Network Systems and Kuramoto Oscillators

Francesco Bullo

2018 President, IEEE Control Systems Society A kind invitation to participate in CSS activities

Department of Mechanical Engineering Center for Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.me.ucsb.edu

State Key Laboratory of Synthetical Automation for Process Industries Northeastern University, China, June 10, 2018

Outline

Intro to Network Systems and Power Flow

Known tests and a conjecture

 F. Dörfler, M. Chertkov, and FB. Synchronization in complex oscillator networks and smart grids.
 Proc National Academy of Sciences, 110(6):2005–2010, 2013.
 doi:10.1073/pnas.1212134110

A new approach and new tests

S. Jafarpour and FB. Synchronization of Kuramoto oscillators via cutset projections. *IEEE Trans. Autom. Control*, November 2017. Submitted URL https://arxiv.org/abs/1711.03711

3

S. Jafarpour, E. Y. Huang, and FB. Synchronization of coupled oscillators: The Taylor expansion of the inverse Kuramoto map. In *Proc CDC*, Miami, USA, December 2018. Submitted. URL https://arxiv.org/abs/1711.03711

Acknowledgments

Saber Jafarpour UCSB

Elizabeth Y. Huang UCSB

USA Department of Energy (DOE), SunShot Program, XAT-6-62531-01, *Stabilizing the Power System in 2035 and Beyond*, Consortium of DOE National Renewable Energy Laboratory, UCSB and University of Minnesota

Example network systems

Smart grid

Portland water network

Amazon robotic warehouse

Industrial chemical plant

Linear network systems

New text "Lectures on Network Systems"

Kuramoto oscillators 1.4K, synchonization

Power Flow Equilibria

 $p_i = \sum_i a_{ii} \sin(\theta_i - \theta_i)$

As function of network structure/parameters

- O do equations admit solutions / operating points?
- I how much active power can network transmit / flow?

Given: network parameters & topology and load & generation profile I how to quantify stability margins? **Q:** " \exists an optimal, stable, and robust synchronous operating point ?" Active power dynamics and mechanical/spring analogy Security analysis [Araposthatis et al. '81, Wu et al. '80 & '82, Ilić '92, ...] **Coupled swing equations** 2 Load flow feasibility [Chiang et al. '90, Dobson '92, Lesieutre et al. '99, ...] Optimal generation dispatch [Lavaei et al. '12, Bose et al. '12, ...] $m_i\ddot{ heta}_i + d_i\dot{ heta}_i = p_i - \sum_i a_{ij}\sin(heta_i - heta_j)$ 3 Transient stability [Sastry et al. '80, Bergen et al. '81, Hill et al. '86, ...] Kuramoto coupled oscillators 5 Inverters in microgrids [Chandorkar et. al. '93, Guerrero et al. '09, Zhong '11,...] $\dot{\theta}_i = p_i - \sum_i a_{ij} \sin(\theta_i - \theta_j)$ Outline Primer on algebraic graph theory Weighted undirected graph with n nodes and m edges: Intro to Network Systems and Power Flow Incidence matrix: $n \times m$ matrix B s.t. $(B^{\top} p_{\text{active}})_{(ii)} = p_i - p_i$ $m \times m$ diagonal matrix \mathcal{A} Weight matrix: Known tests and a conjecture **Laplacian stiffness**: $L = BAB^{\top}$ F. Dörfler, M. Chertkov, and FB. Synchronization in complex oscillator networks and smart grids. Proc National Academy of Sciences, 110(6):2005-2010, 2013. doi:10.1073/pnas.1212134110 **Kuramoto eq points**: $p_{\text{active}} = B\mathcal{A}\sin(B^{\top}\theta)$ A new approach and new tests **Algebraic connectivity**: $\lambda_2(L) =$ second smallest eig of L S. Jafarpour and FB. Synchronization of Kuramoto oscillators via cutset projections. IEEE Trans. Autom. Control, November 2017. Submitted URL https://arxiv.org/abs/1711.03711 Linear spring networks and L[†] 3 $egin{aligned} f_i &= \sum_i a_{ij}(x_j - x_i) = -(Lx)_i \ x &= L^\dagger f & ext{for balanced } f \perp \mathbb{1}_n \end{aligned}$ S. Jafarpour, E. Y. Huang, and FB. Synchronization of coupled oscillators: The Taylor -111111expansion of the inverse Kuramoto map. ~999999 In Proc CDC, Miami, USA, December 2018. Submitted. URL https://arxiv.org/abs/1711.03711

Synchronization in Power Networks

Sync is crucial for the functionality and operation of the AC power grid. Generators have to swing in sync despite fluctuations/faults/contingencies.

Given balanced p_{active} , do angles exist?

$$p_{\mathsf{active}} = B\mathcal{A}\sin(B^{ op}\theta)$$

synchronization arises if power transmission < connectivity strength

Equilibrium angles (neighbors within $\pi/2$ arc) exist if

 $||B^{\top}p_{\text{active}}||_2 < \lambda_2(L)$ for unweighted graphs (Old 2-norm T) $\|B^{ op}L^{\dagger}p_{\mathsf{active}}\|_{\infty} < 1$ for trees, complete (Old ∞ -norm T)

$$p=.25$$
 $p=.354$ $p=.707$ $p=1$ $p=2.414$ $p=2$ $p=2.828$ $p=4$ $p=5.657$ $p=8$

at fixed radius and 2-norm, volume of ball $\rightarrow 0^+$ as $d \rightarrow +\infty$

Outline

3

Intro to Network Systems and Power Flow

Known tests and a conjecture

F. Dörfler, M. Chertkov, and FB. Synchronization in complex oscillator networks and smart grids. Proc National Academy of Sciences, 110(6):2005-2010, 2013. doi:10.1073/pnas.1212134110

A new approach and new tests

S. Jafarpour and FB. Synchronization of Kuramoto oscillators via cutset projections. IEEE Trans. Autom. Control, November 2017. Submitted URL https://arxiv.org/abs/1711.03711

S. Jafarpour, E. Y. Huang, and FB. Synchronization of coupled oscillators: The Taylor expansion of the inverse Kuramoto map. In Proc CDC, Miami, USA, December 2018. Submitted. URL https://arxiv.org/abs/1711.03711

A standing conjecture

 $\|B^{\top}L^{\dagger}p_{\text{active}}\|_{\infty} < 1$ appears to imply:

1 \exists solution θ^*

2 $|\theta_i^* - \theta_i^*| \leq \arcsin(\|B^\top L^\dagger p_{\text{active}}\|_{\infty})$ for all $\{i, j\} \in \mathcal{E}$

Randomized test case	Numerical worst-case	Analytic prediction of	Accuracy of condition:
(1000 instances)	angle differences:	angle differences:	$\max_{\{i,j\}\in\mathcal{C}} \theta_i^*-\theta_j^* $
	$\max_{\{i,j\}\in\mathcal{E}} \theta_i^*-\theta_j^* $	$\operatorname{arcsin}(\ B^{ op}L^{\dagger}p_{\operatorname{active}}\ _{\infty})$	$= \frac{\{I, J\} \in \mathcal{E}}{-\operatorname{arcsin}(\ B^{\top}L^{\dagger}p_{\operatorname{active}}\ _{\infty})}$
9 bus system	0.12889 rad	0.12885 rad	$4.1218\cdot 10^{-5} \text{ rad}$
IEEE 14 bus system	0.16622 rad	0.16594 rad	$2.7995 \cdot 10^{-4}$ rad
IEEE RTS 24	0.22309 rad	0.22139 rad	$1.7089\cdot10^{-3}$ rad
IEEE 30 bus system	0.1643 rad	0.16404 rad	$2.6140\cdot 10^{-4} \text{ rad}$
New England 39	0.16821 rad	0.16815 rad	$6.6355\cdot 10^{-5}$ rad
IEEE 57 bus system	0.20295 rad	0.18232 rad	$2.0630 \cdot 10^{-2}$ rad
IEEE RTS 96	0.24593 rad	0.245332 rad	$2.6076 \cdot 10^{-3}$ rad
IEEE 118 bus system	0.23524 rad	0.23464 rad	$5.9959\cdot 10^{-4}$ rad
IEEE 300 bus system	0.43204 rad	0.43151 rad	$5.2618 \cdot 10^{-4}$ rad
Polish 2383 bus system	0.25144 rad	0.24723 rad	$4.2183 \cdot 10^{-3}$ rad

IEEE test cases: 50 % randomized loads and 33 % randomized generation

Novel today

Equilibrium angles (neighbors within $\pi/2$ arc) exist if

 $\|B^{\top}p_{\text{active}}\|_2 < \lambda_2(L)$ for unweighted graphs $\|B^{ op}L^{\dagger}p_{\mathsf{active}}\|_{\infty} < 1$ for trees, complete

(Old 2-norm T)

(Old ∞ -norm T)

Equilibrium angles (neighbors within $\pi/2$ arc) exist if

 $\|B^{\top}L^{\dagger}p_{\text{active}}\|_{\infty} < g(\|\mathcal{P}\|_{\infty}) \qquad \text{for all graphs} \quad (\text{New ∞-norm T})$

 $\|B^{\top}L^{\dagger}p_{\text{active}}\|_2 < 1$ for unweighted graphs (New 2-norm T)

Proof sketch $1/2$: Rewriting the equilibrium equation	Proof sketch 2/2: Amplification factor & Brouwer fixed point thm
	• look for x solving
For what B, A, p_{active} does there exist θ solution to:	$x = h(x) = (\mathcal{P}[\operatorname{sinc}(x)])^{-1}z$
$p_{active} = B\mathcal{A} \sin(B^ op heta)$	2 take p norm, define min amplification factor of $\mathcal{P}[sinc(x)]$:
	$\alpha_{p}(\gamma) := \min_{\ x\ _{p} \leq \gamma} \min_{\ y\ _{p}=1} \ \mathcal{P}[\operatorname{sinc}(x)]y\ _{p}$
For what projection \mathcal{P} and flow z in cutset space, does there exist x in cutset spacesolution to: $z = \mathcal{P} \sin(x) \iff z = \mathcal{P}[\operatorname{sinc}(x)]x$ $\iff x = (\mathcal{P}[\operatorname{sinc}(x)])^{-1}z =: h(x)$	If $ z _p \leq \gamma \alpha_p(\gamma)$ and $x \in \mathcal{B}_p(\gamma) = \{x \mid x _p \leq \gamma\}$, then $ h(x) _p \leq \max_x \max_y (\mathcal{P}[\operatorname{sinc}(x)])^{-1}y _p \cdot z _p$ $\leq \frac{ z _p}{\alpha_p(\gamma)} \leq \gamma$ hence $h(x) \in \mathcal{B}_p(\gamma)$ and h satisfies Brouwer on $\mathcal{B}_p(\gamma)$
Outline	Computational method via power series
Intro to Network Systems and Power Flow	Given z , compute x solution to
 Known tests and a conjecture F. Dörfler, M. Chertkov, and FB. Synchronization in complex oscillator networks and smart grids. Proc National Academy of Sciences, 110(6):2005–2010, 2013. doi:10.1073/pnas.1212134110 	$z = \mathcal{P}\sin(x)$ Assume $x = \sum_{i=0}^{\infty} A_{2i+1}(z)$, where $A_{2i+1}(z)$ is homogeneous degree $2i + 1$ $z = \mathcal{P}\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{\circ 2k+1} = \mathcal{P}\sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} \Big(\sum_{i=0}^{\infty} A_{2i+1}(z)\Big)^{\circ 2k+1}$
A new approach and new tests S. Jafarpour and FB. Synchronization of Kuramoto oscillators via cutset projections. <i>IEEE Trans. Autom. Control</i> , November 2017. Submitted URL https://arxiv.org/abs/1711.03711	Equate left-hand and right-hand side at order $1, 3, \ldots, 2j + 1$: $A_1(z) = z$
S. Jafarpour, E. Y. Huang, and FB. Synchronization of coupled oscillators: The Taylor	$A_{2^{j}+1}(z) = \mathcal{P}\left(\sum_{j=1}^{j} \frac{(-1)^{k+1}}{(-1)^{k+1}}\right) = \sum_{j=1}^{k} A_{j}(z) \otimes \cdots \otimes A_{j}(z)$

Step 3: Series expansion for inverse Kuramoto map		Numerical examples		
Unique solution to $z = \mathcal{P} \sin(x)$ is $x = \sum_{i=1}^{\infty} A_1(z) = z = B^\top L^{\dagger} p_{\text{active}}$ $A_3(z) = \mathcal{P}(\frac{1}{3!}z^{\circ 3})$ $A_5(z) = \mathcal{P}(\frac{3}{3!}A_3(z) \circ z^{\circ 2} - \frac{1}{5!}z^{\circ 1})$ $A_7(z) = \mathcal{P}(\frac{3}{3!}A_5(z) \circ z^{\circ 2} + \frac{3}{3!}A_3)$ arbitrary higher-order terms For sufficiently small $ z _p$, series	$ \sum_{i=0}^{5} A_{2i+1}(z) $ $ S_{2i+1}(z) = S_{2i+1}(z) =$	Test case: IEEE 118		
Kuramoto Oscillators and Po	ower Flow			
New physical insight sharp sufficient conditions for equil upper bounds on transmission	ibria capacity			
stability margins as notions ofnew computational methods via po	distance from bifurcations			
Applications				
secure operating conditions:	(Dörfler et al, PNAS '13)			
2 feedback control:	(Simpson-Porco et al, TIE '15)			
economic optimization:	(Todescato et al, TCNS '17)			
Future research				
Iclose the gap between sufficient and necessary conditions				
e more realistic coupled power flow equations				
applications to other flow networks (water, gas)				