Important Examples of Cyber-Physical Systems

Many critical infrastructures are cyber-physical systems:

- power generation and distribution networks
- water networks and mass transportation systems
- sensor networks
- energy-efficient buildings (heat transfer)
Cyber-physical security is a fundamental obstacle challenging the smart grid vision.

H. Khurana, “Cybersecurity: A key smart grid priority,”

J. Meserve “Sources: Staged cyber attack reveals vulnerability in power grid”

IEEE Transactions on Smart Grid, 2010.

J. P. Farwell and R. Rohozinski “Stuxnet and the Future of Cyber War”
Survival, 2011.

T. M. Chen and S. Abu-Nimeh “Lessons from Stuxnet”
Computer, 2011.

Water supply networks are among the nation’s most critical infrastructures

J. Slay and M. Miller. “Lessons learned from the Maroochy water breach”

A Simple Example: WECC 3-machine 6-bus System

Physical dynamics: classical generator model & DC load flow

Measurements: angle and frequency of generator g_1

Attack: modify real power injections at buses b_4 & b_5

"Distributed internet-based load altering attacks against smart power grids" *IEEE Trans on Smart Grid, 2011*

The attack affects the second and third generators while remaining undetected from measurements at the first generator.
Cyber-physical security exploits system dynamics to assess correctness of measurements, and compatibility of measurement equation.

Cyber-physical security extends classical fault detection, and complements/augments cyber security.

- Classical fault detection considers only generic failures, while cyber-physical attacks are worst-case attacks.
- Cyber security does not exploit compatibility of measurement data with physics/dynamics.
- Cyber security methods are ineffective against attacks that affect the physics/dynamics.
Small-signal structure-preserving power network model:

1. Transmission network: generators ■, buses ●, DC load flow assumptions, and network susceptance matrix \(Y = Y^T \)

2. Generators ■ modeled by swing equations:

\[
M_i \ddot{\theta}_i + D_i \dot{\theta}_i = P_{\text{mech.in},i} - \sum_j Y_{ij} \cdot (\theta_i - \theta_j)
\]

3. Buses ● with constant real power demand:

\[
0 = P_{\text{load},i} - \sum_j Y_{ij} \cdot (\theta_i - \theta_j)
\]

⇒ Linear differential-algebraic dynamics: \(E \dot{x} = Ax \)
Linearized municipal water supply network model:

1. Reservoirs with constant pressure heads: \(h_i(t) = h_{i,\text{reservoir}} = \text{const.} \)

2. Pipe flows obey linearized Hazen-Williams eq: \(Q_{ij} = g_{ij} \cdot (h_i - h_j) \)

3. Balance at tank:
 \[A_i \dot{h}_i = \sum_{j \rightarrow i} Q_{ji} - \sum_{i \rightarrow k} Q_{ik} \]

4. Demand = balance at junction:
 \[d_i = \sum_{j \rightarrow i} Q_{ji} - \sum_{i \rightarrow k} Q_{ik} \]

5. Pumps & valves:
 \[h_j - h_i = + \Delta h_{ij}^{\text{pump/valves}} = \text{const.} \]

⇒ Linear differential-algebraic dynamics: \(E \dot{x} = Ax \)
Models for Attackers and Security System

Byzantine Cyber-Physical Attackers

1. colluding omniscient attackers:
 - know model structure and parameters
 - measure full state
 - can apply some control signal and corrupt some measurements
 - perform unbounded computation

2. attacker’s objective is to change/disrupt the physical state

Security System

1. knows structure and parameters
2. measures output signal
3. security system’s objective is to detect and identify attack

1. characterize fundamental limitations on security system
2. design filters for detectable and identifiable attacks
1. **Physics** obey linear differential-algebraic dynamics: \(E\dot{x}(t) = Ax(t) \)

2. **Measurements** are in continuous-time: \(y(t) = Cx(t) \)

3. **Cyber-physical attacks** are modeled as unknown input \(u(t) \) with unknown input matrices \(B \) & \(D \)

\[
E\dot{x}(t) = Ax(t) + Bu(t) \\
y(t) = Cx(t) + Du(t)
\]

This model includes **genuine faults** of system components, **physical attacks**, and **cyber attacks** caused by an omniscient malicious intruder.

Q: Is the attack \((B, D, u(t))\) detectable/identifiable from the output \(y(t)\)?
S. Amin et al, “Safe and secure networked control systems under denial-of-service attacks,”
Hybrid Systems: Computation and Control 2009.

Y. Liu, M. K. Reiter, and P. Ning, “False data injection attacks against state estimation in electric power grids,”

A. Teixeira et al. “Cyber security analysis of state estimators in electric power systems,”
IEEE Conf. on Decision and Control, Dec. 2010.

S. Amin, X. Litrico, S. S. Sastry, and A. M. Bayen, “Stealthy deception attacks on water SCADA systems,”

Y. Mo and B. Sinopoli, “Secure control against replay attacks,”
Allerton Conf. on Communications, Control and Computing, Sep. 2010.

G. Dan and H. Sandberg, “Stealth attacks and protection schemes for state estimators in power systems,”
IEEE Int. Conf. on Smart Grid Communications, Oct. 2010.

Y. Mo and B. Sinopoli, “False data injection attacks in control systems,”

R. Smith, “A decoupled feedback structure for covertly appropriating network control systems,”
IFAC World Congress, Aug. 2011.

Our framework includes and generalizes most of these results.
Prototypical Attacks

- **Dynamic false data injection:**
 \[
 \frac{(sE - A)}{-1}C \cdot x(t) + y(t)x(0)
 \]
 \[
 D_K u_K(t)
 \]
 \[
 G(s)(s - p) - 1
 \]

- **Covert attack:**
 corrupted measurements according to \(C \)

 - **Static stealth attack:**
 \[
 x(t) \rightarrow C \rightarrow y(t)
 \]
 \[
 \tilde{u}(t) \rightarrow C \rightarrow D_K u_K(t)
 \]

- **Replay attack:**
 effect system and reset output

 - **Closed loop replay attack**

 \[
 x(0) \rightarrow (sE - A)^{-1} \rightarrow x(t)
 \]
 \[
 B_K \tilde{u}_K(t) \rightarrow (sE - A)^{-1} \rightarrow C
 \]
 \[
 \tilde{x}(0) \rightarrow (sE - A)^{-1} \rightarrow C
 \]

 - **Dynamic false data injection:**
 render unstable pole unobservable

 \[
 x(0) \rightarrow (sE - A)^{-1} \rightarrow x(t) \rightarrow C
 \]
 \[
 D_K u_K(t)
 \]

 - **Closed loop replay attack**

 \[
 x(0) \rightarrow (sE - A)^{-1} \rightarrow x(t) \rightarrow C
 \]
 \[
 D_K u_K(t)
 \]

 - **Dynamic false data injection:**
 render unstable pole unobservable

 \[
 x(0) \rightarrow (sE - A)^{-1} \rightarrow x(t) \rightarrow C
 \]
 \[
 D_K u_K(t)
 \]

 - **Closed loop replay attack**

 \[
 x(0) \rightarrow (sE - A)^{-1} \rightarrow x(t) \rightarrow C
 \]
 \[
 D_K u_K(t)
 \]
Technical Assumptions

\[E \dot{x}(t) = Ax(t) + B_K u_K(t) \]
\[y(t) = Cx(t) + D_K u_K(t) \]

Technical assumptions guaranteeing existence, uniqueness, & smoothness:

(i) \((E, A)\) is regular: \(|sE - A|\) does not vanish for all \(s \in \mathbb{C}\)

(ii) the initial condition \(x(0)\) is consistent \hspace{1cm} (can be relaxed)

(iii) the unknown input \(u_K(t)\) is sufficiently smooth \hspace{1cm} (can be relaxed)

- Attack set \(K = \) sparsity pattern of attack input
An attack remains undetected if its effect on measurements is undistinguishable from the effect of some nominal operating conditions.

Definition (Undetectable attack set)

The attack set K is **undetectable** if there exist initial conditions x_1, x_2, and an attack mode $u_K(t)$ such that, for all times t

$$y(x_1, u_K, t) = y(x_2, 0, t).$$
By linearity, an undetectable attack is such that $y(x_1 - x_2, u_K, t) = 0$

- zero dynamics

Theorem

For the attack set K, there exists an undetectable attack if and only if

$$\begin{bmatrix} sE - A & -B_K \\ C & D_K \end{bmatrix} \begin{bmatrix} x \\ g \end{bmatrix} = 0$$

for some s, $x \neq 0$, and g.
Undetectability of Replay Attacks

Replay attack:
effect system and reset output

\[\begin{align*}
x(0) & \rightarrow (sE - A)^{-1} x(t) & & \rightarrow y(t) \\
B_K \bar{u}_K(t) & \rightarrow & & C \\
\tilde{x}(0) & \rightarrow G(s) & & \rightarrow D_K u_K(t)
\end{align*}\]

1. two attack channels: \(\bar{u}_K, u_K\)
2. \(\text{Im}(C) \subseteq \text{Im}(D_K)\)
3. \(B_K \neq 0\)

Undetectability follows from solvability of

\[
\begin{bmatrix}
sE - A & -B_K & 0 \\
C & 0 & D_K
\end{bmatrix}
\begin{bmatrix}
x \\
g_1 \\
g_2
\end{bmatrix} = 0
\]

- \(x = (sE - A)^{-1} B_K g_1, \quad g_2 = D_K^\dagger C(sE - A)^{-1} B_K g_1\)
- replay attacks can be detected though active detectors
- replay attacks are not worst-case attacks
The attack set K remains unidentified if its effect on measurements is undistinguishable from an attack generated by a distinct attack set $R \neq K$.

Definition (Unidentifiable attack set)

The attack set K is *unidentifiable* if there exists an admissible attack set $R \neq K$ such that

$$y(x_K, u_K, t) = y(x_R, u_R, t).$$

- an undetectable attack set is also unidentifiable
By linearity, the attack set K is unidentifiable if and only if there exists a distinct set $R \neq K$ such that $y(x_K - x_R, u_K - u_R, t) = 0$.

Theorem

For the attack set K, there exists an unidentifiable attack if and only if

$$\begin{bmatrix} sE - A & -B_K & -B_R \\ C & D_K & D_R \end{bmatrix} \begin{bmatrix} x \\ g_K \\ g_R \end{bmatrix} = 0$$

for some $s, x \neq 0, g_K,$ and g_R.

So far we have shown:

- fundamental detection/identification limitations
- system-theoretic conditions for undetectable/unidentifiable attacks
1 Physical dynamics: classical generator model & DC load flow
2 Measurements: angle and frequency of generator g_1
3 Attack: modified real power injections at buses b_4 & b_5

The attack through b_4 and b_5 excites only zero dynamics for the measurements at the first generator
\[E \dot{x}(t) = Ax(t) + Bu(t) \]
\[y(t) = Cx(t) + Du(t) \]

- the vertex set is the union of the state, input, and output variables
- edges corresponds to nonzero entries in \(E, A, B, C, \) and \(D \)
A linking between two sets of vertices is a set of mutually-disjoint directed paths between nodes in the sets.

Theorem (Detectability, identifiability, linkings, and connectivity)

If the maximum size of an input-output linking is k:

- there exists an undetectable attack set K_1, with $|K_1| \geq k$, and
- there exists an unidentifiable attack set K_2, with $|K_2| \geq \lceil \frac{k}{2} \rceil$.

- statement becomes necessary with *generic* parameters
- statement applies to systems with parameters in polytopes
WECC 3-machine 6-bus System Revisited

1. \(\#\text{attacks} > \text{max size linking}\)
2. \(\exists\) undetectable attacks
3. attack destabilizes \(g_2, g_3\)
Centralized Detection Monitor Design

System under attack \((B, D, u(t))\):

\[
\begin{align*}
E\dot{x}(t) &= Ax(t) + Bu(t) \\
y(t) &= Cx(t) + Du(t)
\end{align*}
\]

Proposed centralized detection filter:

\[
\begin{align*}
E\dot{w}(t) &= (A + GC)w(t) - Gy(t) \\
r(t) &= Cw(t) - y(t)
\end{align*}
\]

Theorem (Centralized Attack Detection Filter)

Assume \(w(0) = x(0)\), \((E, A + GC)\) is Hurwitz, and attack is detectable. Then \(r(t) = 0\) if and only if \(u(t) = 0\).

- ☺ the design is independent of \(B, D,\) and \(u(t)\)
- ☻ if \(w(0) \neq x(0)\), then asymptotic convergence
- ☹ a direct centralized implementation may not be feasible due to high-dimensionality of a power network, communication complexity, ...
Decentralized Monitor Design

Partition the physical system with geographically deployed control centers:

\[
E = \begin{bmatrix}
E_1 & 0 & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & E_N
\end{bmatrix},
C = \begin{bmatrix}
C_1 & 0 & 0 \\
\vdots & \ddots & \vdots \\
0 & 0 & C_N
\end{bmatrix}
\]

\[
A = \begin{bmatrix}
A_1 & \cdots & A_{1N} \\
\vdots & \ddots & \vdots \\
A_{N1} & \cdots & A_N
\end{bmatrix} = A_D + A_C
\]

(i) control center \(i\) knows \(E_i, A_i,\) and \(C_i,\) and neighboring \(A_{ij}\)

(ii) control center \(i\) can communicate with control center \(j \iff A_{ji} \neq 0\)

(iii) \(E&C\) are blockdiagonal, \((E_i, A_i)\) is regular & \((E_i, A_i, C_i)\) is observable

IEEE 118 Bus System
System under attack:

\[E \dot{x}(t) = Ax(t) + Bu(t) \]
\[y(t) = Cx(t) + Du(t) \]

where \(A = A_D + A_C \)

Decentralized detection filter:

\[E \dot{w}(t) = (A_D + GC)w(t) + A_Cw(t) - Gy(t) \]
\[r(t) = Cw(t) - y(t) \]

where \(G = \text{blkdiag}(G_1, \ldots, G_N) \)

Theorem (Decentralized Attack Detection Filter)

Assume that \(w(0) = x(0), (E, A_D + GC) \) is Hurwitz, and

\[\rho \left((j\omega E - A_D - GC)^{-1}A_C\right) < 1 \quad \text{for all } \omega \in \mathbb{R}. \]

If the attack is detectable, then \(r(t) = 0 \) if and only if \(u(t) = 0 \).

- the design is decentralized but achieves centralized performance
- the design requires continuous communication among control centers
Digression: Gauss-Jacobi Waveform Relaxation

- **Standard Gauss-Jacobi relaxation** to solve a linear system $Ax = u$:

 $$x_i^{(k)} = \frac{1}{a_{ii}} \left(u_i - \sum_{j \neq i} a_{ij} x_j^{(k-1)} \right) \iff x^{(k)} = -A_D^{-1} A_C x^{(k-1)} + A_D^{-1} u$$

 Convergence:
 $$\lim_{k \to \infty} x^{(k)} \to x = A^{-1} u \iff \rho(A_D^{-1} A_C) < 1$$

- **Gauss-Jacobi waveform relaxation** to solve $E \dot{x}(t) = Ax(t) + Bu(t)$:

 $$E \dot{x}^{(k)}(t) = A_D x^{(k)}(t) + A_C x^{(k-1)}(t) + Bu(t), \quad t \in [0, T]$$

 Convergence for (E, A) Hurwitz & $u(t)$ integrable in $t \in [0, T]$:

 $$\lim_{k \to \infty} x^{(k)}(t) \to x(t) \iff \rho \left((j\omega E - A_D)^{-1} A_C \right) < 1 \quad \forall \omega \in \mathbb{R}$$
Distributed Monitor Design: Discrete Communication

Distributed attack detection filter:

\[
E \dot{w}^{(k)}(t) = (A_D + GC)w^{(k)}(t) + A_C w^{(k-1)}(t) - Gy(t)
\]

\[
r^{(k)}(t) = Cw^{(k)}(t) - y(t)
\]

where \(G = \text{blkdiag}(G_1, \ldots, G_N) \), \(t \in [0, T] \), and \(k \in \mathbb{N} \)

Theorem (Distributed Attack Detection Filter)

Assume that \(w^{(k)}(0) = x(0) \) for all \(k \in \mathbb{N} \), \(y(t) \) is integrable for \(t \in [0, T] \), \((E, A_D + GC) \) is Hurwitz, and

\[
\rho \left((j\omega E - A_D - GC)^{-1} A_C \right) < 1 \quad \text{for all} \ \omega \in \mathbb{R}.
\]

If the attack is detectable, then \(\lim_{k \to \infty} r^{(k)}(t) = 0 \) if and only if \(u(t) = 0 \) for all \(t \in [0, T] \).
Implementation of Distributed Attack Detection Filter

Distributed iterative procedure to compute the residual $r(t), t \in [0, T]$:

1. set $k := k + 1$, and compute $w_i^{(k)}(t), t \in [0, T]$, by integrating

 $$E_i \dot{w}_i^{(k)}(t) = (A_i + G_iC_i)w_i^{(k)}(t) + \sum_{j \neq i} A_{ij}w_j^{(k-1)}(t) - G_i y_i(t)$$

2. transmit $w_i^{(k)}(t)$ to control center j if $A_{ij} \neq 0$

3. update $w_j^{(k)}(t)$ with the signal received from control center j

⇒ For k sufficiently large, $r_i^{(k)}(t) = C_i w_i^{(k)}(t) - y_i(t) \approx 0 \iff$ no attack

⇒ Receding horizon implementation: move integration window $[0, T]$

⇒ Distributed verification of convergence cond.: $\rho(\cdot) < 1 \iff \| \cdot \|_{\infty} < 1$.
Physics: classical generator model and DC load flow model

Measurements: generator angles

Attack of all measurements in Area 1

Residuals $r_i^{(k)}(t)$ for $k = 100$:

Convergence of waveform relaxation:
System under attack \((B_K, D_K, u_K(t))\):

\[
\begin{align*}
E \dot{x}(t) &= Ax(t) + B_K u_K(t) + B_R u_R(t) \\
y(t) &= Cx(t) + D_K u_K(t) + D_R u_R(t)
\end{align*}
\]

Centralized identification filter:

\[
\begin{align*}
E \dot{w}(t) &= \bar{A}w(t) - \bar{G}y(t) \\
r_K(t) &= MCw(t) - Hy(t)
\end{align*}
\]

- only \(u_K(t)\) is active, i.e., \(u_R(t) = 0\) at all times

Theorem

Assume \(w(0) = x(0)\), and attack set is identifiable.

Then \(r_K(t) = 0\) if and only if \(K\) is the attack set.

- if \(w(0) \neq x(0)\), then asymptotic convergence
- a direct centralized implementation may not be feasible
- design depends on \((B_K, D_K)\) \implies\ textcombinatorial complexity (NP-hard)
Let S_K^* be the smallest subspace of the state space such that

- $\exists \ G$ such that $(A + GC)S_K^* \subseteq S_K^*$ and $R(B_K + GD_K) \subseteq S_K^*$

Design steps:

- Compute smallest conditioned invariant subspace S_K
- Make the subspace S_K invariant by output injection
- Build a residual generator for the quotient space $\mathcal{X} \setminus S_K^*$
- The residual is not affected by $u_K(t)$
Conclusion

We have presented:

1. a modeling framework for cyber-physical systems under attack
2. fundamental detection and identification limitations
3. system- and graph-theoretic detection and identification conditions
4. centralized attack detection and identification procedures
5. distributed attack detection and identification procedures

Ongoing and future work:

1. optimal network partitioning for distributed procedures
2. effect of noise, modeling uncertainties & communication constraints
3. quantitative analysis of cost and effect of attacks
4. applications to distributed-parameters cyber-physical systems

1. **Physical dynamics:** classical generator model & DC load flow

2. **Measurements:** angle and frequency of all generators

3. **Attack:** modify mechanical power injections at generators g_{101} & g_{102}

4. **Monitors:** our centralized detection and identification filters
x(t): generators trajectories
r(t): detection residual
r_K(t): identification residual for K
r_R(t): identification residual for R
filters are designed via conditioned invariance technique
$x(t)$: generators trajectories

$r(t)$: detection residual

$r_K(t)$: identification residual for K

$r_R(t)$: identification residual for R

filters are designed via conditioned invariance and Kalman gain
$x(t)$: generators trajectories
$r(t)$: detection residual
$r_K(t)$: identification residual for K
r$_R(t)$: identification residual for R
filters are designed via conditioned invariance and Kalman gain