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Linear Systems:

1 motivating examples from social, sensor and
compartmental networks

2 matrix and graph theory, with an emphasis on
Perron–Frobenius theory and algebraic graph theory

3 averaging algorithms in discrete and continuous time,
described by static and time-varying matrices

4 positive and compartmental systems, described by
Metzler matrices

Nonlinear Systems:

5 formation control problems for robotic networks

6 coupled oscillators, with an emphasis on the
Kuramoto model and models of power networks

7 virus propagation models, including lumped and
network models as well as stochastic and
deterministic models

8 population dynamic models in multi-species systems

Dynamics and learning in social systems

Dynamic phenomena on dynamic social networks

1 opinion formation, information propagation, collective learning,
task decomposition/allocation/execution

2 interpersonal network structures, e.g., influences & appraisals

Questions on collective intelligence, rationality & performance:

wisdom of crowds, group think, and democracy versus autocracy

collective learning or lack thereof

discovery/propagation/abandonment of truth



Dynamics and learning in social systems
Mathematical sociology + systems/controls

opinion dynamics over influence networks

seminal works: French ’56, Harary ’59, DeGroot ’74, Friedkin ’90

recently: bounded confidence, learning, social power

key object: row stochastic matrix

dynamics of appraisal networks and structural balance

seminal works: Heider ’46, Cartwright ’56, Davis/Leinhardt ’72

recently: dynamic balance, empirical studies

key object: signed matrix

Not considered today:

other dynamic phenomena (epidemics)

static network science (clustering)

game theory and strategic behavior (network formation)

Selected literature on math sociology and systems/control

F. Harary, R. Z. Norman, and D. Cartwright. Structural Models: An Introduction to
the Theory of Directed Graphs. Wiley, 1965 (Research Center for Group Dynamics,
Institute for Social Research, University of Michigan)

M. O. Jackson. Social and Economic Networks.¡ Princeton Univ Press, 2010

D. Easley and J. Kleinberg. Networks, Crowds, and Markets: Reasoning About a
Highly Connected World. Cambridge University Press, 2010

N. E. Friedkin and E. C. Johnsen. Social Influence Network Theory: A Sociological
Examination of Small Group Dynamics. ¡ Cambridge University Press, 2011

A. V. Proskurnikov and R. Tempo. A tutorial on modeling and analysis of dynamic
social networks. Part I. Annual Reviews in Control, 43:65–79, 2017

exploding literature on opinion dynamics in sociology, physics, social networks

Outline

1

Influence systems: the mathematics of social power

P. Jia, A. MirTabatabaei, N. E. Friedkin, and F. Bullo. “Opinion

Dynamics and The Evolution of Social Power in Influence

Networks.” SIAM Review, 57(3):367-397, 2015

2 Influence systems: statistical results on empirical data
N. E. Friedkin, P. Jia, and F. Bullo. A Theory of the Evolution of

Social Power: Natural Trajectories of Interpersonal Influence Systems

along Issue Sequences. Sociological Science, 3:444–472, June 2016.

3 Appraisal systems and collective learning
W. Mei, N. E. Friedkin, K. Lewis, and F. Bullo. “Dynamic Models of

Appraisal Networks Explaining Collective Learning.” IEEE Conf. on

Decision and Control, Las Vegas, December 2016.

Social power along issue sequences

Deliberative groups in social organization

government: juries, panels, committees

corporations: board of directors

universities: faculty meetings

Natural social processes along sequences

opinion dynamics for single issue?

levels of openness and closure along sequence?

influence accorded to others? emergence of leaders?

Groupthink = “deterioration of mental efficiency . . . from
in-group pressures,” by I. Janis, 1972

Wisdom of crowds = “group aggregation of information results
in better decisions than individual’s” by J. Surowiecki, 2005
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Selected literature on social power & reflected appraisal

J. R. P. French. A formal theory of social power.

Psychological Review, 63(3):181–194, 1956

M. H. DeGroot. Reaching a consensus. Journal of the American Statistical
Association, 69(345):118–121, 1974

C. H. Cooley. Human Nature and the Social Order. Charles Scribner Sons, New
York, 1902

V. Gecas and M. L. Schwalbe. Beyond the looking-glass self: Social structure and
efficacy-based self-esteem. Social Psychology Quarterly, 46(2):77–88, 1983

N. E. Friedkin. A formal theory of reflected appraisals in the evolution of power.

Administrative Science Quarterly, 56(4):501–529, 2011

Opinion dynamics and social power along issue sequences

DeGroot averaging model for opinion dynamics

y(k + 1) = Ay(k)

Consensus under mild assumptions:

lim
k→∞

y(k) = (vleft(A) · y(0))1n

where vleft(A) is social power

Aii =: xi are self-weights / self-appraisal

let Wij be relative interpersonal accorded weights
define Aij =: (1− xi )Wij so that

A(x) = diag(x) + diag(1n − x)W

vleft(W ) = (w1, . . . ,wn) = dominant eigenvector for W
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Opinion dynamics and social power along issue sequences

Reflected appraisal phenomenon (Cooley 1902 and Friedkin 2011)

along issues s = 1, 2, . . . , individual dampens/elevates
self-weight according to prior influence centrality

self-weights relative control on prior issues = social power

self-appraisal

reflected appraisal mechanism

x(s + 1) = vleft(A(x(s)))

x(s) A(x(s)) vleft(A(x(s)))

influence network social power
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Dynamics of the influence network

Existence and stability of equilibria?
Role of network structure and parameters?
Emergence of autocracy and democracy?

For strongly connected W and non-trivial initial conditions

1 unique fixed point x∗ = x∗(w1, . . . ,wn)

2 convergence = forgets initial condition

lim
s→∞

x(s) = lim
s→∞

vleft(A(x(s))) = x∗

3 accumulation of social power and self-appraisal
fixed point x∗ has same ordering of (w1, . . . ,wn)
x∗ is an extreme version of (w1, . . . ,wn)
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Emergence of democracy

If W is doubly-stochastic:

1 the non-trivial fixed point is
1n

n

2 lim
s→∞

x(s) = lim
s→∞

vleft(A(x(s))) =
1n

n

Uniform social power

No power accumulation = evolution to democracy

issue 1 issue 2 issue 3 . . . issue N

Emergence of autocracy

If W has star topology with center j :

1 there are no non-trivial fixed points

2 lim
s→∞

x(s) = lim
s→∞

vleft(A(x(s))) = ej

Autocrat appears in center node of star topology

Extreme power accumulation = evolution to autocracy

issue 1 issue 2 issue 3 . . . issue N

Analysis methods

1 existence of x∗ via
Brower fixed point theorem

2 monotonicity:
imax and imin are forward-invariant

imax = argmaxj
xj(0)

x∗j

=⇒ imax = argmaxj
xj(s)

x∗j
, for all subsequent s

3 convergence via variation on classic “max-min” Lyapunov function:

V (x) = max
j

(
ln

xj
x∗j

)
−min

j

(
ln

xj
x∗j

)
strictly decreasing for x 6= x∗

Stochastic models with cumulative memory
Other extensions: modified models, reducible W , periodic W ...

1 assume noisy interpersonal weights W (s) = W0 + N(s)
assume noisy perception of social power
x(s + 1) = vleft(A(x(s))) + n(s)
Thm: practical stability of x∗
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2 assume self-weight := cumulative average of prior social power

x(s + 1) = (1− α(s))x(s) + α(s)
(
vleft(Ax(s)) + n(s)

)

Thm: a.s. convergence to x∗ (under technical conditions)
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Recent extensions on social power evolution

G. Chen, X. Duan, N. E. Friedkin, and F. Bullo. Stochastic models for social power
dynamics over influence networks. IEEE Trans. Autom. Control, May 2017.
Submitted

Z. Xu, J. Liu, and T. Başar. On a modified DeGroot-Friedkin model of opinion
dynamics. In Proc ACC, pages 1047–1052, Chicago, USA, July 2015

X. Chen, J. Liu, M.-A. Belabbas, Z. Xu, and T. Başar. Distributed evaluation and
convergence of self-appraisals in social networks. IEEE Trans. Autom. Control,
62(1):291–304, 2017

M. Ye, J. Liu, B. D. O. Anderson, C. Yu, and T. Başar. On the analysis of the
DeGroot-Friedkin model with dynamic relative interaction matrices.

In Proc IFAC World C, Toulouse, France, July 2017

P. Jia, N. E. Friedkin, and F. Bullo. Opinion dynamics and social power evolution
over reducible influence networks. SIAM J Ctrl Optm, 55(2):1280–1301, 2017

Z. Askarzadeh, R. Fu, A. Halder, Y. Chen, and T. T. Georgiou. Stability theory in
`1 for nonlinear Markov chains and stochastic models for opinion dynamics. arXiv
preprint arXiv:1706.03158, 2017

Summary (Social Influence)

New perspective on influence networks and social power

dynamics and feedback in influence networks

novel mechanism for power accumulation / emergence of autocracy

Open directions

measurement models and empirical validation

intervention strategies for optimal decision making:
No one speaks twice, until everyone speaks once
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1 Influence systems: the mathematics of social power
P. Jia, A. MirTabatabaei, N. E. Friedkin, and F. Bullo. “Opinion

Dynamics and The Evolution of Social Power in Influence Networks.”

SIAM Review, 57(3):367-397, 2015

2

Influence systems: statistical results on empirical data

N. E. Friedkin, P. Jia, and F. Bullo. A Theory of the Evolution of

Social Power: Natural Trajectories of Interpersonal Influence

Systems along Issue Sequences. Sociological Science, 3:444–472,

June 2016.

3 Appraisal systems and collective learning
W. Mei, N. E. Friedkin, K. Lewis, and F. Bullo. “Dynamic Models of

Appraisal Networks Explaining Collective Learning.” IEEE Conf. on

Decision and Control, Las Vegas, December 2016.

Experiments on opinion formation and influence networks
domains: risk/reward choice dilemmas, analytical reliability, resource allocation

30 groups of 4 subjects in a face-to-face discussion

sequence of 15 issues in domain of risk/reward choice dilemmas:

what is your minimum level of confidence (scored 0-100)
required to accept a risky option with a high payoff rather
than a less risky option with a low payoff

“please, reach consensus” pressure

On each issue, each subject recorded (privately/chronologically):
1 an initial opinion prior to the-group discussion,
2 a final opinion after the group-discussion (3-27 mins),
3 an allocation of “100 influence units”

(“these allocations represent your appraisal of the relative influence of
each group member’s opinion on yours”).

Postulated mechanisms for single-issue opinion dynamics

Averaging (DeGroot model))

y(k + 1) = Ay(k)

lim
k→∞

y(k) = (c>y(0))1n

Averaging + attachment to initial opinion (prejudice, F-J model)

y(k + 1) = Ay(k) + Λy(0)

lim
k→∞

y(k) = V · y(0), for V = (In − A)−1Λ

c = V>1n/n

level of closure: aii diagonal entries of influence matrix
social power: ci entries of centrality vector
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(1/3) Prediction of individual final opinions

balanced random-intercept multilevel longitudinal regression

(a) (b) (c)

F-J prediction 0.897∗∗∗ 1.157∗∗∗

(0.018) (0.032)

initial opinions −0.282∗∗∗

(0.031)

log likelihood -8579.835 -7329.003 -7241.097

Standard errors are in parentheses; ∗ p ≤ 0.05, ∗∗ p ≤ 0.01, ∗∗∗ p ≤ 0.001;

maximum likelihood estimation with robust standard errors; n = 1, 800.

FJ averaging model is predictive for risk/reward choice dilemmas

(2/3) Prediction of individual level of closure

balanced random-intercept multilevel longitudinal regression

individual’s “closure to influence” as predicted by:

individual’s prior centrality ci (s)

individual’s time-averaged centrality c̄i (s) = 1
s

∑s
t=1 ci (t)

(a) (b) (c)

ci (s) 0.336∗∗∗

c̄i (s) 0.404∗∗

s 0.002 −0.018∗∗∗

s × ci (s) 0.171
s × c̄i (s) 0.095∗∗∗

log likelihood -367.331 -327.051 -293.656

prior and cumulative prior centrality predicts individual closure

(3/3) Prediction of cumulative influence centrality

complete closure to influence on issue s + 1 of the issue sequence increases with the individual’s
prior time-averaged influence centrality Ti(s). Figure 7 shows that the frequency of instances of
group members who are completely closed to influence is elevated along the issue sequence. In
other words, the stabilizing relative di↵erences of individuals’ Ti(s) centralities become increasingly
indicative of the unequal rates at which individuals are accumulating centrality. Hence, the finding
in Tables 2 and 3 on the increasing e↵ect of Ti(s) along the sequence.

Figure 5: Evolution of individuals’ cumulative influence centrality
Ps

t=1 Ci(t) and time-average
centrality Ti(s) = 1

s

Ps
t=1 Ci(t) for each individual in each of the 30 groups along the issue sequence.
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Figure 6: Prior time-averaged centrality Ti(s) = 1
s

Ps
t=1 Ci(t) of individual i and the individual’s

probability of complete closure to influence aii = 1 � wii = 0 on issue s + 1. Balanced logistic
random-intercept multilevel longitudinal design. Odds-ratio estimates: �0 = 0.063 (s.e. = 0.018),
p  0.001; �1 = 54.798 (s.e. = 45.018), p  0.001. The vertical line indicates the maximum
observed value of Ti(s) in the dataset.

0
.2

.4
.6

.8
Pr

ob
ab

ilit
y 

of
 c

om
pl

et
e 

cl
os

ur
e 

to
 in

flu
en

ce
 o

n 
is

su
e 

s+
1

0 .2 .4 .6 .8 1
An individual's time-averaged cummulative centrality on issue s

15

individuals accumulate influence centralities at different rates,
and their time-average centrality stabilizes to constant values



Outline

1 Influence systems: the mathematics of social power
P. Jia, A. MirTabatabaei, N. E. Friedkin, and F. Bullo. “Opinion

Dynamics and The Evolution of Social Power in Influence Networks.”

SIAM Review, 57(3):367-397, 2015

2 Influence systems: statistical results on empirical data
N. E. Friedkin, P. Jia, and F. Bullo. A Theory of the Evolution of

Social Power: Natural Trajectories of Interpersonal Influence Systems

along Issue Sequences. Sociological Science, 3:444–472, June 2016.

3

Appraisal systems and collective learning

W. Mei, N. E. Friedkin, K. Lewis, and F. Bullo. “Dynamic Models

of Appraisal Networks Explaining Collective Learning.” IEEE Conf.

on Decision and Control, Las Vegas, December 2016.

Appraisal systems and collective learning

Teams and tasks

individuals with skills

executing a sequence of tasks

related through networks of interpersonal appraisals and influence

Natural social processes along sequences

how is task decomposed, assigned and executed?

how do individuals learn about each other?

how does group performance evolve?

models/conditions for learning correct appraisals and
achieving optimal assignments

model/conditions for failure to learn and correctly assign
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A group dynamic process:
the development of a Transactive Memory System

TMS studied in Applied Psychology & Organization Science

members’ collective understanding of which members possess
what skills and knowledge, based on sequence of transactions:

1 as members observe the task performances of other members
2 their understanding of ”who knows what” tends to become more

accurate and more similar
3 leading to greater coordination and integration of members’ knowledge
4 tasks assigned to members most likely to possess the appropriate skills.

empirical research (different team types and settings) shows positive
relationship between TMS development and team performance
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Selected literature on learning in appraisal systems

D. M. Wegner. Transactive memory: A contemporary analysis of the group mind.

In B. Mullen and G. R. Goethals, editors, Theories of Group Behavior, pages
185–208. Springer Verlag, 1987

K. Lewis. Measuring transactive memory systems in the field: Scale development
and validation. Journal of Applied Psychology, 88(4):587–604, 2003

J. R. Austin. Transactive memory in organizational groups: the effects of content,
consensus, specialization, and accuracy on group performance. Journal of Applied
Psychology, 88(5):866, 2003

A. Nedić and A. Ozdaglar. Distributed subgradient methods for multi-agent
optimization. IEEE Trans. Autom. Control, 54(1):48–61, 2009

A. Jadbabaie, A. Sandroni, and A. Tahbaz-Salehi. Non-Bayesian social learning.

Games and Economic Behavior, 76(1):210–225, 2012

Tasks, skills and assignments

team: n individuals with skills x > 0n, x1 + · · ·+ xn = 1

decomposable tasks, assignment percentages w > 0n,
w1 + · · ·+ wn = 1

x
w

A

individual performance: pi (w) = xi/wi

team performance: maximized at w∗ = x

1 2 3

sub-workload
skill level
performance

optimal team performance
actual team performance
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decomposable tasks, assignment percentages w > 0n,
w1 + · · ·+ wn = 1

x
w

Aindividual performance: pi (w) = xi/wi

team performance: maximized at w∗ = x

1 2 3

sub-workload
skill level
performance

optimal team performance
actual team performance

Detour: manager dynamics

Model description

observes indiv. performance

adjusts sub-task assignment

task
assignment execution

performance

manager dynamics

dwi

dt
= wi

(
pi (w)−

n∑

k=1

wkpk(w)
)

Theorem (Learning/optimality in manager)

lim
t→∞

w(t) = w∗ = x

manager learns individuals’ skills

assignments asymp optimal
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Assign/appraise/influence dynamics

Network of interpersonal appraisals

aij = individual i ’s evaluation of xj

A = (aij)n×n is row-stochastic

weighted digraph

x
w

A

assignment rule
based on appraisal matrix A(t)

task execution
based on skills x

appraise/influence dynamics

assignment w(t)

individual relative
performance

task t

appraisal
matrix A(t)



Assign/appraise/influence dynamics: Model assumptions

assignment rule
based on appraisal matrix A(t)

task execution
based on skills x

appraise/influence dynamics

assignment w(t)

individual relative
performance

task t

appraisal
matrix A(t)

1. assignment rules:
appraisal average: w(t) = 1

n1>n A(t)
appraisal centrality: w(t) = vleft

(
A(t)

)
(eigenvector centrality score)

Assign/appraise/influence dynamics: Model assumptions

assignment rule
based on appraisal matrix A(t)

task execution
based on skills x

appraise/influence dynamics

assignment w(t)

individual relative
performance

task t

appraisal
matrix A(t)

2. relative performance:
individual i observes a feedback signal

φi = (performance by i)− (average performance of observed subgroup)

= pi −
∑

k
mikpk ,

where {mij} row-stochastic encodes an observation graph

Assign/appraise/influence dynamics: Model assumptions

assignment rule
based on appraisal matrix A(t)

task execution
based on skills x

appraise/influence dynamics

assignment w(t)

individual relative
performance

task t

appraisal
matrix A(t)

3. appraise dynamics:
individual i updates appraisals via feedback signal:

if φi > 0, then aii (t) ↗ and aij(t) ↘
“simplest dynamics” to mantain A(t) primitive and row-stochastic

4. influence dynamics:
individuals engage in consensus opinion formation

continuous-time DeGroot (Laplacian flow)

influence matrix = appraisal A(t)

Assign/appraise/influence dynamics: Equations

appraise dynamics: “simplest dynamics”

{
ȧii = aii (1− aii )φi

ȧij = aiiaijφi

influence dynamics: continuous-time DeGroot

Ȧ(t) = −
(
In − A(t)

)
A(t)

Ȧ = λ1Fappraise(A, φ) + λ2Finfluence(A)

= λ1diag(φ(t)) diag(A(t))(In − A(t))− λ2

(
In − A(t)

)
A(t)

= ...



What could happen?

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

What could happen?

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

x
w

A

Asymptotic learning and/or optimality in nominal settings

standing assumptions:

A(0) irreducible with positive diagonal

appraisal centrality

Theorem (assign/appraise/influence dynamics)

If observation graph has globally reachable node, then

1 collective learning: limt→∞ A(t) = 1nx
>

2 optimal assignment: limt→∞ w(t) = vleft(A
∗) = w∗

Theorem (assign/appraise (no influence))

If observation graph is strongly connected, then

1 incorrect learning: limt→∞ A(t) = A∗

2 optimal assignment: limt→∞ w(t) = vleft(A
∗) = w∗

Remarkably, assignment dynamics is again replicator

ẇi = wi

(
aiφi (w)−

∑n

k=1
wkakφk(w)

)

recall manager dynamics:

ẇi = wi

(
φi (w)−

∑n

k=1
wkφk(w)

)



Assign/appraise/influence versus assign/appraise
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Assign/appraise/influence versus assign/appraise
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Causes of failure to learn/optimize

Incorrect learning and suboptimal assignment if:

1 assignment rule: appraisal average (and no influence dynamics)

2 appraise dynamics: weaker assumptions on observation graph

3 influence dynamics: prejudice model (F-J + model)

Lessons learned:
Minimum conditions for collective learning

1 individual performance proportional to skill/workload, &
appraisals are updated upon observation of relative performance

2 objectives: asympt optimal assignment and/or collective learning
3 3 key activities: assign/appraise/influence

assignment rule
based on appraisal matrix A(t)

task execution
based on skills x

appraise/influence dynamics

assignment w(t)

individual relative
performance

task t

appraisal
matrix A(t)

Lessons learned
1 observation graph: better connectivity properties =⇒ better learning
2 assign: appraisal centrality > appraisal average
3 influence / consensus formation helps

unless prejudice (no learning nor optimality)



Lessons learned:
Minimum conditions for collective learning

1 individual performance proportional to skill/workload, &
appraisals are updated upon observation of relative performance

2 objectives: asympt optimal assignment and/or collective learning
3 3 key activities: assign/appraise/influence

assignment rule
based on appraisal matrix A(t)

task execution
based on skills x

appraise/influence dynamics

assignment w(t)

individual relative
performance

task t
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matrix A(t)

Lessons learned
1 observation graph: better connectivity properties =⇒ better learning
2 assign: appraisal centrality > appraisal average
3 influence / consensus formation helps

unless prejudice (no learning nor optimality)

Summary

Contributions

dynamics and feedback in sociology and organization science

domains: risk/reward choice dilemmas, decomposable tasks

a new perspective on social power, self-appraisal, influence networks

a new explanation of team learning and rationality

self-appraisal

reflected appraisal mechanism

x(s + 1) = vleft(A(x(s)))

x(s) A(x(s)) vleft(A(x(s)))

influence network social power

assignment rule
based on appraisal matrix A(t)

task execution
based on skills x

appraise/influence dynamics

assignment w(t)

individual relative
performance

task t

appraisal
matrix A(t)

Next steps

1 extend the math to explain more behaviors

2 validate models with controlled experiments / massive online data


