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‘ Linear network systems

x(k+1) = Ax(k) + b or x(t) = Ax(t) + b

o o oq

@ systems of interest
@ asymptotic behavior
© tools

network structure <= function = asymptotic behaviorJ

Synchronization in Networks of Coupled Oscillators

Pendulum clocks & “an odd kind of sympathy" Oy paENN A
[C. Huygens, Horologium Oscillatorium, 1673] Q
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Today's canonical coupled oscillator model
[A. Winfree '67, Y. Kuramoto '75]

Coupled oscillator model:

8 n
9,‘ = Wi — Zj:l a,'j sin(9,- — 9J)

e n oscillators with phase §; € S!
e non-identical natural frequencies w; € R?

@ coupling with strength a;; = aj;

New text “Lectures on Network Systems”

Lectures on Network Systems, F. Bullo, 1 edition,
CreateSpace, ISBN 978-1-986425-64-3

Lectures on For students: free PDF for download
For instructors: slides and answer keys
Network systems http://motion.me.ucsb.edu/book-1lns

https://www. amazon. com/dp/1986425649
300 pages (plus 200 pages solution manual)
3K downloads since Jun 2016
150 exercises with solutions

Linear Systems:
@ social, sensor, robotic & compartmental examples,

@ matrix and graph theory, with an emphasis on
Perron—Frobenius theory and algebraic graph theory,

© averaging algorithms in discrete and continuous time,
described by static and time-varying matrices, and

Q positive & compartmental systems, dynamical flow
systems, Metzler matrices.

Francesco Bullo

With contributions by Nonlinear Systems:

Jorge Cortés
Florian Dorfler
Sonia Martinez

@ nonlinear consensus models,
@ population dynamic models in multi-species systems,

@ coupled oscillators, with an emphasis on the
Kuramoto model and models of power networks

Synchronization in Networks of Coupled Oscillators

Coupled oscillator model: -

é,‘ = Wj — Zf_’:l a,-j sin(@,- — 9j)

@ Sync in Josephson junctions
[S. Watanabe et. al '97, K. Wiesenfeld et al. '98]

@ Sync in a population of fireflies
[G.B. Ermentrout '90, Y. Zhou et al. '06]

@ Canonical model of coupled limit-cycle oscillators
[F.C. Hoppensteadt et al. '97, E. Brown et al. '04]

@ Countless sync phenomena in sciences/bio/tech.
[S. Strogatz '00, J. Acebrén '01, Arenas '08]

Steven Strogatz

citations on scholar.google: Winfree 1.5K, Kuramoto 1.1K + 6.8K,
surveys Strogatz, Acebron, Arenas: 2K, survey by Boccaletti 8K




Synchronization in Networks of Coupled Oscillators

phenomenology and challenges

Outline

Function = synchronization ) n .
9,’ = Wj — Zj:l a,-j Sln(e,' — OJ-) J
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coupling small & |w: coupling large & |w; — wj| small
pling I J

= incoherence = no sync

— wj| large
= coherence = frequency sync

Central question: @ loss of sync due to bifurcation

[S. Strogatz '01, A. Arenas et
al.’08, S. Boccaletti et al. '06]

o trade-off “coupling” vs. “heterogeneity”

@ how to quantify this trade-off

Power flow equations
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Power networks as quasi-synchronous AC circuits

voltage magnitude <:/\> active and
and phase reactive power
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© secure operating conditions
@ feedback control

© economic optimization

network structure <= function = power transmission ]

© generators B and loads ®

@ physics: Kirchoff and Ohm laws

© today’s simplifying assumptions:
@ quasi-sync: voltage and phase V;, 6;
active and reactive power p;, g;
@ lossless lines
© approximated decoupled equations

Decoupled power flow equations

Zj ajj sin(9,- — 9j)
- Zj b;j Vi V;

active: gy =

reactive: q; =




‘ Power Flow Equilibria

Pi :Zj a,-jsin(e,-—ej) J

As function of network structure/parameters
@ do equations admit solutions / operating points?
@ how much active power can network transmit / flow?
© how to quantify stability margins?

Active power dynamics and mechanical/spring analogy

Coupled swing equations
~ . generators

(

\ Kuramoto coupled oscillators

é,‘ = pi — Zj ajj sin(9,— — 91)

m,-é,- + d,'é,' = pi — Z ajj sin(9,~ — 91)
J
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Synchronization in Power Networks

Sync is crucial for the functionality and operation of the AC power grid.
Generators have to swing in sync despite fluctuations/faults/contingencies.

|

Given: network parameters & topology and load & generation profile

Q: "3 an optimal, stable, and robust synchronous operating point 7"

@ Security analysis [Araposthatis et al. '81, Wu et al. '80 & '82, lli¢ '92, ...]
@ Load flow feasibility [Chiang et al. 90, Dobson '92, Lesieutre et al.’99, ...]
© Optimal generation dispatch [Lavaei et al. '12, Bose et al. '12, ...]

@ Transient stability [Sastry et al. '80, Bergen et al. '81, Hill et al. '86, ...]

@ Inverters in microgrids [Chandorkar et. al.'93, Guerrero etal.’09, Zhong'11,...]

Primer on algebraic graph theory

Weighted undirected graph with n nodes and m edges:
Incidence matrix: 1 x m matrix B s.t. (BT pactive)(ij) = Pi — Pj

Weight matrix: m x m diagonal matrix A

Laplacian stiffness: L= BAB'T >0

Kuramoto eq points: pscive = BAsin(BT6)

Algebraic connectivity: A\y(L) = second smallest eig of L

Linear spring networks and L'

e fese [

DC flow approx: paciive ~ BA(BT) —

f=1Lx
x = LTf

balance equation :

for balanced f L 1, :

BT9=B" LTpactive




Known tests

Given balanced pactive, do angles exist?
T\ generators

N

loadi/ Pactive = BA Sin(BTG)

( synchronization arises if
\ power transmission < connectivity strength

Equilibrium angles (neighbors within 7/2 arc) exist if

1B pactivell2 < A2(L)
BT LT pactivelloo < 1

for unweighted graphs (Old 2-norm T)

for trees, complete  (Old co-norm T)

A standing conjecture

IEEE test cases: randomized and increase generation/loads
|BT LT pactive|| .. <1 appears to imply:

© I solution 6*

@ (07 — 07| <arcsin(||B" LT pactive|| ) for all {i,j} € &

p=.25 p=.354
4% p=2.828 p=5.657 p=8 p=

at fixed radius and 2-norm, volume of ball — 01 as d — +0
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Randomized test case Numerical worst-case | Analytic prediction of Accuracy of condition:
(1000 instances) angle differences: angle differences: max [0} — 07
{ijte€
max |6} — 9j| arcsin([|BT LT pactivelloo) || — arcsin(||BT Lt pactivelloo)
{ijte€
9 bus system 0.12889 rad 0.12885 rad 4.1218-1075 rad
IEEE 14 bus system 0.16622 rad 0.16594 rad 2.7995 - 10~* rad
IEEE 30 bus system 0.1643 rad 0.16404 rad 2.6140 - 10~ rad
New England 39 0.16821 rad 0.16815 rad 6.6355 - 107> rad
IEEE 57 bus system 0.20295 rad 0.18232 rad 2.0630 - 1072 rad
IEEE 118 bus system 0.23524 rad 0.23464 rad 5.9959 - 10~* rad
IEEE 300 bus system 0.43204 rad 0.43151 rad 5.2618 - 10~* rad
Polish 2383 bus system 0.25144 rad 0.24723 rad 4.2183-1073 rad

Novel today

Equilibrium angles (neighbors within 7/2 arc) exist if

HBTpactive”2 < )\2(L)
||BTLTpactiveHoo <1

for unweighted graphs

for trees, complete

(Old 2-norm T)

(Old oo-norm T)

v

Equilibrium angles (neighbors within 7/2 arc) exist if

”BTLTPactive”2 <1
1B LT pactivellso < &(I|P]loo)

for unweighted graphs  (

New 2-norm T)

for all graphs (New oco-norm T)

o




and where P is a projection

where g is monotonically decreasing

g :[l,00) = [0,1]

0_07‘ L L L L L L L L L L L L L L L L L L L L L L L |

2

Sl 4

® @ 3 +0®
R™ = Im(BT) ® Ker(B.A)
~~ —— ———
edge space cutset space weighted cycle space
flow vectors cycle vectors
P=B'"LTBA = oblique projection onto Im(B") parallel to Ker(B.A)

(recall: orthogonal projector onto Im(C) is C(C"C)~1CT for full rank C)

© if G unweighted, then P is orthogonal and ||Pj> =1
Q if G acyclic, then P = I, and ||P|, =1
© if G uniform complete or ring, then ||P|loc =2(n—1)/n <2

Comparison of sufficient and approximate sync tests

Unifying Theorem

Equilibrium angles (neighbors within + arc) exist if, in some p-norm,

for all graphs (New p-norm T)

H BTLTPaCtive”P < ’YOép(’Y)

ap(y) == min amplification factor of P diag[sinc(x)]

For unweighted p = 2, new test sharper than old

||BTLTpactive||2 <sin(y) (New 2-norm T)

)

For p = 00, new test is for all graphs

187 LT pactivelloo < &(IIPll0) (New oo-norm T)

<

K. = critical coupling of Kuramoto model, computed via MATLAB fsolve
K7 = smallest value of scaling factor for which test T fails

Critical ratio Kt/K:

Test Case old 2-norm new 2-norm new oco-norm old co-norm . test
conjectured  conjectured approximate  fmincon
IEEE 9 16.54 % 59.06 % 73.74 % 02.13 % 85.06 %'
IEEE 14 8.33 % 4227 % 59.42 % 83.09 % 81.32 %'
IEEE RTS 24 3.86 % 35.62 % 53.44 % 89.48 % 89.48 %'
IEEE 30 2.70 % 40.98 % 55.70 % 85.54 %  85.54 %!
IEEE 39 2.97 % 37.32 % 67.57 % 100 % 100 %
IEEE 57 0.36 % 31.93 % 40.69 % 84.67 % —
IEEE 118 0.29 % 24.61 % 43.70 % 85.95 % -
IEEE 300 0.20 % 24.13 % 40.33 % 99.80 % —
Polish 2383 0.11 % 13.93 % 29.08 % 82.85 % —

T fmincon has been run for 100 randomized initial phase angles.
* fmincon does not converge.




Proof sketch 1/2: Rewriting the equilibrium equation

For what B, A, pactive does there exist 6 solution to:

Pactive = BA Sin(BTQ)

For what flow z and projection P onto cutset/flow space,
does there exist a flow x that solves

Psin(x) =z

<= Pdiag[sinc(x)]x = z

< x = (Pdiag[sinc(x)]) "tz =: h(x)
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Proof sketch 2/2: Amplification factor & Brouwer

Q look for x solving
x = h(x) = (P diag[sinc(x)]) 'z
@ take p norm, define min amplification factor of P diag[sinc(x)]:

[P diag[sinc(x)ly |l

min min

P

It llzllp < ~vap(y) and x € Bp(y) = {x | [|Ix][p < 7}, then
1A(x)]lp < maxmax [|(P diag[sinc(x)]) "yl - [l

|1z]| o
ap(’Y)

= ((min min [P diag[sinc()ly[lo) " llzll, < <y

hence h(x) € Bp(y) and h satisfies Brouwer on B,(7)

w

Computational method via power series

Given z, compute x solution to
z = Psin(x)

Assume x = Y Asi+1(z), where Apjy1(z) is homogeneous degree 2/ + 1

e k 02k+1
P;) 2k+1 X = Pz 2k+1)'<ZA2’+1Z>

Equate left-hand and right-hand side at order 1,3,...,2j 4 1:
Ai(z) =z
J k+1
A2J+1 Z 2/( _I_ 1 Z Aal(z) 00 Aa2k+1 (Z)
1 odd a1,...,0004 41 S.T.

a1t taokr1=2j+1




Step 3: Series expansion for inverse Kuramoto map

Unique solution to z = Psin(x) is

o0
x = Zi:o Azi+1(2)

Al(Z) =z = BTLTPactive
As(z) = <3i °3>
As(z) = P 33|A3( Jo 02—$z°5>
(Z) ( 3 A5(Z) oZz° + ??l A3(Z)°2 oz — %A3(Z) 204 + 71| )

arbitrary higher-order terms can be computed symbolically

For sufficiently small ||z||,, series converges uniformly absolutely

)

© improved sufficient conditions for equilibria
@ upper bounds on transmission capacity

© stability margins as notions of distance from bifurcations j

Applications
(Dorfler et al, PNAS '13)
(Simpson-Porco et al, TIE '15)
(Todescato et al, TCNS ’17)

© secure operating conditions:
@ feedback control:

© economic optimization:

Future research
@ close the gap between sufficient and necessary conditions
@ consider increasingly realistic power flow equations
© apply methods to other flow networks (water, gas, ...)

Numerical examples

Accuracy, log10 scale

Test case: IEEE 118

10°

2 2.5 3 3.5
scaled power injection




