Network Systems and Kuramoto Oscillators

Francesco Bullo

2018 President, IEEE Control Systems Society
A kind invitation to participate in CSS activities

Department of Mechanical Engineering
Center for Control, Dynamical Systems & Computation
University of California at Santa Barbara
http://motion.me.ucsb.edu

State Key Laboratory of Synthetical Automation for Process Industries
Northeastern University, China, June 10, 2018

Acknowledgments
Saber Jafarpour
UCSB
Elizabeth Y. Huang
UCSB
USA Department of Energy (DOE), SunShot Program, XAT-6-62531-01,
Stabilizing the Power System in 2035 and Beyond, Consortium of DOE
National Renewable Energy Laboratory, UCSB and University of Minnesota

Outline
1 Intro to Network Systems and Power Flow
2 Known tests and a conjecture
F. Dörfler, M. Chertkov, and FB. Synchronization in complex oscillator networks and smart grids.
doi:10.1073/pnas.1212134110

A new approach and new tests
S. Jafarpour and FB. Synchronization of Kuramoto oscillators via cutset projections.

S. Jafarpour, E. Y. Huang, and FB. Synchronization of coupled oscillators: The Taylor expansion of the inverse Kuramoto map.

Example network systems
- Smart grid
- Amazon robotic warehouse
- Portland water network
- Industrial chemical plant

Known tests and a conjecture
F. Dörfler, M. Chertkov, and FB. Synchronization in complex oscillator networks and smart grids.
doi:10.1073/pnas.1212134110

A new approach and new tests
S. Jafarpour and FB. Synchronization of Kuramoto oscillators via cutset projections.

S. Jafarpour, E. Y. Huang, and FB. Synchronization of coupled oscillators: The Taylor expansion of the inverse Kuramoto map.
systems of interest
asymptotic behavior
tools

\[x(k + 1) = Ax(k) + b \quad \text{or} \quad \dot{x}(t) = Ax(t) + b \]

network structure \iff \text{function} = \text{asymptotic behavior}

Synchronization in Networks of Coupled Oscillators

Pendulum clocks & “an odd kind of sympathy”
[C. Huygens, Horologium Oscillatorum, 1673]

Today’s canonical coupled oscillator model
[A. Winfree ’67, Y. Kuramoto ’75]

Coupled oscillator model:
\[\dot{\theta}_i = \omega_i - \sum_{j=1}^{n} a_{ij} \sin(\theta_i - \theta_j) \]

- \text{n oscillators} with phase \(\theta_i \in S^1 \)
- \text{non-identical} natural frequencies \(\omega_i \in \mathbb{R}^1 \)
- \text{coupling} with strength \(a_{ij} = a_{ji} \)

A few related applications:
- Sync in Josephson junctions
- Sync in a population of fireflies
 [G.B. Ermentrout ’90, Y. Zhou et al. ’06]
- Canonical model of coupled limit-cycle oscillators
- Countless sync phenomena in sciences/bio/tech.
 [A. Winfree ’67, S.H. Strogatz ’00, J. Acebrón ’01]

citations on scholar.google:
Kuramoto oscillators 1.4K, synchronzation complex 2.2M
Synchronization in Networks of Coupled Oscillators
phenomenology and challenges

Function = synchronization

\[\dot{\theta}_i = \omega_i - \sum_{j=1}^{n} a_{ij} \sin(\theta_i - \theta_j) \]

- coupling small & \(|\omega_i - \omega_j| \) large \(\Rightarrow \) incoherence = no sync
- coupling large & \(|\omega_i - \omega_j| \) small \(\Rightarrow \) coherence = frequency sync

Central question:
[S. Strogatz '01, A. Arenas et al. '08, S. Boccaletti et al. '06]

- loss of sync due to bifurcation
- trade-off “coupling” vs. “heterogeneity”
- how to quantify this trade-off

Outline
1 Intro to Network Systems and Power Flow

Known tests and a conjecture
F. Dörfler, M. Chertkov, and FB. Synchronization in complex oscillator networks and smart grids.
doi:10.1073/pnas.1212134110

A new approach and new tests
S. Jafarpour and FB. Synchronization of Kuramoto oscillators via cutset projections.

S. Jafarpour, E. Y. Huang, and FB. Synchronization of coupled oscillators: The Taylor expansion of the inverse Kuramoto map.

Power flow equations

voltage magnitude and phase
active and reactive power

1 secure operating conditions
2 feedback control
3 economic optimization

network structure \(\leftrightarrow \) function = power transmission

Power networks as quasi-synchronous AC circuits

1 generators ■ and loads ●
2 physics: Kirchoff and Ohm laws
3 today’s simplifying assumptions:
 • quasi-sync: voltage and phase \(V_i, \theta_i \)
 active and reactive power \(p_i, q_i \)
 • lossless lines
 • approximated decoupled equations

Decoupled power flow equations
active: \(p_i = \sum_j a_{ij} \sin(\theta_i - \theta_j) \)
reactive: \(q_i = -\sum_j b_{ij} V_i V_j \)
Power Flow Equilibria

\[p_i = \sum_j a_{ij} \sin(\theta_i - \theta_j) \]

As function of network structure/parameters

- do equations admit solutions / operating points?
- how much active power can network transmit / flow?
- how to quantify stability margins?

Active power dynamics and mechanical/spring analogy

Coupled swing equations

\[m_i \ddot{\theta}_i + d_i \dot{\theta}_i = p_i - \sum_j a_{ij} \sin(\theta_i - \theta_j) \]

Kuramoto coupled oscillators

\[\dot{\theta}_j = p_i - \sum_j a_{ij} \sin(\theta_i - \theta_j) \]

Outline

1. Intro to Network Systems and Power Flow

Known tests and a conjecture

F. Dörfler, M. Chertkov, and FB. Synchronization in complex oscillator networks and smart grids.

doi:10.1073/pnas.1212134110

A new approach and new tests

S. Jafarpour and FB. Synchronization of Kuramoto oscillators via cutset projections.

S. Jafarpour, E. Y. Huang, and FB. Synchronization of coupled oscillators: The Taylor expansion of the inverse Kuramoto map.

Synchronization in Power Networks

Sync is crucial for the functionality and operation of the AC power grid. Generators have to swing in sync despite fluctuations/faults/contingencies.

Given: network parameters & topology and load & generation profile

Q: “∃ an optimal, stable, and robust synchronous operating point?”

- Load flow feasibility [Chiang et al. ’90, Dobson ’92, Lesieutre et al. ’99, …]
- Optimal generation dispatch [Lavaei et al. ’12, Bose et al. ’12, …]
- Transient stability [Sastry et al. ’80, Bergen et al. ’81, Hill et al. ’86, …]
- Inverters in microgrids [Chandorkar et. al. ’93, Guerrero et al. ’09, Zhong ’11, …]

Primer on algebraic graph theory

Weighted undirected graph with \(n \) nodes and \(m \) edges:

- **Incidence matrix**: \(n \times m \) matrix \(B \) s.t.
 \[(B^\top p_{\text{active}})(j) = p_i - p_j \]
- **Weight matrix**: \(m \times m \) diagonal matrix \(A \)
- **Laplacian stiffness**: \(L = B A B^\top \)

Kuramoto eq points: \(p_{\text{active}} = B A \sin(B^\top \theta) \)

Algebraic connectivity: \(\lambda_2(L) = \) second smallest eig of \(L \)

Linear spring networks and \(L^\dagger \)

\[f_i = \sum_j a_{ij}(x_j - x_i) = -(Lx)_i \]

\[x = L^\dagger f \quad \text{for balanced } f \perp 1_n \]
Given balanced p_{active}, do angles exist?

$p_{\text{active}} = B A \sin(B^T \theta)$

synchronization arises if

power transmission < connectivity strength

Equilibrium angles (neighbors within $\pi/2$ arc) exist if

$\|B^T p_{\text{active}}\|_2 < \lambda_2(L)$ for unweighted graphs (Old 2-norm T)

$\|B^T L^T p_{\text{active}}\|_\infty < 1$ for trees, complete (Old ∞-norm T)

at fixed radius and 2-norm, volume of ball $\to 0^+$ as $d \to +\infty$

Novel today

Known tests and conjectures

F. Dörfler, M. Chertkov, and F.B. Synchronization in complex oscillator networks and smart grids.

doi:10.1073/pnas.1212134110

A new approach and new tests

S. Jafarpour and F.B. Synchronization of Kuramoto oscillators via cutset projections.

S. Jafarpour, E. Y. Huang, and F.B. Synchronization of coupled oscillators: The Taylor expansion of the inverse Kuramoto map.

A standing conjecture

$\|B^T L^T p_{\text{active}}\|_\infty < 1$ appears to imply:

1. \exists solution θ^*

2. $|\theta_i^* - \theta_j^*| \leq \arcsin(\|B^T L^T p_{\text{active}}\|_\infty)$ for all $(i, j) \in \mathcal{E}$

| Randomized test case (1000 instances) | Numerical worst-case angle differences: $\max_{(i,j) \in E} |\theta_i^* - \theta_j^*|$ | Analytic prediction of angle differences: $\arcsin(\|B^T L^T p_{\text{active}}\|_\infty)$ | Accuracy of condition: $\max_{(i,j) \in \mathcal{E}} |\theta_i^* - \theta_j^*| - \arcsin(\|B^T L^T p_{\text{active}}\|_\infty)$ |
|--------------------------------------|---------------------------------|---------------------------------|---------------------------------|
| 9 bus system | 0.12889 rad | 0.12885 rad | 4.1218 · 10^{-5} rad |
| IEEE 14 bus system | 0.16022 rad | 0.16594 rad | 2.7995 · 10^{-4} rad |
| IEEE RTS 24 | 0.22309 rad | 0.22139 rad | 1.7089 · 10^{-3} rad |
| IEEE 30 bus system | 0.1643 rad | 0.16404 rad | 2.6140 · 10^{-4} rad |
| New England 39 | 0.16821 rad | 0.16815 rad | 6.6355 · 10^{-5} rad |
| IEEE 57 bus system | 0.20295 rad | 0.19232 rad | 2.0630 · 10^{-2} rad |
| IEEE RTS 96 | 0.24593 rad | 0.24532 rad | 2.6076 · 10^{-3} rad |
| IEEE 118 bus system | 0.23524 rad | 0.23464 rad | 5.9959 · 10^{-4} rad |
| IEEE 300 bus system | 0.43204 rad | 0.43151 rad | 5.2618 · 10^{-4} rad |
| Polish 2383 bus system | 0.25144 rad | 0.24723 rad | 4.2183 · 10^{-3} rad |

IEEE test cases: 50 % randomized loads and 33 % randomized generation
where g is monotonically decreasing

$$g : [1, \infty) \rightarrow [0, 1]$$

Equilibrium angles (neighbors within γ arc) exist if, in some p-norm,

$$\|B^T L^\dagger \rho_{\text{active}}\|_p \leq \gamma \alpha_p(\gamma)$$

for all graphs \quad (\text{New } p\text{-norm } T)

$$\alpha_p(\gamma) := \min \text{ amplification factor of } P[\text{sinc}(x)]$$

For unweighted $p = 2$, new test sharper than old

$$\|B^T L^\dagger \rho_{\text{active}}\|_2 \leq \sin(\gamma)$$

(New 2-norm T)

For $p = \infty$, new test is for all graphs

$$\|B^T L^\dagger \rho_{\text{active}}\|_\infty \leq g(\|P\|_\infty)$$

(New ∞-norm T)

Comparison of sufficient and approximate sync tests

K_c = critical coupling of Kuramoto model, computed via MATLAB $fsolve$

K_T = smallest value of scaling factor for which test T fails

<table>
<thead>
<tr>
<th>Test Case</th>
<th>old 2-norm conjectured</th>
<th>new 2-norm conjectured</th>
<th>new ∞-norm approximate</th>
<th>old ∞-norm approximate</th>
<th>α_∞ test</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEEE 9</td>
<td>16.54 %</td>
<td>59.06 %</td>
<td>73.74 %</td>
<td>92.13 %</td>
<td>85.06 %†</td>
</tr>
<tr>
<td>IEEE 14</td>
<td>8.33 %</td>
<td>42.27 %</td>
<td>59.42 %</td>
<td>83.09 %</td>
<td>81.32 %†</td>
</tr>
<tr>
<td>IEEE RTS 24</td>
<td>3.86 %</td>
<td>35.62 %</td>
<td>53.44 %</td>
<td>89.48 %</td>
<td>89.48 %†</td>
</tr>
<tr>
<td>IEEE 30</td>
<td>2.70 %</td>
<td>40.98 %</td>
<td>55.70 %</td>
<td>85.54 %</td>
<td>85.54 %†</td>
</tr>
<tr>
<td>IEEE 39</td>
<td>2.97 %</td>
<td>37.32 %</td>
<td>67.57 %</td>
<td>100 %</td>
<td>100 %†</td>
</tr>
<tr>
<td>IEEE 57</td>
<td>0.36 %</td>
<td>31.93 %</td>
<td>40.69 %</td>
<td>84.67 %</td>
<td>—</td>
</tr>
<tr>
<td>IEEE 118</td>
<td>0.29 %</td>
<td>24.61 %</td>
<td>43.70 %</td>
<td>85.95 %</td>
<td>—</td>
</tr>
<tr>
<td>IEEE 300</td>
<td>0.20 %</td>
<td>24.13 %</td>
<td>40.33 %</td>
<td>99.80 %</td>
<td>—</td>
</tr>
<tr>
<td>Polish 2383</td>
<td>0.11 %</td>
<td>13.93 %</td>
<td>29.08 %</td>
<td>82.85 %</td>
<td>—</td>
</tr>
</tbody>
</table>

† $fmincon$ has been run for 100 randomized initial phase angles.
* $fmincon$ does not converge.
Proof sketch 1/2: Rewriting the equilibrium equation

For what projection \mathcal{P} and flow z in cutset space, does there exist x in cutset space solution to:

$$z = \mathcal{P} \sin(x) \iff z = \mathcal{P}[\text{sinc}(x)]x$$

$$\iff x = (\mathcal{P}[\text{sinc}(x)])^{-1}z =: h(x)$$

Proof sketch 2/2: Amplification factor & Brouwer fixed point thm

1. Look for x solving
 \[x = h(x) = (\mathcal{P}[\text{sinc}(x)])^{-1}z \]

2. Take p norm, define min amplification factor of $\mathcal{P}[\text{sinc}(x)]$:
 \[\alpha_p(\gamma) := \min \min_{\|x\|_p \leq \gamma} \|\mathcal{P}[\text{sinc}(x)]y\|_p \]

If $\|z\|_p \leq \gamma \alpha_p(\gamma)$ and $x \in B_p(\gamma) = \{x \mid \|x\|_p \leq \gamma\}$, then

\[\|h(x)\|_p \leq \max_{x} \max_{y} \|\mathcal{P}[\text{sinc}(x)]^{-1}y\|_p \cdot \|z\|_p \leq \frac{\|z\|_p}{\alpha_p(\gamma)} \leq \gamma \]

Hence $h(x) \in B_p(\gamma)$ and h satisfies Brouwer on $B_p(\gamma)$

Outline

1. Intro to Network Systems and Power Flow
 - Known tests and a conjecture
 - F. Dörfler, M. Chertkov, and FB. Synchronization in complex oscillator networks and smart grids.
 - A new approach and new tests
 - S. Jafarpour and FB. Synchronization of Kuramoto oscillators via cutset projections.
 - S. Jafarpour, E. Y. Huang, and FB. Synchronization of coupled oscillators: The Taylor expansion of the inverse Kuramoto map.

Computational method via power series

Given z, compute x solution to

$$z = \mathcal{P} \sin(x)$$

Assume $x = \sum_{i=0}^{\infty} A_{2i+1}(z)$, where $A_{2i+1}(z)$ is homogeneous degree $2i + 1$

$$z = \mathcal{P} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} z^{2k+1} = \mathcal{P} \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \left(\sum_{i=0}^{\infty} A_{2i+1}(z) \right)^{2k+1}$$

Equate left-hand and right-hand side at order 1, 3, \ldots, $2j + 1$:

$$A_1(z) = z$$

$$A_{2j+1}(z) = \mathcal{P} \left(\sum_{k=1}^{j} \frac{(-1)^{k+1}}{(2k+1)!} \sum_{\text{odd } \alpha_1, \ldots, \alpha_{2k+1} \text{ s.t. } \alpha_1 + \cdots + \alpha_{2k+1} = 2j+1} A_{\alpha_1}(z) \circ \cdots \circ A_{\alpha_{2k+1}}(z) \right)$$
Step 3: Series expansion for inverse Kuramoto map

Unique solution to \(z = P \sin(x) \) is

\[
x = \sum_{i=0}^{\infty} A_{2i+1}(z)
\]

\[
A_1(z) = z = B^\top L^\dagger \rho_{\text{active}}
\]

\[
A_3(z) = P \left(\frac{1}{3!} z^{o3} \right)
\]

\[
A_5(z) = P \left(\frac{3}{3!} A_3(z) \circ z^{o2} - \frac{1}{5!} z^{o5} \right)
\]

\[
A_7(z) = P \left(\frac{3}{3!} A_5(z) \circ z^{o2} + \frac{3}{3!} A_3(z)^{o2} \circ z - \frac{5}{5!} A_3(z) \circ z^{o4} + \frac{1}{7!} z^{o7} \right)
\]

arbitrary higher-order terms can be computed symbolically

For sufficiently small \(\|z\|_p \), series converges uniformly absolutely

Kuramoto Oscillators and Power Flow

New physical insight

- sharp sufficient conditions for equilibria
 upper bounds on transmission capacity
 stability margins as notions of distance from bifurcations

- new computational methods via power series

Applications

- secure operating conditions: \((\text{Dörfler et al, PNAS '13})\)
- feedback control: \((\text{Simpson-Porco et al, TIE '15})\)
- economic optimization: \((\text{Todescato et al, TCNS '17})\)

Future research

- close the gap between sufficient and necessary conditions
- more realistic coupled power flow equations
- applications to other flow networks (water, gas ...)

Numerical examples

Test case: IEEE 118

Accuracy, log10 scale