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Two Critical Issues

Photo courtesy: The Wall Street Journal

Optimal information aggregation § Optimal information processing

@ Which source to observe? @ Optimal time allocation?

o Efficient search and detection @ Optimal streaming rate?

@ Routing for evidence collection

.

@ Optimal number of operators?
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Big Picture: Human-robot decision dynamics

Virtual Perimeter
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UAV surveillance (Courtesy: http://www.modsim.org/)

Uncertain environment surveyed by human-UAV team
(Courtesy: Prof. Kristi Morgansen)

In New Military, Data Overload Can Be
Deadly

By THOM SHANKER and MATT RICHTEL

“When military investigators looked into an attack by American helicopters last Tcbruary
that left 23 Afghan civilians dcad, they found that the operator of a Predator drone had
failed to pass along crucial information about the makeup of a gathering crowd of villagers.

Bul Air Force and Army officiuls now say Lhere was also an underlying cause [or thal

mistake: information overload.

Data is among the most potent weapons of the 21st century. Unprecedented amounts of raw
the military determine whal targets Lo hit and whal 1o avoid. And
drone-based sensors have given rise Lo a new class of wired warriors who musl ller Lhe
information sca. But thevare d

http://www.nytimes.com/2011/01/17 /technology/17brain.html

information hel

A surveillance operator (Courtesy: http://www.modsim.org/)
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region selection policy optimal allocations
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Information Processing

@ Information collection and aggregation by robotic network

@ Information processing and decision making by human operator

@ Based on tasks in queue and estimated cognitive state, CAMS
the operator should spend on each task

@ Based on the operator's decisions and world estimate, the CAMS
collects information from the

Vehicle Team Model
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General vehicle team and human operator interaction model
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© Topic 1: Information Processing
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Operator Cognition Models Experimental Validation of Sigmoidal Performance in

Visual Perception
0]
E Maximum 10 clicks. Find all differences.
= 7.4
. seconds left
>
— L3
(0] . . - Differences H
w ,tmf . ) ( . y { Found: £
o . . ‘l ; L : L 8 0 § )
Utilization Ratio Time
Yerkes Dodson effect Evolution of probability of detection L s
Information aggregation satisfy DDM
© operator utilization ratio = linear dynamical system
expected (unforced) service time = convex function of utilization _ K
Y-D curve well-established, e.g., validated by Savla et. al. '10 © task = spot the differences :
@ expected # detected differences o
@ the evidence for decision making evolves as a drift-diffusion process is linear function of time (DDM) “
the probability of the correct decision is a sigmoid function of time @ probability to detect more than 60% diffs
is SIngId (threshold—based decision maklng) Probability of correct decision is sigmoid
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Implications of Sigmoid Performance Dynamic Queue with Penalty and Situational Awareness |
Operator
performance
A
—_———
maximize f(t) — ’l,bt incoming tasks outgoing tasks
t>0
— n
/\ g queue length
g
h =
o ! s vy @ Tasks arrive as a Poisson process with rate A
Time Penalty rate
Derivative of a sigmoid function Optimal allocation v/s penalty rate @ Task v sampled from a distribution
reward w,, sigmoid params (inflection, slope), penalty rate c,
e Stai iables: queue length n; and utilization ratio x; at stage /¢

@ Unforced service time = Y-D law S, (x)

@ Decisi wriables: duration allocation ty, rest time ry, binary z
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Dynamic Queue with Penalty and Situational Awareness || lllustrative Example |

Average Reward
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[llustrative Example Il
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Receding Horizon Policy
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Benefit Rate

15 2 0 0.5 1.5 2

1 1
Arrival Rate Arrival Rate

Benefit per unit task

Benefit rate

@ Switching occurs when operator is expected to be always non-idle

@ Designer may pick desired accuracy on each task to design arrival rate
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optimal allocations

CAMS :A/\ outgoing tasks

region selection policy
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Information Processing

Information Aggregation

@ Information collection and aggregation by robotic network

@ Information processing and decision making by human operator

@ Based on tasks in queue and estimated cognitive state, CAMS
the operator should spend on each task

@ Based on the operator's decisions and world estimate, the CAMS
collects information from the
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Spatial Quickest Detection: Detection Delay

w1
¢ 1 (a-T+q-Dq)

E[delay,(q)] = m

Two stage quickest detection strategy

Q pick optimal g* = argmin 3"}, 7 E[delay,(q)]
© adapt q* with the evidence collected at each stage

—_
2]

Iy

CUSUM Stats
E'\\/)olutlon

10 20 30 40 50 60
lteration

Likelihood of Anomaly

Region Select.
Probabilities

2

Iteration

Region Selection Probability
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Spatial Quickest Detection

Dynamic Vehicle Routing for Distributed Surveillance

@ N regions, arbitrary # anomalies
@ an ensemble of CUSUM algorithms

@ T, = collection + transmission +
processing time at region k

@ d; = distance between region / and j

[
g e
-ﬁm@

DD@! " mEm

UCSB Campus Map

v

Spatial Quickest Detection

© at iteration T, pick a region k from stationary distribution q

© go to region k and collect evidence y.
© update CUSUM statistic for region k

Nk = (M- + log (£ (v7) /£ (y=))

@ declare an anomaly at region k if Ay > n
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@ Topic 3: Combined Information Aggregation and Processing

Cognition and Autonomy Management AFOSR-DSI Wrkshp 9jull12 20 /27

Vaibhav Srivastava & FB (UCSB)




Cognition and Autonomy Management System Spatial Quickest Detection with Human Input

region selection polic! optimal allocations .
i & el d @ human operator allocates time t to a task
D.D fl\ and decides on presence/absence of anomaly
distributi tasks outgoing tasks o0 . 5 o -
* : ai A istribution (" cams o / > @ decision in a Bernoulli random variable with
q [ E incoming tasks of tasks u
= humr?n operator 1
errormance i 2
queue length P . fk (t), if an anomaly IS present,
@ « P(success|t) = ¢ 7 _ _
B DDD decisions on tasks fk (t), if no anomaly IS present.
Information Aggregation Information Processing ’

@ Information collection and aggregation by robotic network Spatial Quickest Detection

@ Information processing and decision making by human operator O at stage /, pick a region k from stationary distribution q

@ go to region k and collect evidence y; and decision dec, € {0,1}
@ Based on tasks in queue and estimated cognitive state, CAMS @ update CUSUM statistic for region k

the operator should spend on each task
A = (Ak—1 + log(P(decy|ty, anomaly) /P(decy|ts, no anomaly))™

@ Based on the operator's decisions and world estimate, the CAMS
collects information from the @ declare an anomaly at region k if Ay > n
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Simultaneous Information Aggregation and Processing Il

Simultaneous Information Aggregation and Processing |

o

Rest Time

Critical Issue: Upper Bound

Allocation

e+n-1
qumin( )

Adaptive Policy with Human Feedback

© determine g* and sample regions

E[delay,] <

(a-T+q-Dq)

Utilization Ratio

Queue Length

Select. Prob.

@ set operator performance at region k
fic(t) = mifie (£) + (1 = m) (1)

CUSUM Stats

. . . . Optimal Policies
© determine optimal allocation and rest time P

el = o = "

@ update CUSUM statistic using operator’s decision - 1 i il - \_,_1

[l |
@ go to step 1. - et E
S P ¢ L f] !mummm
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Conclusions & Future Directions

© Conclusions
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Conclusions
@ disciplines: human cognitive performance models, dynamics vehicle
routing, decision making, dynamic optimization
e simultaneous information aggregation and processing architecture

@ incorporation of cognitive / situational awareness / autonomy

@ an adaptive strategy that collects evidence from regions with high
likelihood of anomalies and optimally processes it

Future Directions

e experimental validation of models [ongoing] and of architecture
incorporation of fatigue, learning and other cognitive models
re-queuing of tasks, preemptive queues and more general scenarios
dynamic anomalies and more complex detection tasks

multi-vehicle, multi-operator, single-operator multitasking,
heterogeneous scenarios

3rd IFAC Workshop on Distributed Estimation and
Control in Networked Systems

NecSys’12, September 14-15, 2012, Fess Parker’s Doubletree Resort, Santa Barbara, California

Relevant Dates and Proceedings

= Submissions to NecSys 12 are open as of March 25. Please, read the Information for
Authors.

= Extended Papers submission deadline: April 30, 2012
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= Final version due: July 15, 2012

= Early registration deadline: July 15, 2012

= Hotel registration deadline: August 13, 2012
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