Kron Reduction of Graphs with Applications to Electrical Networks

Florian Dörfler and Francesco Bullo

Center for Control. **Dynamical Systems & Computation** University of California at Santa Barbara http://motion.me.ucsb.edu

Center for Nonlinear Studies Los Alamos National Labs, New Mexico, June 8, 2011 Article available online at: http://arxiv.org/abs/1102.2950

Kron Reduction

Florian Dörfler (UCSB)

Center for Nonlinear Studies 1 / 18

Motivation: the envisioned power grid

Energy is one of the top three national priorities

Expected developments in "smart grid":

- large number of distributed power sources
- 2 increasing adoption of renewables
- Sophisticated cyber-coordination layer

Motivation: the current power grid is

"... the greatest engineering achievement of the 20th century." [National Academy of Engineering '10]

"... the largest and most complex machine engineered by humankind."

Kron Reduction

Ρ.	Kundur	'94,	۷.	Vittal	'03,]
----	--------	------	----	--------	------	---

Center for Nonlinear Studies 2 / 18

Florian Dörfler (UCSB)

Motivation: the envisioned power grid

Energy is one of the top three national priorities

Expected developments in "smart grid":

- large number of distributed power sources
- 2 increasing adoption of renewables
- Sophisticated cyber-coordination layer

- © challenges: increasingly complex networks & stochastic disturbances
- **Opportunity:** some smart grid keywords: control/sensing/optimization \oplus distributed/coordinated/decentralized

Today: "reducing the complexity by means of circuit and graph theory"

Kron Reduction

Kron reduction of a resistive circuit

Kron reduction of graphs

Kron reduction via Schur complement:

 $Y_{\rm red} = Y/Y_{\rm interior}$

Florian Dörfler (UCSB)

Center for Nonlinear Studies

8 / 18

10 / 18

Kron reduction of graphs: applications

Purpose: construct low-dimensional equivalent circuits / graphs / models

Kron Reduction

Simplest non-trivial case: star- Δ transformation [A. E. Kennelly 1899, A. Rosen 1924]

- Engineering applications: smart grid monitoring, circuit theory, model reduction for power and water networks, power electronics, large-scale integration chips, electrical impedance tomography, data-mining, ...
- Mathematics applications: sparse matrix algorithms, finite-element methods, sparse multi-grid solvers, Markov chain reduction, stochastic complementation, applied linear algebra & matrix analysis, Dirichlet-to-Neumann map, ...
- Physics applications: knot theory, Yang-Baxter equations and applications, high-energy physics, statistical mechanics, vortices in fluids, entanglement of polymers & DNA, ... [F. Dörfler & F. Bullo '11, J.H.H. Perk & H. Au-Yang '06]

Kron Reduction

Florian Dörfler (UCSB)

Center for Nonlinear Studies

Kron reduction of graphs

Kron reduction via Schur complement:

 $Y_{\rm red} = Y / Y_{\rm interior}$

- Relation of spectrum and algebraic properties of Q and Q_{red} ?
- How about the graph topologies and the effective resistances?
- What is the effect of a perturbation in the original graph on the reduced graph, its spectrum, and its effective resistance?
- Finally, why is this graph reduction process of practical importance and in which application areas?

Kron Reduction

Kron Reduction

Kron reduction of graphs: applications

Electrical impedance tomography

Florian Dörfler (UCSB)

Smart grid monitoring

Center for Nonlinear Studies

9 / 18

to reconstruct spatial conductivity [E. Curtis and J. Morrow '94 & '00]

Representation of integration chips

for sparse computation [J. Rommes and W. H. A. Schilders '09]

Florian Dörfler (UCSB)

through cut-set variables [I. Dobson '11]

Reduced power network modeling

Center for Nonlinear Studies

11 / 18

for stability analysis and control [F. Dörfler and F. Bullo '09]

Kron reduction of a graph with

- boundary ■, interior ●, non-neg self-loops ⁽)
- loopy Laplacian matrix Y
- Schur complement: $Y_{red} = Y / Y_{interior}$

Properties of Kron reduction:

Well-posedness: set of loopy Laplacian matrices is closed

Kron reduction of graphs: properties

3 Augmentation: replace self-loops \bigcirc by edge to grounded node \diamondsuit

 \Rightarrow **Equivalence**: the following diagram commutes:

Kron reduction of graphs: properties

2 Iterative 1-dim Kron reduction: $\mathbf{Y}_{red}^{k+1} = \mathbf{Y}_{red}^{k} / \bullet$

- \Rightarrow topological evolution of the corresponding graph

 \Rightarrow **Equivalence**: the following diagram commutes:

Kron reduction of graphs: properties

Opological properties:

• interior network connected \Rightarrow reduced network complete

• at least one node in interior network features a self-loop \bigcirc \Rightarrow all nodes in reduced network feature self-loops \bigcirc

O Algebraic properties: self-loops in interior network

- decrease mutual coupling in reduced network
- increase self-loops in reduced network

Kron Reduction

Kron reduction of graphs: properties

o Spectral properties:

- interlacing property: $\lambda_i(Y) \leq \lambda_i(\underline{Y}_{\mathsf{red}}) \leq \lambda_{i+n-|\blacksquare|}(Y)$
- $\Rightarrow\,$ algebraic connectivity λ_2 is non-decreasing
- effect of self-loops on loop-less Laplacian matrices:
 λ₂(L_{red}) + max{○} ≥ λ₂(L) + min{○}
- $\Rightarrow\,$ self-loops weaken the algebraic connectivity λ_2

Example: all mutual edges have unit weight

with unit self-loops: $\lambda_2(L) = 0.39 \ge 0.29 = \lambda_2(L_{red})$

Kron Reduction

Florian Dörfler (UCSB)

Center for Nonlinear Studies

16 / 18

Kron reduction of graphs: properties

- **O** Effective resistance R_{ii} :
 - Equivalence and invariance of R_{ij} among \blacksquare nodes:

Kron reduction of graphs: properties

O Effective resistance R_{ij} :

