscillators, with an emphasis on the
Kuramoto model and models of power networks

Synchronization in Networks of Coupled Oscillators

Pendulum clocks & “an odd kind of sympathy ”

[C. Huygens, Horologium Oscillatorium, 1673]

Today’s canonical coupled oscillator model

[A. Winfree ’67, Y. Kuramoto ’75]

Coupled oscillator model:

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj)

n oscillators with phase θi ∈ S1

non-identical natural frequencies ωi ∈ R1

coupling with strength aij = aji

Synchronization in Networks of Coupled Oscillators

Coupled oscillator model:

θ̇i = ωi −
∑n

j=1
aij sin(θi − θj)

Sync in Josephson junctions
[S. Watanabe et. al ’97, K. Wiesenfeld et al. ’98]

Sync in a population of fireflies
[G.B. Ermentrout ’90, Y. Zhou et al. ’06]

Canonical model of coupled limit-cycle oscillators
[F.C. Hoppensteadt et al. ’97, E. Brown et al. ’04]

Countless sync phenomena in sciences/bio/tech.
[S. Strogatz ’00, J. Acebrón ’01, Arenas ’08]

citations on scholar.google: Winfree 1.5K, Kuramoto 1.1K + 6.8K,

surveys Strogatz, Acebron, Arenas: 2K, survey by Boccaletti 8K



Synchronization in Networks of Coupled Oscillators
phenomenology and challenges

Function = synchronization
θ̇i = ωi −

∑n

j=1
aij sin(θi − θj)

✓i(t)

coupling small & |ωi − ωj | large

⇒ incoherence = no sync

✓i(t)

coupling large & |ωi − ωj | small

⇒ coherence = frequency sync

Central question:

[S. Strogatz ’01, A. Arenas et

al. ’08, S. Boccaletti et al. ’06]

loss of sync due to bifurcation

trade-off “coupling” vs. “heterogeneity”

how to quantify this trade-off
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Power flow equations

voltage magnitude
and phase

active and
reactive power

1 secure operating conditions

2 feedback control

3 economic optimization

network structure ⇐⇒ function = power transmission

Power networks as quasi-synchronous AC circuits

1 generators �� and loads •◦
2 physics: Kirchoff and Ohm laws

3 today’s simplifying assumptions:
1 quasi-sync: voltage and phase Vi , θi

active and reactive power pi , qi
2 lossless lines
3 approximated decoupled equations

2

10

30 25

8

37

29

9

38

23

7

36

22

6

35

19

4

33
20

5

34

10

3

32

6

2

31

1

8

7

5

4

3

18

17

26

27
28

24

21

16

1514

13

12

11

1

39

9

Decoupled power flow equations

active: pi =
∑

j aij sin(θi − θj)
reactive: qi = −∑j bijViVj



Power Flow Equilibria

pi =
∑

j aij sin(θi − θj)

As function of network structure/parameters
1 do equations admit solutions / operating points?
2 how much active power can network transmit / flow?
3 how to quantify stability margins?

Active power dynamics and mechanical/spring analogy

Pgenerators

Ploads

Coupled swing equations

mi θ̈i + di θ̇i = pi −
∑

j
aij sin(θi − θj)

Kuramoto coupled oscillators

θ̇i = pi −
∑

j
aij sin(θi − θj)

Synchronization in Power Networks

Sync is crucial for the functionality and operation of the AC power grid.

Generators have to swing in sync despite fluctuations/faults/contingencies.

Given: network parameters & topology and load & generation profile

Q: “ ∃ an optimal, stable, and robust synchronous operating point ? ”

1 Security analysis [Araposthatis et al. ’81, Wu et al. ’80 & ’82, Ilić ’92, . . . ]

2 Load flow feasibility [Chiang et al. ’90, Dobson ’92, Lesieutre et al. ’99, . . . ]

3 Optimal generation dispatch [Lavaei et al. ’12, Bose et al. ’12, . . . ]

4 Transient stability [Sastry et al. ’80, Bergen et al. ’81, Hill et al. ’86, . . . ]

5 Inverters in microgrids [Chandorkar et. al. ’93, Guerrero et al. ’09, Zhong ’11,. . . ]
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Primer on algebraic graph theory

Weighted undirected graph with n nodes and m edges:

Incidence matrix: n ×m matrix B s.t. (B>pactive)(ij) = pi − pj

Weight matrix: m ×m diagonal matrix A
Laplacian stiffness: L = BAB> ≥ 0

Kuramoto eq points: pactive = BA sin(B>θ)

Algebraic connectivity: λ2(L) = second smallest eig of L

Linear spring networks and L†

x

balance equation : f = Lx

for balanced f ⊥ 1n : x = L†f

DC flow approx: pactive ≈ BA(B>θ) =⇒ B>θ = B>L†pactive



Known tests

Pgenerators

Ploads

Given balanced pactive, do angles exist?

pactive = BA sin(B>θ)

synchronization arises if
power transmission < connectivity strength

Equilibrium angles (neighbors within π/2 arc) exist if

‖B>pactive‖2 < λ2(L) for unweighted graphs (Old 2-norm T)

‖B>L†pactive‖∞ < 1 for trees, complete (Old ∞-norm T)

at fixed radius and 2-norm, volume of ball → 0+ as d → +∞

A standing conjecture

IEEE test cases: randomized and increase generation/loads∥∥B>L†pactive

∥∥
∞ < 1 appears to imply:

1 ∃ solution θ∗

2 |θ∗i − θ∗j | ≤ arcsin
(∥∥B>L†pactive

∥∥
∞
)

for all {i , j} ∈ E

Randomized test case Numerical worst-case Analytic prediction of Accuracy of condition:

(1000 instances) angle differences: angle differences: max
{i ,j}∈E

|θ∗i − θ∗j |

max
{i ,j}∈E

|θ∗i − θ∗j | arcsin(‖B>L†pactive‖∞) − arcsin(‖B>L†pactive‖∞)

9 bus system 0.12889 rad 0.12885 rad 4.1218 · 10−5 rad

IEEE 14 bus system 0.16622 rad 0.16594 rad 2.7995 · 10−4 rad

IEEE 30 bus system 0.1643 rad 0.16404 rad 2.6140 · 10−4 rad

New England 39 0.16821 rad 0.16815 rad 6.6355 · 10−5 rad

IEEE 57 bus system 0.20295 rad 0.18232 rad 2.0630 · 10−2 rad

IEEE 118 bus system 0.23524 rad 0.23464 rad 5.9959 · 10−4 rad

IEEE 300 bus system 0.43204 rad 0.43151 rad 5.2618 · 10−4 rad

Polish 2383 bus system 0.25144 rad 0.24723 rad 4.2183 · 10−3 rad
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Novel today

Equilibrium angles (neighbors within π/2 arc) exist if

‖B>pactive‖2 < λ2(L) for unweighted graphs (Old 2-norm T)

‖B>L†pactive‖∞ < 1 for trees, complete (Old ∞-norm T)

Equilibrium angles (neighbors within π/2 arc) exist if

‖B>L†pactive‖2 < 1 for unweighted graphs (New 2-norm T)

‖B>L†pactive‖∞ < g(‖P‖∞) for all graphs (New ∞-norm T)



where g is monotonically decreasing

g : [1,∞)→ [0, 1]

!" #" $" %" &"

"'"

"'#

"'%

"'(

"')

!'"

= g(x)

x =
!"

g(x) =
y(x) + sin(y(x))

2
− x

y(x)− sin(y(x))

2

∣∣∣
y(x) = arccos(

x − 1

x + 1
)

and where P is a projection

1

2 3

1 2

3

1

2 3

1 2

3

Rm
︸︷︷︸

edge space

= Im(B>)︸ ︷︷ ︸
cutset space
flow vectors

⊕ Ker(BA)︸ ︷︷ ︸
weighted cycle space

cycle vectors

P = B>L†BA = oblique projection onto Im(B>) parallel to Ker(BA)

(recall: orthogonal projector onto Im(C ) is C (C>C )−1C> for full rank C )

1 if G unweighted, then P is orthogonal and ‖P‖2 = 1

2 if G acyclic, then P = Im and ‖P‖p = 1

3 if G uniform complete or ring, then ‖P‖∞ = 2(n − 1)/n ≤ 2

Unifying Theorem

Equilibrium angles (neighbors within γ arc) exist if, in some p-norm,

‖B>L†pactive‖p ≤ γαp(γ) for all graphs (New p-norm T)

αp(γ) := min amplification factor of P diag[sinc(x)]

For unweighted p = 2, new test sharper than old

‖B>L†pactive‖2 ≤ sin(γ) (New 2-norm T)

For p =∞, new test is for all graphs

‖B>L†pactive‖∞ ≤ g(‖P‖∞) (New ∞-norm T)

Comparison of sufficient and approximate sync tests

Kc = critical coupling of Kuramoto model, computed via MATLAB fsolve
KT = smallest value of scaling factor for which test T fails

Test Case
Critical ratio KT/Kc

old 2-norm new 2-norm new ∞-norm old ∞-norm α∞ test
conjectured conjectured approximate fmincon

IEEE 9 16.54 % 59.06 % 73.74 % 92.13 % 85.06 %†

IEEE 14 8.33 % 42.27 % 59.42 % 83.09 % 81.32 %†

IEEE RTS 24 3.86 % 35.62 % 53.44 % 89.48 % 89.48 %†

IEEE 30 2.70 % 40.98 % 55.70 % 85.54 % 85.54 %†

IEEE 39 2.97 % 37.32 % 67.57 % 100 % 100 %†

IEEE 57 0.36 % 31.93 % 40.69 % 84.67 % —*

IEEE 118 0.29 % 24.61 % 43.70 % 85.95 % —*

IEEE 300 0.20 % 24.13 % 40.33 % 99.80 % —*

Polish 2383 0.11 % 13.93 % 29.08 % 82.85 % —*

† fmincon has been run for 100 randomized initial phase angles.
* fmincon does not converge.



Proof sketch 1/2: Rewriting the equilibrium equation

For what B,A, pactive does there exist θ solution to:

pactive = BA sin(B>θ)

For what flow z and projection P onto cutset/flow space,
does there exist a flow x that solves

P sin(x) = z

⇐⇒ P diag[sinc(x)]x = z

⇐⇒ x = (P diag[sinc(x)])−1z =: h(x)

Proof sketch 2/2: Amplification factor & Brouwer

1 look for x solving

x = h(x) = (P diag[sinc(x)])−1z

2 take p norm, define min amplification factor of P diag[sinc(x)]:

αp(γ) := min
‖x‖p≤γ

min
‖y‖p=1

‖P diag[sinc(x)]y‖p

If ‖z‖p ≤ γαp(γ) and x ∈ Bp(γ) = {x | ‖x‖p ≤ γ}, then

‖h(x)‖p ≤ max
x

max
y
‖(P diag[sinc(x)])−1y‖p · ‖z‖p

=
(

min
x

min
y
‖P diag[sinc(x)]y‖p

)−1‖z‖p ≤ ‖z‖p
αp(γ)

≤ γ

hence h(x) ∈ Bp(γ) and h satisfies Brouwer on Bp(γ)
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Computational method via power series

Given z , compute x solution to

z = P sin(x)

Assume x =
∑∞

i=0 A2i+1(z), where A2i+1(z) is homogeneous degree 2i + 1

z = P
∞∑

k=0

(−1)k

(2k + 1)!
x◦2k+1 = P

∞∑

k=0

(−1)k

(2k + 1)!

( ∞∑

i=0

A2i+1(z)
)◦2k+1

Equate left-hand and right-hand side at order 1, 3, . . . , 2j + 1:

A1(z) = z

A2j+1(z) = P
(

j∑

k=1

(−1)k+1

(2k + 1)!

∑

odd α1,...,α2k+1 s.t.
α1+···+α2k+1=2j+1

Aα1(z) ◦ · · · ◦ Aα2k+1
(z)

)



Step 3: Series expansion for inverse Kuramoto map

Unique solution to z = P sin(x) is

x =
∑∞

i=0
A2i+1(z)

A1(z) = z = B>L†pactive

A3(z) = P
( 1

3!
z◦3
)

A5(z) = P
( 3

3!
A3(z) ◦ z◦2 − 1

5!
z◦5
)

A7(z) = P
( 3

3!
A5(z) ◦ z◦2 +

3

3!
A3(z)◦2 ◦ z − 5

5!
A3(z) ◦ z◦4 +

1

7!
z◦7
)

arbitrary higher-order terms can be computed symbolically

For sufficiently small ‖z‖p, series converges uniformly absolutely

Numerical examples
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Kuramoto Oscillators and Power Flow

1 improved sufficient conditions for equilibria

2 upper bounds on transmission capacity

3 stability margins as notions of distance from bifurcations ¡

Applications

1 secure operating conditions: (Dörfler et al, PNAS ’13)

2 feedback control: (Simpson-Porco et al, TIE ’15)

3 economic optimization: (Todescato et al, TCNS ’17)

Future research

1 close the gap between sufficient and necessary conditions

2 consider increasingly realistic power flow equations

3 apply methods to other flow networks (water, gas, ...)


