John, Richard and the Evolution of Influence Networks

Francesco Bullo

PhD, CDS, Caltech, 1998

Department of Mechanical Engineering University of California at Santa Barbara

CDS 20th Anniversary Workshop, Caltech, August 4-7, 2014

Peng Jia

Ana MirTabatabaei

Noah Friedkin

Francesco Bullo (UCSB)

On John & Richard at 20

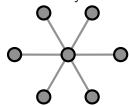
CDS@20

1 / 9

Francesco Bullo (UCSB)

On John & Richard at 20

CDS@20

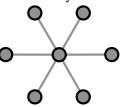

A sociological investigation of CDS at 20

On their birthdays, two incredible scientists and yet ... so uniquely different

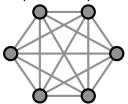
John is adored by his students:

A sociological investigation of CDS at 20

On their birthdays, two incredible scientists and yet ... so uniquely different


A sociological investigation of CDS at 20

On their birthdays, two incredible scientists and yet ... so uniquely different



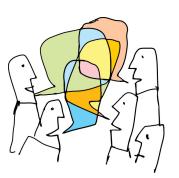
John is adored by his students:

What are the consequences of these social structures?

Francesco Bullo (UCSB) On John & Richard at 20 CDS@20 Francesco Bullo (UCSB) On John & Richard at 20

The dynamics of opinions

DeGroot opinion dynamics model


$$y(t+1) = W y(t)$$

- Opinions $v \in \mathbb{R}^n$
- Influence network = row-stochastic W
- by P-F: $\lim_{t\to\infty} y(t) = (w^T y(0)) \mathbb{1}_n$ where w is dominant left eigenvector of W

- Interpersonal accorded weights W_{ii}
- Relative interpersonal accorded weights C_{ii} ,

$$W(x) = \mathsf{diag}(x)I_n + \mathsf{diag}(\mathbb{1}_n - x)C$$

Francesco Bullo (UCSB)

On John & Richard at 20

CDS@20

3/9

The dynamics of opinions

DeGroot opinion dynamics model

$$y(t+1) = W y(t)$$

- Opinions $v \in \mathbb{R}^n$
- Influence network = row-stochastic W
- by P-F: $\lim_{t\to\infty} y(t) = (w^T y(0)) \mathbb{1}_n$ where w is dominant left eigenvector of W

- Interpersonal accorded weights W_{ii}
- Relative interpersonal accorded weights C_{ii} ,

$$W(x) = \operatorname{diag}(x)I_n + \operatorname{diag}(\mathbb{1}_n - x)G$$

CDS@20

CDS@20

The dynamics of opinions

DeGroot opinion dynamics model

$$y(t+1) = W y(t)$$

- Opinions $y \in \mathbb{R}^n$
- Influence network = row-stochastic W
- by P-F: $\lim_{t\to\infty} y(t) = (w^T y(0)) \mathbb{1}_n$ where w is dominant left eigenvector of W

- Interpersonal accorded weights W_{ii}
- Relative interpersonal accorded weights C_{ii} , where $W_{ii} = (1 - x_i)C_{ii}$

$$W(x) = \operatorname{diag}(x)I_n + \operatorname{diag}(\mathbb{1}_n - x)C$$

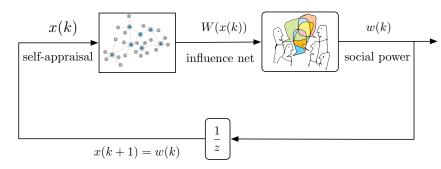
The dynamics of social power and self-confidence

Reflected appraisal hypothesis by Cooley, 1902:

individual' self-appraisal (e.g., self-confidence, self-esteem, self-worth) is influenced by the appraisal held by others of her

Mathematization: along a sequence of issues, individual dampens/elevates self-weight x_i according to her relative prior control

On John & Richard at 20


Francesco Bullo (UCSB) On John & Richard at 20 Francesco Bullo (UCSB)

The dynamics of social power and self-confidence

Reflected appraisal hypothesis by Cooley, 1902:

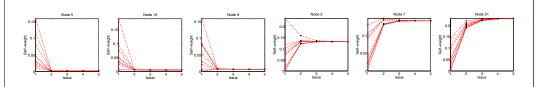
individual' self-appraisal (e.g., self-confidence, self-esteem, self-worth) is influenced by the appraisal held by others of her

Mathematization: along a sequence of issues, individual dampens/elevates self-weight x_i according to her relative prior control

relative control = social power $self-appraisal = self-weights \leftarrow$

4 / 9

In Theory ...

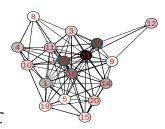

Francesco Bullo (UCSB)

Theorem (General "relative interpersonal accorded weights" C)

• convergence = forgetting initial conditions for all non-trivial initial conditions.

$$\lim_{k\to\infty} x(k) = \lim_{k\to\infty} w(x(k)) = x^*$$

- 2 accumulation of social power and self-appraisal
 - fixed point $x^* > 0$ has same ordering of c
 - social power threshold T such that: $x_i^* \ge c_i \ge T$ or $x_i^* \le c_i \le T$



The closed-loop system

- DeGroot dynamics about an issue: y(t+1) = W(x)y(t)
- Influence network $W(x) = \operatorname{diag}(x)I_n + \operatorname{diag}(\mathbb{1}_n x)C$
- Reflected appraisal across issues: x(k+1) = w(x(k))=: F(x(k))

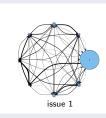
x(k+1) = F(x(k))

$$F(x) = \begin{cases} \mathbb{e}_i, & \text{if } x = \mathbb{e}_i \text{ for all } i \in \{1, \dots, n\} \\ \left(\frac{c_1}{1-x_1}, \dots, \frac{c_n}{1-x_n}\right) / \sum_{i=1}^n \frac{c_i}{1-x_i}, & \text{otherwise} \end{cases}$$

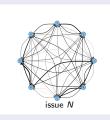
c is the dominant left eigenvector of C

Doubly-stochastic C: emergency of democracy

Lemma (Convergence to democracy)


Iff C is doubly-stochastic:

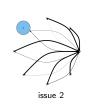
- the non-trivial fixed point of F is $\frac{\mathbb{1}_n}{n}$,
- 2 for all non-trivial initial conditions. $\lim_{k\to\infty} x(k) = \lim_{k\to\infty} w(x(k)) = \frac{\mathbb{1}_n}{n}$

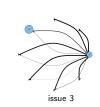


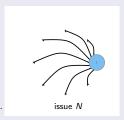
On John & Richard at 20

Francesco Bullo (UCSB) On John & Richard at 20 Francesco Bullo (UCSB)

Star topology: emergency of autocracy


Lemma (Convergence to autocracy)


Iff graph has star topology with center j:


- 1 there are no non-trivial fixed points of F
- 2 for all initial non-trivial conditions. $\lim_{k\to\infty} x(k) = \lim_{s\to\infty} w(x(k)) = e_i$.
- Autocrat appears in center of star topology
- Extreme power accumulation!

Francesco Bullo (UCSB)

On John & Richard at 20

CDS@20 8 / 9

CDS@20

Conclusions

Sociological investigation of CDS at 20

- John: self-confident and influential
- Richard: great manager and collaborator
- ... inexorable consequences of their surrounding interpersonal nets!

Coworkers: Peng Jia (Mech Eng, UCSB), Ana MirTabatabaei (Bosch), Noah Friedkin (Sociology, UCSB)

Reference: Opinion Dynamics and The Evolution of Social Power in Influence Networks. SIAM Review, 2013, under review

Funding: Institute for Collaborative Biotechnology through grant W911NF-09-D-0001 from the U.S. Army Research Office

Conclusions

Sociological investigation of CDS at 20

- John: self-confident and influential
- Richard: great manager and collaborator
- ... inexorable consequences of their surrounding interpersonal nets!

Francesco Bullo (UCSB) On John & Richard at 20