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Power Generation and Transmission Network
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Fig. 9. The New England test system [10], [11]. The system includes
10 synchronous generators and 39 buses. Most of the buses have constant
active and reactive power loads. Coupled swing dynamics of 10 generators
are studied in the case that a line-to-ground fault occurs at point F near bus
16.

test system can be represented by

�̇i = !i,
Hi

⇡fs
!̇i = �Di!i + Pmi � GiiE

2
i �

10X

j=1,j �=i

EiEj ·

· {Gij cos(�i � �j) + Bij sin(�i � �j)},

�
���

���
(11)

where i = 2, . . . , 10. �i is the rotor angle of generator i with
respect to bus 1, and !i the rotor speed deviation of generator
i relative to system angular frequency (2⇡fs = 2⇡ � 60Hz).
�1 is constant for the above assumption. The parameters
fs, Hi, Pmi, Di, Ei, Gii, Gij , and Bij are in per unit
system except for Hi and Di in second, and for fs in Helz.
The mechanical input power Pmi to generator i and the
magnitude Ei of internal voltage in generator i are assumed
to be constant for transient stability studies [1], [2]. Hi is
the inertia constant of generator i, Di its damping coefficient,
and they are constant. Gii is the internal conductance, and
Gij + jBij the transfer impedance between generators i
and j; They are the parameters which change with network
topology changes. Note that electrical loads in the test system
are modeled as passive impedance [11].

B. Numerical Experiment

Coupled swing dynamics of 10 generators in the
test system are simulated. Ei and the initial condition
(�i(0), !i(0) = 0) for generator i are fixed through power
flow calculation. Hi is fixed at the original values in [11].
Pmi and constant power loads are assumed to be 50% at their
ratings [22]. The damping Di is 0.005 s for all generators.
Gii, Gij , and Bij are also based on the original line data
in [11] and the power flow calculation. It is assumed that
the test system is in a steady operating condition at t = 0 s,
that a line-to-ground fault occurs at point F near bus 16 at
t = 1 s�20/(60Hz), and that line 16–17 trips at t = 1 s. The
fault duration is 20 cycles of a 60-Hz sine wave. The fault
is simulated by adding a small impedance (10�7j) between
bus 16 and ground. Fig. 10 shows coupled swings of rotor
angle �i in the test system. The figure indicates that all rotor
angles start to grow coherently at about 8 s. The coherent
growing is global instability.

C. Remarks

It was confirmed that the system (11) in the New Eng-
land test system shows global instability. A few comments
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Fig. 10. Coupled swing of phase angle �i in New England test system.
The fault duration is 20 cycles of a 60-Hz sine wave. The result is obtained
by numerical integration of eqs. (11).

are provided to discuss whether the instability in Fig. 10
occurs in the corresponding real power system. First, the
classical model with constant voltage behind impedance is
used for first swing criterion of transient stability [1]. This is
because second and multi swings may be affected by voltage
fluctuations, damping effects, controllers such as AVR, PSS,
and governor. Second, the fault durations, which we fixed at
20 cycles, are normally less than 10 cycles. Last, the load
condition used above is different from the original one in
[11]. We cannot hence argue that global instability occurs in
the real system. Analysis, however, does show a possibility
of global instability in real power systems.

IV. TOWARDS A CONTROL FOR GLOBAL SWING

INSTABILITY

Global instability is related to the undesirable phenomenon
that should be avoided by control. We introduce a key
mechanism for the control problem and discuss control
strategies for preventing or avoiding the instability.

A. Internal Resonance as Another Mechanism

Inspired by [12], we here describe the global instability
with dynamical systems theory close to internal resonance
[23], [24]. Consider collective dynamics in the system (5).
For the system (5) with small parameters pm and b, the set
{(�, !) 2 S1 � R | ! = 0} of states in the phase plane is
called resonant surface [23], and its neighborhood resonant
band. The phase plane is decomposed into the two parts:
resonant band and high-energy zone outside of it. Here the
initial conditions of local and mode disturbances in Sec. II
indeed exist inside the resonant band. The collective motion
before the onset of coherent growing is trapped near the
resonant band. On the other hand, after the coherent growing,
it escapes from the resonant band as shown in Figs. 3(b),
4(b), 5, and 8(b) and (c). The trapped motion is almost
integrable and is regarded as a captured state in resonance
[23]. At a moment, the integrable motion may be interrupted
by small kicks that happen during the resonant band. That is,
the so-called release from resonance [23] happens, and the
collective motion crosses the homoclinic orbit in Figs. 3(b),
4(b), 5, and 8(b) and (c), and hence it goes away from
the resonant band. It is therefore said that global instability
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Mathematical Model of a Power Transmission Network
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Fig. 9. The New England test system [10], [11]. The system includes
10 synchronous generators and 39 buses. Most of the buses have constant
active and reactive power loads. Coupled swing dynamics of 10 generators
are studied in the case that a line-to-ground fault occurs at point F near bus
16.
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i relative to system angular frequency (2⇡fs = 2⇡ � 60Hz).
�1 is constant for the above assumption. The parameters
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to be constant for transient stability studies [1], [2]. Hi is
the inertia constant of generator i, Di its damping coefficient,
and they are constant. Gii is the internal conductance, and
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and j; They are the parameters which change with network
topology changes. Note that electrical loads in the test system
are modeled as passive impedance [11].

B. Numerical Experiment

Coupled swing dynamics of 10 generators in the
test system are simulated. Ei and the initial condition
(�i(0), !i(0) = 0) for generator i are fixed through power
flow calculation. Hi is fixed at the original values in [11].
Pmi and constant power loads are assumed to be 50% at their
ratings [22]. The damping Di is 0.005 s for all generators.
Gii, Gij , and Bij are also based on the original line data
in [11] and the power flow calculation. It is assumed that
the test system is in a steady operating condition at t = 0 s,
that a line-to-ground fault occurs at point F near bus 16 at
t = 1 s�20/(60Hz), and that line 16–17 trips at t = 1 s. The
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Fig. 10. Coupled swing of phase angle �i in New England test system.
The fault duration is 20 cycles of a 60-Hz sine wave. The result is obtained
by numerical integration of eqs. (11).

are provided to discuss whether the instability in Fig. 10
occurs in the corresponding real power system. First, the
classical model with constant voltage behind impedance is
used for first swing criterion of transient stability [1]. This is
because second and multi swings may be affected by voltage
fluctuations, damping effects, controllers such as AVR, PSS,
and governor. Second, the fault durations, which we fixed at
20 cycles, are normally less than 10 cycles. Last, the load
condition used above is different from the original one in
[11]. We cannot hence argue that global instability occurs in
the real system. Analysis, however, does show a possibility
of global instability in real power systems.

IV. TOWARDS A CONTROL FOR GLOBAL SWING

INSTABILITY

Global instability is related to the undesirable phenomenon
that should be avoided by control. We introduce a key
mechanism for the control problem and discuss control
strategies for preventing or avoiding the instability.

A. Internal Resonance as Another Mechanism

Inspired by [12], we here describe the global instability
with dynamical systems theory close to internal resonance
[23], [24]. Consider collective dynamics in the system (5).
For the system (5) with small parameters pm and b, the set
{(�, !) 2 S1 � R | ! = 0} of states in the phase plane is
called resonant surface [23], and its neighborhood resonant
band. The phase plane is decomposed into the two parts:
resonant band and high-energy zone outside of it. Here the
initial conditions of local and mode disturbances in Sec. II
indeed exist inside the resonant band. The collective motion
before the onset of coherent growing is trapped near the
resonant band. On the other hand, after the coherent growing,
it escapes from the resonant band as shown in Figs. 3(b),
4(b), 5, and 8(b) and (c). The trapped motion is almost
integrable and is regarded as a captured state in resonance
[23]. At a moment, the integrable motion may be interrupted
by small kicks that happen during the resonant band. That is,
the so-called release from resonance [23] happens, and the
collective motion crosses the homoclinic orbit in Figs. 3(b),
4(b), 5, and 8(b) and (c), and hence it goes away from
the resonant band. It is therefore said that global instability
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1 n generators ⌅⇤ and m load buses •�
2 admittance matrix Y 2 C(n+m)⇥(n+m), symmetric, sparse, lossless

Central task: generators provide power for loads

Problems: stability in face of disturbances, security from cyber attacks
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Mathematical Model of a Power Transmission Network

1 power transfer on line i  j : |Vi ||Vj ||Yij || {z }
aij=max power transfer

· sin
�
✓i � ✓j

�

2 power balance at node i : Pi|{z}
power injection

=
X

j
aij sin(✓i � ✓j)
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Structure-Preserving Model [Bergen & Hill ’81]
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Frequency Instability Problems in North American Interconnections 

 

 
6 

2 Technical Aspects of the Frequency Stability Issue  

2.1 Physics of Power Balancing and Frequency Stability 

Electrical power demand and power supply must be continuously balanced. If the demand and 
supply are not balanced, or if there is not enough stored energy11

Almost all alternating current (AC) power is generated by synchronous generators controlled to 
produce 60 Hz electricity. When generated power exactly matches power demand, the frequency 
could be either a nominal 60 Hz or in its vicinity, but it would be stable (

 in the system to temporarily 
supply the imbalance, generation and demand equipment can be damaged and the entire system 
could collapse. A power imbalance occurs as a result of a mismatch between generation and 
load. While there are minor mismatches that exist on the grid most of the time, significant 
imbalances in either magnitude or time span can be catastrophic for a power system (e.g., result 
in system black outs and/or equipment damage).  

Exhibit 2-1). Unless an 
imbalance between generation and demand is quickly mitigated, frequency could decrease to 0 
Hz in a case of demand exceeding generation or increase until equipment is damaged in a case of 
generation exceeding demand. Even a very small, but long-lasting power mismatch can cause a 
significant decrease in frequency.  

Exhibit 2-1 Power Balance 

 
Data Source: EPRI 12

The four interconnections, discussed in the Introduction, are connected using high voltage direct 
current (HVDC) links. The HVDC links allow each interconnection to have a different 
frequency, while the frequency inside an interconnection is the same for any point in that system. 
For example, the frequency in Los Angeles, CA, can be different from the frequency in Bangor, 
ME, yet the Bangor frequency is the same as the frequency in Miami, FL. This also means that 
imbalances in Bangor should not affect Los Angeles frequency but could potentially affect 
frequency in Miami, since they are in the same interconnection. All four interconnections try to 

  

                                                 
11 Either passive storage, such as a battery, or kinetic energy within the power system could offset the power 
imbalance.  
12 EPRI, Power System Dynamics Tutorial, Final Report, Palo Alto, California, July 2009. 
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Mathematical Model of a Islanded Microgrid

islanded microgrid =

autonomously-managed low-voltage network
with sources, loads, and storage

1 inverter in microgrid
= DC source + PWM
= controllable AC source

2 physics: Pi ` = ai` sin(✓i � ✓`)
3 Droop-control [Chandorkar et. al., ’93]: ✓̇i = !i � !⇤ = ni (P⇤

i � Pi `)

Droop-controlled inverters are Kuramoto oscillators

for inverter i Di ✓̇i = P⇤
i � ai` sin(✓i � ✓`)

for load ` 0 = P` �
Xn

j=1
a`j sin(✓` � ✓i )

Florian Dörfler & FB (UCSB) Synchronization MTNS@Melbourne 10jul12 7 / 23
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Synchronization in Power Networks

1 power networks are coupled oscillators

Mi ✓̈i + Di ✓̇i = Pi �
X

j
aij sin(✓i � ✓j)

Di ✓̇i = Pi �
X

j
aij sin(✓i � ✓j)

2 synchronization: coupling strength vs. frequency non-uniformity

x

x

x

!1

!3!2

a12

a13

a23

3 graph theory provides notions of
“coupling/connectivity” and “non-uniformity”

power networks should synchronize
for large “coupling/connectivity” and small “non-uniformity”

Florian Dörfler & FB (UCSB) Synchronization MTNS@Melbourne 10jul12 8 / 23

The Synchronization Problem

Determine conditions on the power injections (P1, . . . ,Pn+m), network
admittance Y , and node parameters (Mi ,Di ), such that:

|✓i � ✓j | bounded and ✓̇i = ✓̇j

Literature
1 Classic security analysis: load flow Jacobian & network theory

[S. Sastry et al. ’80, A. Araposthatis et al. ’81, F. Wu et al ’82, M. Ilić ’92, . . . ]

2 Broad interest for Complex Networks, Network Science [Ilić ’92,

Hill & Chen ’06] stability, performance, and robustness of power

network
?! underlying graph properties (topological, algebraic,

spectral, etc.)

Florian Dörfler & FB (UCSB) Synchronization MTNS@Melbourne 10jul12 9 / 23

Coupled Oscillators in Science and Technology

Kuramoto model of coupled oscillators:

✓̇i = !i �
Xn

j=1
aij sin(✓i � ✓j)

Sync in Josephson junctions [S. Watanabe et. al ’97, K. Wiesenfeld et al. ’98]

Sync in a population of fireflies [G.B. Ermentrout ’90, Y. Zhou et al. ’06]

Coordination of particle models
[R. Sepulchre et al. ’07, D. Klein et al. ’09]

Deep-brain stimulation and neuroscience
[P.A. Tass ’03, E. Brown et al. ’04]

Countless other sync phenomena
[A. Winfree ’67, S.H. Strogatz ’00, J. Acebrón ’01]
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Synchronization Notions

✓̇i = !i �
Xn

j=1
aij sin(✓i � ✓j)

1 phase cohesive: |✓i (t) � ✓j(t)| < �
for small � < ⇡/2 ... arc invariance

2 frequency synchrony: ✓̇i (t) = ✓̇j(t)

3 phase synchrony: ✓i (t) = ✓j(t)

Detour – Kron reduction of graphs
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Some properties of the Kron reduction process:

1 Well-posedness: Symmetric & irreducible (loopy) Laplacian matrices
can be reduced and are closed under Kron reduction

2 Topological properties:

interior network connected ) reduced network complete

at least one node in interior network features a self-loop �

) all nodes in reduced network feature self-loops �

3 Algebraic properties: self-loops in interior network . . .

decrease mutual coupling in reduced network

increase self-loops in reduced network
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Some properties of the Kron reduction process:

1 Well-posedness: Symmetric & irreducible (loopy) Laplacian matrices
can be reduced and are closed under Kron reduction

2 Topological properties:

interior network connected ) reduced network complete

at least one node in interior network features a self-loop �

) all nodes in reduced network feature self-loops �

3 Algebraic properties: self-loops in interior network . . .

decrease mutual coupling in reduced network

increase self-loops in reduced network
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{aij}{i ,j}2E small & |!i � !j | large =) no synchronization

{aij}{i ,j}2E large & |!i � !j | small =) cohesive + freq sync

Challenge: proper notions of sync, coupling & phase transition
[A. Jadbabaie et al. ’04, P. Monzon et al. ’06, Sepulchre et al. ’07, S.J. Chung et al. ’10, J.L.

van Hemmen et al. ’93, F. de Smet et al. ’07, N. Chopra et al. ’09, G. Schmidt et al. ’09, F.

Dörfler et al. ’09 & ’11, S.J. Chung et al. ’10, A. Franci et al. ’10, S.Y. Ha et al. ’10, D. Aeyels

et al. ’04, R.E. Mirollo et al. ’05, M. Verwoerd et al. ’08, L. DeVille ’11, . . . ]
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Primer on Algebraic Graph Theory

Graph: weights aij > 0 on edges {i , j}, values xi at nodes i

adjacency matrix A = (aij)

degree matrix D is diagonal with dii =
Pn

j=1 aij

Laplacian matrix L = LT = D � A � 0

Notions of Connectivity
topological: connectivity, average and worst-case path lengths
spectral: second smallest eigenvalue �2 of L is “algebraic connectivity”

Notions of Dissimilarity

kxk1,edges = max{i ,j} |xi � xj |, kxk2,edges =
� P

{i ,j} |xi � xj |2
�1/2

(graph edges {i , j} 2 E) or (all edges {i , j} satisfy i < j)
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Sync Tests: Coupling vs. Power Imbalance

Mi ✓̈i + Di ✓̇i = Pi �
X

j
aij sin(✓i � ✓j)

Di ✓̇i = Pi �
X

j
aij sin(✓i � ✓j)

P
j aij  |Pi | =) no sync �2(L) > kPk2,all edges =) sync

Valid for: completely arbitrary weighted connected graphs

��L†P
��
1,graph edges

< 1 () sync

Sharp for: trees, graphs with disjoint 3- and 4-cycles
Sharp for: graphs with L†P bipolar or symmetric
Sharp for:⇤ homogeneous graphs (aij = K > 0)

best general conditions known to date
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A Nearly Exact Synchronization Condition – Accuracy

Randomized power network test cases

with 50 % randomized loads and 33 % randomized generation

Randomized test case Correctness of condition: Accuracy of condition: Phase

(1000 instances) kL†Pk1,g. edges sin(�) max
{i,j}

|✓⇤
i � ✓⇤

j | cohesiveness:

) max
{i,j}2E

|✓⇤
i � ✓⇤

j |  � � arcsin(kBT L†Pk1) max
{i,j}2E

|✓⇤
i � ✓⇤

j |

9 bus system always true 4.1218 · 10�5 rad 0.12889 rad

IEEE 14 bus system always true 2.7995 · 10�4 rad 0.16622 rad

IEEE RTS 24 always true 1.7089 · 10�3 rad 0.22309 rad

IEEE 30 bus system always true 2.6140 · 10�4 rad 0.1643 rad

New England 39 always true 6.6355 · 10�5 rad 0.16821 rad

IEEE 57 bus system always true 2.0630 · 10�2 rad 0.20295 rad

IEEE RTS 96 always true 2.6076 · 10�3 rad 0.24593 rad

IEEE 118 bus system always true 5.9959 · 10�4 rad 0.23524 rad

IEEE 300 bus system always true 5.2618 · 10�4 rad 0.43204 rad

Polish 2383 bus system always true 4.2183 · 10�3 rad 0.25144 rad
(winter peak 1999/2000)

condition
��L†P

��
1,graph edges

 sin(�) is extremely accurate for �  25�
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AC power flow, DC power flow and our new condition

Parameters: P , {aij}{i ,j}2E , {�ij}{i ,j}2E Variables: ✓ = (✓1, . . . , ✓n)

AC power flow

Pi =
Xn

j=1
aij sin(✓i � ✓j), |✓i � ✓j | < �ij

DC power flow approximation

Pi =
Xn

j=1
aij(�i � �j), |�i � �j | < �ij

Novel test

Pi =
Xn

j=1
aij(�i � �j), |�i � �j | < sin(�ij)
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Case Study: Predicting Transition to Instability
IEEE Reliability Test System ’96 (33-m 44-b)

220

309

310

120
103

209

102102

118

307

302

216

202

Optimal power dispatch

minimize
X

(cost)i,genPi ,gen

Pi =
X

j
aij sin(✓i � ✓j)

|✓i � ✓j |  (thermal limit)ij

Pi ,gen 2 (feasible range)i,gen

Power flow: periodically, solve optimal power dispatch problem, &
real-time perturbations handled via generation adjustments
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Case Study: Predicting Transition to Instability
IEEE Reliability Test System ’96 (33-m 44-b)

Two contingencies:

220

309

310

120
103

209

102102

118

307

302

216

202

{223, 318}

{121, 325}

1) generator 323 is tripped
2) increase loads & generation
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Case Study: Predicting Transition to Instability
IEEE Reliability Test System ’96 (33-m 44-b)

t [s]

✓ i
(t

)
[r

ad
]

(a)

t�

0

0

✓̇(
t)

[r
ad

s�
1
]

✓(t) [rad]

✓̇(
t)

[r
ad

s�
1
]

✓(t) [rad]

t  t�

t > t� 0

0

t [s]

|✓
i(

t)
�

✓ j
(t

)|
[r

ad
]

(d)

(e)

��

�� ���

t�

✓(t�)

(b)
(c)

0

0

Increase loads & generation:

) condition
��BTL†P

��
1  sin(�) predicts that thermal limit �⇤ of

line {121, 325} is violated at 22.23 % of additional loading

) line {121, 325} is tripped at 22.24% of additional loading
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Synchronization in a All-to-All Homogeneous Graph

all-to-all homogeneous graph ✓̇i = !i �
K

n

Xn

j=1
sin(✓i �✓j)

Explicit, necessary, and su�cient condition [F. Dörfler & F. Bullo ’10]

Following statements are equivalent:

1 Coupling dominates non-uniformity, i.e., K > Kcritical , !max � !min

2 Kuramoto models with {!1, . . . , !n} ✓ [!min, !max] achieve phase
cohesiveness & exponential frequency synchronization
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Synchronization in a All-to-All Homogeneous Graph

all-to-all homogeneous graph ✓̇i = !i �
K

n

Xn

j=1
sin(✓i �✓j)

Explicit, necessary, and su�cient condition [F. Dörfler & F. Bullo ’10]

Following statements are equivalent:

1 Coupling dominates non-uniformity, i.e., K > Kcritical , !max � !min

2 Kuramoto models with {!1, . . . , !n} ✓ [!min, !max] achieve phase
cohesiveness & exponential frequency synchronization

Define �min & �max by Kcritical/K = sin(�min) = sin(�max), then

1) phase cohesiveness for all arc-lengths � 2 [�min, �max]

2) practical phase synchronization: from �max arc ! �min arc

3) exponential frequency synchronization in the interior of �max arc
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Synchronization in a All-to-All Homogeneous Graph

all-to-all homogeneous graph ✓̇i = !i �
K

n

Xn

j=1
sin(✓i �✓j)

Explicit, necessary, and su�cient condition [F. Dörfler & F. Bullo ’10]

Following statements are equivalent:

1 Coupling dominates non-uniformity, i.e., K > Kcritical , !max � !min

2 Kuramoto models with {!1, . . . , !n} ✓ [!min, !max] achieve phase
cohesiveness & exponential frequency synchronization

improves existing su�cient bounds [F. de Smet et al. ’07, N. Chopra et al.

’09, G. Schmidt et al. ’09, A. Jadbabaie et al. ’04, S.J. Chung et al. ’10, J.L. van

Hemmen et al. ’93, A. Franci et al. ’10, S.Y. Ha et al. ’10]

tight w.r.t. continuum-limit [G.B. Ermentrout ’85, A. Acebron et al. ’00]

tight w.r.t. implicit conditions for particular configurations
[R.E. Mirollo et al. ’05, D. Aeyels et al. ’04, M. Verwoerd et al. ’08]
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Main proof ideas

1 Cohesiveness:

V (✓(t)) • for ✓(0) in arc of lenght � 2 [�min, �max], define
arc-lenght cost function

V (✓(t)) = max{|✓i (t) � ✓j(t)|}i ,j2{1,...,n}

• t 7! V (✓(t)) is non-increasing because

D+V (✓(t)) < 0

• t 7! ✓(t) remains in (possibly-rotating) arc of
length � and, moreover, � < ⇡/2 in finite time

2 Frequency synchronization: once in arc of length ⇡/2

d

dt
✓̇i = �

X
j 6=i

aij(t)(✓̇i � ✓̇j)

where aij(t) = K
n cos(✓i (t) � ✓j(t)) > 0. result follows from

time-varying consensus theorem
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Conclusions

Summary:

1 connection between power networks and coupled Kuramoto oscillators

2 necessary and su�cient sync conditions

Ongoing and future work:

1 sharp condition: tests and proofs

2 region of attraction

3 more realistic models (reactive power, stochastics etc)

4 smart-grid applications = quick algorithms for security assessment,
prediction of cascading failures, remedial action design, etc

IFAC NecSys ’12, Sep 14, 15: Workshop on Networks & Controls
10 invited presentations, 4 interactive sessions with 55 papers
IEEE CDC ’12: Tutorial Session on Coupled Oscillators
F. Dörfler and F. Bullo. Exploring synchronization in complex oscillator networks. In IEEE Conf. on
Decision and Control, Maui, HI, USA, December 2012. Invited Tutorial Session
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