Network Systems and Kuramoto Oscillators

Francesco Bullo

2018 President, IEEE Control Systems Society A kind invitation to participate in CSS activities

Department of Mechanical Engineering Center for Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.me.ucsb.edu

State Key Laboratory of Synthetical Automation for Process Industries Northeastern University, China, June 10, 2018

Acknowledgments

Saber Jafarpour UCSB

Elizabeth Y. Huang UCSB

USA Department of Energy (DOE), SunShot Program, XAT-6-62531-01, Stabilizing the Power System in 2035 and Beyond, Consortium of DOE National Renewable Energy Laboratory, UCSB and University of Minnesota

Intro to Network Systems and Power Flow

Known tests and a conjecture

F. Dörfler, M. Chertkov, and FB. Synchronization in complex oscillator networks and smart grids. *Proc National Academy of Sciences*, 110(6):2005–2010, 2013. doi:10.1073/pnas.1212134110

A new approach and new tests

S. Jafarpour and FB. Synchronization of Kuramoto oscillators via cutset projections. *IEEE Trans. Autom. Control*, November 2017. Submitted URL https://arxiv.org/abs/1711.03711

3

2

S. Jafarpour, E. Y. Huang, and FB. Synchronization of coupled oscillators: The Taylor expansion of the inverse Kuramoto map. In *Proc CDC*, Miami, USA, December 2018. Submitted. URL https://arxiv.org/abs/1711.03711

Example network systems

Smart grid

Amazon robotic warehouse

Portland water network

Industrial chemical plant

Linear network systems

- systems of interest
- 2 asymptotic behavior
- tools

network structure \iff function = asymptotic behavior

New text "Lectures on Network Systems"

Lectures on Network Systems

Francesco Bullo

With contributions by Jorge Cortés Florian Dörfler Sonia Martínez Lectures on Network Systems, 1 edition ISBN 978-1-986425-64-3

For students: free PDF for download For instructors: slides and answer keys http://motion.me.ucsb.edu/book-lns https://www.amazon.com/dp/1986425649 300 pages (plus 200 pages solution manual) 3K downloads since Jun 2016 150 exercises with solutions

Linear Systems:

- social, sensor, robotic & compartmental examples,
- matrix and graph theory, with an emphasis on Perron–Frobenius theory and algebraic graph theory,
- averaging algorithms in discrete and continuous time, described by static and time-varying matrices, and
- positive & compartmental systems, dynamical flow systems, Metzler matrices.

Nonlinear Systems:

- nonlinear consensus models,
- population dynamic models in multi-species systems,
- coupled oscillators, with an emphasis on the Kuramoto model and models of power networks

Synchronization in Networks of Coupled Oscillators

Pendulum clocks & "an odd kind of sympathy" [C. Huygens, Horologium Oscillatorium, 1673]

Today's canonical coupled oscillator model [A. Winfree '67, Y. Kuramoto '75]

Coupled oscillator model:

$$\dot{\theta}_i = \omega_i - \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j)$$

- *n* oscillators with phase $\theta_i \in \mathbb{S}^1$
- **non-identical** natural frequencies $\omega_i \in \mathbb{R}^1$
- **coupling** with strength $a_{ij} = a_{ji}$

Synchronization in Networks of Coupled Oscillators

Coupled oscillator model:

$$\dot{ heta}_i = \omega_i - \sum_{j=1}^n a_{ij} \sin(heta_i - heta_j)$$

A few related applications:

- Sync in Josephson junctions
 [S. Watanabe et. al '97, K. Wiesenfeld et al. '98]
- Sync in a population of fireflies [G.B. Ermentrout '90, Y. Zhou et al. '06]
- Canonical model of coupled limit-cycle oscillators [F.C. Hoppensteadt et al. '97, E. Brown et al. '04]
- Countless sync phenomena in sciences/bio/tech. [A. Winfree '67, S.H. Strogatz '00, J. Acebrón '01]

citations on scholar.google:

Kuramoto oscillators 1.4K, synchonization

Synchronization in Networks of Coupled Oscillators

phenomenology and challenges

Function = synchronization

$$\dot{\theta}_i = \omega_i - \sum_{j=1}^n a_{ij} \sin(\theta_i - \theta_j)$$

coupling small & $|\omega_i - \omega_j|$ large \Rightarrow incoherence = no sync

coupling large & $|\omega_i - \omega_j|$ small \Rightarrow coherence = frequency sync

Central question:

- [S. Strogatz '01, A. Arenas et
- al. '08, S. Boccaletti et al. '06]

- loss of sync due to bifurcation
- trade-off "coupling" vs. "heterogeneity"
- how to quantify this trade-off

Intro to Network Systems and Power Flow

Known tests and a conjecture

 F. Dörfler, M. Chertkov, and FB. Synchronization in complex oscillator networks and smart grids.
 Proc National Academy of Sciences, 110(6):2005–2010, 2013.
 doi:10.1073/pnas.1212134110

A new approach and new tests

S. Jafarpour and FB. Synchronization of Kuramoto oscillators via cutset projections. *IEEE Trans. Autom. Control*, November 2017. Submitted URL https://arxiv.org/abs/1711.03711

3

S. Jafarpour, E. Y. Huang, and FB. Synchronization of coupled oscillators: The Taylor expansion of the inverse Kuramoto map. In *Proc CDC*, Miami, USA, December 2018. Submitted. URL https://arxiv.org/abs/1711.03711

Power flow equations

- secure operating conditions
- eedback control
- economic optimization

network structure \iff function = power transmission

Power networks as quasi-synchronous AC circuits

- **●** generators and loads ●
- Physics: Kirchoff and Ohm laws
- today's simplifying assumptions:
 - quasi-sync: voltage and phase V_i, θ_i
 active and reactive power p_i, q_i
 - Ø lossless lines
 - o approximated decoupled equations

Decoupled power flow equations

active:
$$p_i = \sum_j a_{ij} \sin(\theta_i - \theta_j)$$

reactive: $q_i = -\sum_j b_{ij} V_i V_j$

Power Flow Equilibria

$$p_i = \sum_j a_{ij} \sin(\theta_i - \theta_j)$$

As function of network structure/parameters

- O do equations admit solutions / operating points?
- I how much active power can network transmit / flow?
- I how to quantify stability margins?

Active power dynamics and mechanical/spring analogy

Coupled swing equations

$$m_i\ddot{ heta}_i + d_i\dot{ heta}_i = p_i - \sum_j a_{ij}\sin(heta_i - heta_j)$$

Kuramoto coupled oscillators

$$\dot{ heta}_i = { extsf{p}}_i - \sum_j { extsf{a}}_{ij} \sin(heta_i - heta_j)$$

Sync is crucial for the functionality and operation of the AC power grid. Generators have to swing in sync despite fluctuations/faults/contingencies.

Given: network parameters & topology and load & generation profile **Q:** "∃ an optimal, stable, and robust synchronous operating point ?"

- Security analysis [Araposthatis et al. '81, Wu et al. '80 & '82, Ilić '92, ...]
- 2 Load flow feasibility [Chiang et al. '90, Dobson '92, Lesieutre et al. '99, ...]
- Optimal generation dispatch [Lavaei et al. '12, Bose et al. '12, ...]
- Irransient stability [Sastry et al. '80, Bergen et al. '81, Hill et al. '86, ...]
- Inverters in microgrids [Chandorkar et. al. '93, Guerrero et al. '09, Zhong '11,...]

Intro to Network Systems and Power Flow

Known tests and a conjecture

F. Dörfler, M. Chertkov, and FB. Synchronization in complex oscillator networks and smart grids. *Proc National Academy of Sciences*, 110(6):2005–2010, 2013. doi:10.1073/pnas.1212134110

A new approach and new tests

S. Jafarpour and FB. Synchronization of Kuramoto oscillators via cutset projections. *IEEE Trans. Autom. Control*, November 2017. Submitted URL https://arxiv.org/abs/1711.03711

3

S. Jafarpour, E. Y. Huang, and FB. Synchronization of coupled oscillators: The Taylor expansion of the inverse Kuramoto map. In *Proc CDC*, Miami, USA, December 2018. Submitted. URL https://arxiv.org/abs/1711.03711

Primer on algebraic graph theory

Weighted undirected graph with n nodes and m edges:Incidence matrix: $n \times m$ matrix B s.t. $(B^{\top}p_{active})_{(ij)} = p_i - p_j$ Weight matrix: $m \times m$ diagonal matrix \mathcal{A} Laplacian stiffness: $L = B\mathcal{A}B^{\top}$

Kuramoto eq points: $p_{active} = BA \sin(B^{\top}\theta)$

Algebraic connectivity: $\lambda_2(L) =$ second smallest eig of L

Known tests

Given balanced p_{active} , do angles exist?

$$p_{\text{active}} = B\mathcal{A}\sin(B^{ op}\theta)$$

synchronization arises if power transmission < connectivity strength

Equilibrium angles (neighbors within $\pi/2$ arc) exist if

$$\begin{split} \|B^{\top} p_{\text{active}}\|_2 &< \lambda_2(L) \quad \text{for unweighted graphs} \qquad (\text{Old 2-norm T}) \\ \|B^{\top} L^{\dagger} p_{\text{active}}\|_{\infty} < 1 \qquad \text{for trees, complete} \qquad (\text{Old ∞-norm T}) \end{split}$$

A standing conjecture

 $\left\| B^{\top} L^{\dagger} p_{\text{active}} \right\|_{\infty} < 1$ appears to imply:

 $\textcircled{0} \exists \text{ solution } \theta^*$

$$2 |\theta_i^* - \theta_j^*| \le \arcsin \left(\left\| B^\top \mathcal{L}^\dagger p_{\mathsf{active}} \right\|_\infty \right) \text{ for all } \{i, j\} \in \mathcal{E}$$

Randomized test case	Numerical worst-case	Analytic prediction of	Accuracy of condition:	
(1000 instances)	angle differences:	angle differences:	$\max_{\substack{\{i,j\}\in\mathcal{E}}} \theta_i^*-\theta_j^* $	
	$\max_{\{i,j\}\in\mathcal{E}} \theta_i^*-\theta_j^* $	$\operatorname{arcsin}(\ B^{ op}L^{\dagger}p_{\operatorname{active}}\ _{\infty})$	$= \frac{\{I,J\} \in \mathcal{E}}{-\operatorname{arcsin}(\ B^{\top}L^{\dagger}p_{\operatorname{active}}\ _{\infty})}$	
9 bus system	0.12889 rad	0.12885 rad	$4.1218 \cdot 10^{-5}$ rad	
IEEE 14 bus system	0.16622 rad	0.16594 rad	$2.7995 \cdot 10^{-4}$ rad	
IEEE RTS 24	0.22309 rad	0.22139 rad	$1.7089 \cdot 10^{-3}$ rad	
IEEE 30 bus system	0.1643 rad	0.16404 rad	$2.6140 \cdot 10^{-4}$ rad	
New England 39	0.16821 rad	0.16815 rad	$6.6355 \cdot 10^{-5}$ rad	
IEEE 57 bus system	0.20295 rad	0.18232 rad	$2.0630 \cdot 10^{-2}$ rad	
IEEE RTS 96	0.24593 rad	0.245332 rad	$2.6076 \cdot 10^{-3}$ rad	
IEEE 118 bus system	0.23524 rad	0.23464 rad	$5.9959 \cdot 10^{-4}$ rad	
IEEE 300 bus system	0.43204 rad	0.43151 rad	$5.2618 \cdot 10^{-4}$ rad	
Polish 2383 bus system	0.25144 rad	0.24723 rad	$4.2183 \cdot 10^{-3}$ rad	

IEEE test cases: 50 % randomized loads and 33 % randomized generation

Outline

Intro to Network Systems and Power Flow

Known tests and a conjecture

 F. Dörfler, M. Chertkov, and FB. Synchronization in complex oscillator networks and smart grids.
 Proc National Academy of Sciences, 110(6):2005–2010, 2013.
 doi:10.1073/pnas.1212134110

A new approach and new tests

S. Jafarpour and FB. Synchronization of Kuramoto oscillators via cutset projections. *IEEE Trans. Autom. Control*, November 2017. Submitted URL https://arxiv.org/abs/1711.03711

3

S. Jafarpour, E. Y. Huang, and FB. Synchronization of coupled oscillators: The Taylor expansion of the inverse Kuramoto map. In *Proc CDC*, Miami, USA, December 2018. Submitted. URL https://arxiv.org/abs/1711.03711

Equilibrium angles (neighbors within $\pi/2$ arc) exist if

$$\begin{split} \|B^{\top} p_{\text{active}}\|_{2} &< \lambda_{2}(L) \quad \text{for unweighted graphs} \qquad (\text{Old 2-norm T}) \\ \|B^{\top} L^{\dagger} p_{\text{active}}\|_{\infty} &< 1 \qquad \text{for trees, complete} \qquad (\text{Old ∞-norm T}) \end{split}$$

Equilibrium angles (neighbors within $\pi/2$ arc) exist if

$$\begin{split} \|B^{\top}L^{\dagger}p_{\text{active}}\|_{2} &< 1 & \text{for unweighted graphs} \quad (\text{New 2-norm T}) \\ \|B^{\top}L^{\dagger}p_{\text{active}}\|_{\infty} &< g(\|\mathcal{P}\|_{\infty}) & \text{for all graphs} \quad (\text{New ∞-norm T}) \end{split}$$

where g is monotonically decreasing

$$g(x) = \frac{y(x) + \sin(y(x))}{2} - x \frac{y(x) - \sin(y(x))}{2} \Big|_{y(x) = \arccos(\frac{x-1}{x+1})}$$

and where \mathcal{P} is a projection

 $\mathcal{P} = B^{\top} L^{\dagger} B \mathcal{A} \qquad = \text{oblique projection onto } \text{Im}(B^{\top})$ parallel to Ker($B\mathcal{A}$)

(recall: orthogonal projector onto Im(C) is $C(C^{\top}C)^{-1}C^{\top}$ for full rank C)

- **(**) if *G* unweighted, then \mathcal{P} is orthogonal and $\|\mathcal{P}\|_2 = 1$
- 2) if G acyclic, then $\mathcal{P} = I_m$ and $\|\mathcal{P}\|_p = 1$
- **③** if G uniform complete or ring, then $\|\mathcal{P}\|_{\infty} = 2(n-1)/n \leq 2$

Unifying Theorem

Equilibrium angles (neighbors within γ arc) exist if, in some *p*-norm,

$$\|B^{\top}L^{\dagger}p_{\text{active}}\|_{p} \leq \gamma \alpha_{p}(\gamma) \quad \text{for all graphs} \quad (\text{New } p\text{-norm T})$$
$$\alpha_{p}(\gamma) := \text{min amplification factor of } \mathcal{P}[\text{sinc}(x)]$$

For unweighted
$$p = 2$$
, new test sharper than old
 $\|B^{\top}L^{\dagger}p_{\text{active}}\|_{2} \leq \sin(\gamma)$ (New 2-norm T)

For $p = \infty$, new test is for all graphs

$$\|B^ op L^\dagger p_{\mathsf{active}}\|_\infty \leq g(\|\mathcal{P}\|_\infty)$$

(New ∞ -norm T)

 K_c = critical coupling of Kuramoto model, computed via MATLAB *fsolve* K_T = smallest value of scaling factor for which test T fails

	Critical ratio $K_{\rm T}/K_{\rm c}$					
Test Case	old 2-norm	new 2-norm	$new \propto -norm$	old $\infty ext{-norm}$	α_{∞} test	
	conjectured	conjectured		approximate	fmincon	
IEEE 9	16.54 %	59.06 %	73.74 %	92.13 %	85.06 % [†]	
IEEE 14	8.33 %	42.27 %	59.42 %	83.09 %	81.32 % [†]	
IEEE RTS 24	3.86 %	35.62 %	53.44 %	89.48 %	89.48 % [†]	
IEEE 30	2.70 %	40.98 %	55.70 %	85.54 %	85.54 % [†]	
IEEE 39	2.97 %	37.32 %	67.57 %	100 %	$100~\%^\dagger$	
IEEE 57	0.36 %	31.93 %	40.69 %	84.67 %	*	
IEEE 118	0.29 %	24.61 %	43.70 %	85.95 %	*	
IEEE 300	0.20 %	24.13 %	40.33 %	99.80 %	*	
Polish 2383	0.11 %	13.93 %	29.08 %	82.85 %	_*	

[†] *fmincon* has been run for 100 randomized initial phase angles.

fmincon does not converge.

Proof sketch 1/2: Rewriting the equilibrium equation

For what $B, \mathcal{A}, p_{\text{active}}$ does there exist θ solution to:

$$\mathcal{D}_{\mathsf{active}} = B\mathcal{A} \sin(B^ op heta)$$

For what projection \mathcal{P} and flow z in cutset space, does there exist x in cutset spacesolution to:

$$z = \mathcal{P}\sin(x) \iff z = \mathcal{P}[\operatorname{sinc}(x)]x$$
$$\iff x = (\mathcal{P}[\operatorname{sinc}(x)])^{-1}z =: h(x)$$

Proof sketch 2/2: Amplification factor & Brouwer fixed point thm

() look for x solving

$$x = h(x) = (\mathcal{P}[\operatorname{sinc}(x)])^{-1}z$$

2 take *p* norm, define min amplification factor of $\mathcal{P}[\operatorname{sinc}(x)]$:

 $\alpha_p(\gamma) := \min_{\|x\|_p \le \gamma} \min_{\|y\|_p = 1} \|\mathcal{P}[\operatorname{sinc}(x)]y\|_p$

If
$$||z||_p \leq \gamma \alpha_p(\gamma)$$
 and $x \in \mathcal{B}_p(\gamma) = \{x \mid ||x||_p \leq \gamma\}$, then

$$\begin{split} \|h(x)\|_p &\leq \max_x \max_y \|(\mathcal{P}[\operatorname{sinc}(x)])^{-1}y\|_p \cdot \|z\|_p \\ &\leq \frac{\|z\|_p}{\alpha_p(\gamma)} \leq \gamma \end{split}$$

hence $h(x) \in \mathcal{B}_p(\gamma)$ and h satisfies Brouwer on $\mathcal{B}_p(\gamma)$

Intro to Network Systems and Power Flow

Known tests and a conjecture

 F. Dörfler, M. Chertkov, and FB. Synchronization in complex oscillator networks and smart grids.
 Proc National Academy of Sciences, 110(6):2005–2010, 2013.
 doi:10.1073/pnas.1212134110

A new approach and new tests

S. Jafarpour and FB. Synchronization of Kuramoto oscillators via cutset projections. *IEEE Trans. Autom. Control*, November 2017. Submitted URL https://arxiv.org/abs/1711.03711

3

S. Jafarpour, E. Y. Huang, and FB. Synchronization of coupled oscillators: The Taylor expansion of the inverse Kuramoto map. In *Proc CDC*, Miami, USA, December 2018. Submitted. URL https://arxiv.org/abs/1711.03711

Computational method via power series

Given z, compute x solution to

 $z=\mathcal{P}\sin(x)$

Assume $x = \sum_{i=0}^{\infty} A_{2i+1}(z)$, where $A_{2i+1}(z)$ is homogeneous degree 2i + 1

$$z = \mathcal{P}\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{\circ 2k+1} = \mathcal{P}\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \Big(\sum_{i=0}^{\infty} A_{2i+1}(z)\Big)^{\circ 2k+1}$$

Equate left-hand and right-hand side at order $1, 3, \ldots, 2j + 1$:

$$A_{1}(z) = z$$

$$A_{2j+1}(z) = \mathcal{P}\left(\sum_{k=1}^{j} \frac{(-1)^{k+1}}{(2k+1)!} \sum_{\substack{\text{odd } \alpha_{1}, \dots, \alpha_{2k+1} \text{ s.t.} \\ \alpha_{1} + \dots + \alpha_{2k+1} = 2j+1}} A_{\alpha_{1}}(z) \circ \dots \circ A_{\alpha_{2k+1}}(z)\right)$$

Step 3: Series expansion for inverse Kuramoto map

Unique solution to
$$z = \mathcal{P}\sin(x)$$
 is

$$x = \sum_{i=0}^{\infty} A_{2i+1}(z)$$

$$A_1(z) = z = B^{\top} L^{\dagger} p_{\text{active}}$$

$$A_3(z) = \mathcal{P}\left(\frac{1}{3!} z^{\circ 3}\right)$$

$$A_5(z) = \mathcal{P}\left(\frac{3}{3!} A_3(z) \circ z^{\circ 2} - \frac{1}{5!} z^{\circ 5}\right)$$

$$A_7(z) = \mathcal{P}\left(\frac{3}{3!} A_5(z) \circ z^{\circ 2} + \frac{3}{3!} A_3(z)^{\circ 2} \circ z - \frac{5}{5!} A_3(z) \circ z^{\circ 4} + \frac{1}{7!} z^{\circ 7}\right)$$
arbitrary higher-order terms can be computed symbolically

For sufficiently small $||z||_p$, series converges uniformly absolutely

Numerical examples

Kuramoto Oscillators and Power Flow

New physical insight

- sharp sufficient conditions for equilibria upper bounds on transmission capacity stability margins as notions of distance from bifurcations
- 2 new computational methods via power series

Applications

- secure operating conditions:
- eedback control:
- economic optimization:

(Dörfler et al, PNAS '13) (Simpson-Porco et al, TIE '15) (Todescato et al, TCNS '17)

Future research

- I close the gap between sufficient and necessary conditions
- Image of the second second
- 3 applications to other flow networks (water, gas ...)