	Summary
Synchronization and Kron Reduction in Power Networks	
Florian Dörfler and Francesco Bullo Center for Control, Dynamical Systems & Computation University of California at Santa Barbara IFAC Workshop on Distributed Estimation and Control in Networked Systems Annecy, France, 13-14 September, 2010 Poster tomorrow on: "Network reduction and effective resistance" Slides and papers available at: http://motion.me.ucsb.edu	 observations from distinct fields: power networks are coupled oscillators Kuramoto oscillators synchronize for large coupling graph theory quantifies coupling in a network hence, power networks synchronize for large coupling Today's talk: theorems about these observations synch tests for "net-preserving" and "reduced" models
Dörfler and Bullo (UCSB) Synchronization & Kron Reduction NECSYS '10 @ Annecy 1 / 30	Dörfler and Bullo (UCSB) Synchronization & Kron Reduction NECSYS '10 @ Annecy 2 / 30
Outline	Motivation: the current US power grid
Outline Introduction • Motivation • Mathematical model • Problem statement ③ Singular perturbation analysis (to relate power network and Kuramoto model) ④ Synchronization of non-uniform Kuramoto oscillators ④ Network-preserving power network models	Motivation: the current US power grid " the largest and most complex machine engineered by humankind." [P. Kundur '94, V. Vittal '03] " the greatest engineering achievent of the 20th century." [National Academy of Engineering '10]
Outline Introduction • Motivation • Mathematical model • Problem statement ② Singular perturbation analysis (to relate power network and Kuramoto model) ③ Synchronization of non-uniform Kuramoto oscillators ④ Network-preserving power network models ④ Conclusions	Motivation: the current US power grid

Motivation: the future smart grid	Motivation: the Mediterranean ring project
Energy is one of the top three national priorities, [B. Obama, '09] Expected developments in "smart grid": ⇒ increasing consumption ⇒ increasing adoption of renewable power sources: • large number of distributed power sources • power transmission from remote areas ⇒ large-scale heterogeneous networks with stochastic disturbances	Maghreb Mashrey Curper
Transient Stability	Synchronous grid interconnection between EU and Mediterranean region:
Generators to swing synchronously despite	 Provide increased levels of energy security to participating nations; Import/export electric power among nations;
variability/faults in generators/network/loads	Out back on the primary electricity reserve requirements within each country.
and a second	Reference: "Oscillation behavior of the enlarged European power system" by M. Kurth and E. Welfonder. Control Engineering Practice, 2005.
Dörfler and Bullo (UCSB) Synchronization & Kron Reduction NECSYS '10 @ Annecy 4 / 30	Dörfler and Bullo (UCSB) Synchronization & Kron Reduction NECSYS '10 @ Annecy 5 / 30
Mathematical model of a nower network	Mathematical model of a power network
Muticinatical model of a power network	Muthematical model of a power network
New England Power Grid	Network-preserving DAE power network model: • <i>n</i> generators = = boundary nodes: $\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + P_{\text{mech},\text{in},i} - P_{\text{electr},\text{out},i}$ • a <i>n</i> + <i>m</i> passive • & • = interior nodes:
New England Power Grid	Network-preserving DAE power network model: • n generators = = boundary nodes: $\frac{M_i}{\pi f_0} \hat{\theta}_i = -D_i \hat{\theta}_i + P_{\text{mech.in},i} - P_{\text{electr.out},i}$ • $n + m$ passive • & • = interior nodes: • loads are modeled as shunt admittances • algebraic Kirchhoff equations:
New England Power Grid Image: state of the port of the po	Network-preserving DAE power network model: • n generators = = boundary nodes: $\frac{M_i}{\pi f_0}\ddot{\theta}_i = -D_i\dot{\theta}_i + P_{\text{mech.in},i} - P_{\text{electr.out},i}$ • $n + m$ passive • & • = interior nodes: • loads are modeled as shunt admittances • algebraic Kirchhoff equations:
New England Power Grid Image: state of the power detection Image: state of the power detection <t< td=""><td>Network-preserving DAE power network model: • <i>n</i> generators = boundary nodes: $\frac{M_i}{\pi f_0}\ddot{\theta}_i = -D_i\dot{\theta}_i + P_{\text{mech},\text{in},i} - P_{\text{electr,out},i}$ • <i>n</i> + <i>m</i> passive • & • = interior nodes: • loads are modeled as shunt admittances • algebraic Kirchhoff equations: $I = \mathbf{Y}_{\text{network}}V$</td></t<>	Network-preserving DAE power network model: • <i>n</i> generators = boundary nodes: $\frac{M_i}{\pi f_0}\ddot{\theta}_i = -D_i\dot{\theta}_i + P_{\text{mech},\text{in},i} - P_{\text{electr,out},i}$ • <i>n</i> + <i>m</i> passive • & • = interior nodes: • loads are modeled as shunt admittances • algebraic Kirchhoff equations: $I = \mathbf{Y}_{\text{network}}V$

Mathematical model of a power network Mathematical model of a power network Network-Reduction to an ODE power network model Network-Reduced ODE power network model: $\begin{bmatrix} I_{\text{boundary}} \\ 0 \end{bmatrix} = \begin{bmatrix} Y_{\text{boundary}} & Y_{\text{bound-int}} \\ Y_{\text{bound-int}}^T & Y_{\text{interior}} \end{bmatrix} \begin{bmatrix} V_{\text{boundary}} \\ V_{\text{interior}} \end{bmatrix}$ classic interconnected swing equations [Anderson et al. '77, M. Pai '89, P. Kundur '94, ...]: $\frac{M_i}{\pi f_0}\ddot{\theta}_i = -D_i\dot{\theta}_i + \omega_i - \sum_{i\neq i} P_{ij}\sin(\theta_i - \theta_j + \varphi_{ij})$ Schur complement $Y_{reduced} = Y_{network} / Y_{interior}$ \implies *I*houndary = Yreduced Vhoundary "all-to-all" reduced network Yreduced with $P_{ii} = |V_i| |V_i| |Y_{\text{reduced } i, i}| > 0$ max. power transferred $i \leftrightarrow j$ network reduced to active nodes (generators) $\varphi_{ii} = \arctan(\Re(Y_{red,i}))/\Im(Y_{red,i})) \in [0, \pi/2)$ reflect losses $i \leftrightarrow i$ Y_{reduced} induces complete "all-to-all" coupling graph $\omega_i = P_{\text{mech in } i} - |V_i|^2 \Re(Y_{\text{reduced } i})$ effective power input of i NECSYS '10 @ Annecy 8 / 30 Dörfler and Bullo (UCSB) Transient stability analysis: problem statement Transient stability analysis: literature review $\frac{M_i}{\pi \epsilon} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{i \neq j} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$ $\frac{M_i}{\pi f_0}\ddot{\theta}_i = -D_i\dot{\theta}_i + \omega_i - \sum_{i\neq i} P_{ij}\sin(\theta_i - \theta_j + \varphi_{ij})$ Classic methods use Hamiltonian and gradient systems arguments: • write $\frac{M_i}{\pi E}\ddot{\theta}_i = -D_i\dot{\theta}_i - \nabla_i U(\theta)^T$ Classic transient stability: a study $\dot{\theta}_i = -\nabla_i U(\theta)^T$ power network in stable frequency equilibrium $(\dot{\theta}_i, \ddot{\theta}_i) = (0, 0)$ for all iKey objective: compute domain of attraction via numerical methods [N. Kakimoto et al. '78, H.-D. Chiang et al. '94] stability analysis of a new frequency equilibrium in post-fault network Open Problem "power sys dynamics + complex nets" [Hill and Chen '06] General synchronization problem: synchronous equilibrium: |θ_i - θ_i| small & θ_i = θ_i for all i, j transient stability, performance, and robustness of a power network underlying graph properties (topological, algebraic, spectral, etc)

Dörfler and Bullo (UCSB)

UCSB) Synchronization

NECSYS '10 @ Annecy 11 / 30

Outline

Singular perturbation analysis

 Introduction Motivation Mathematical model Problem statement Singular perturbation analysis (to relate power network and Kuramoto model) Synchronization of non-uniform Kuramoto oscillators Network-preserving power network models Conclusions 	$\frac{M_{ij}}{\pi f_{0}}\dot{\theta}_{i} = -D_{i}\dot{\theta}_{i} + \omega_{i} - \sum_{j \neq i} P_{ij}\sin(\theta_{i} - \theta_{j} + \varphi_{ij})$ a assume time-scale separation between synchronization and damping singular perturbation parameter $\epsilon = \frac{M_{max}}{\pi f_{0}D_{min}}$ b non-uniform Kuramoto (slow time-scale, for $\epsilon = 0$) $D_{i}\dot{\theta}_{i} = \omega_{i} - \sum_{j \neq i} P_{ij}\sin(\theta_{i} - \theta_{j} + \varphi_{ij})$ c if cohesiveness + exponential freq sync for non-uniform Kuramoto, then $\forall (\theta(0), \theta(0))$, exists $\epsilon^{*} > 0$ such that $\forall \epsilon < \epsilon^{*}$ and $\forall t \ge 0$ $\theta_{i}(t)_{power network} - \theta_{i}(t)_{non-uniform Kuramoto} = \mathcal{O}(\epsilon)$
Dörffer and Bullo (UCSB) Synchronization & Kron Reduction NECSYS '10 @ Annecy 15 / 30	Didfer and Bullo (UCSB) Synchronization & Kron Reduction NECSYS '10 @ Annecy 16 / 30
Key technical problem: • Kuramoto defined over manifold T", no fixed point • Tikhonov's Theorem: exp. stable point in Euclidean space	assumption $\epsilon = \frac{M_{max}}{\pi f_0 D_{min}}$ sufficiently small Q generator internal control effects imply $\epsilon \in \mathcal{O}(0.1)$
Solution • define grounded variables in \mathbb{R}^{n-1} $\delta_1 = \theta_1 - \theta_n \cdots \delta_{n-1} = \theta_{n-1} - \theta_n$	● topological equivalence independent of c: 1st-order and 2nd-order models have the same equilibria, the Jacobians have the same inertia, and the regions of attractions are bounded by the same separatrices
 equivalence of solutions: grounded Kuramoto solutions satisfy max_{i,j}(δ_i(t) - δ_i(t)) < π Kuramoto solutions are are invariant with γ = π, i.e, θ_i(t), θ_n(t) belong to open half-circle, function of t equivalence of exponential convergence exponential frequency synchronization for Kuramoto exponential frequency consumpting for grounded Kuramoto 	 non-uniform Kuramoto corresponds to reduced gradient system <i>θ</i>_i = -∇_iU(θ)^T used successfully in academia and industry since 1978 physical interpretation: damping and sync on separate time-scales classic assumption in literature on coupled oscillators: over-damped mechanical pendula and Josephson junctions

Outline

Outline	Synchronization of non-uniform retraineto: condition
 Introduction Motivation Mathematical model Problem statement Singular perturbation analysis (to relate power network and Kuramoto model) Synchronization of non-uniform Kuramoto oscillators 	Non-uniform Kuramoto Model in \mathbb{T}^{n} : $D_{i}\dot{\theta}_{i} = \omega_{i} - \sum_{j \neq i} P_{ij} \sin(\theta_{i} - \theta_{j} + \varphi_{ij})$ • Non-uniformity in network: $D_{i}, \omega_{i}, P_{ij}, \varphi_{ij}$ • Phase shift φ_{ij} induces lossless and lossy coupling: $\dot{\theta}_{i} = \frac{\omega_{i}}{D_{i}} - \sum_{j \neq i} \left(\frac{P_{ij}}{D_{i}} \cos(\varphi_{ij}) \sin(\theta_{i} - \theta_{j}) + \frac{P_{ij}}{D_{i}} \sin(\varphi_{ij}) \cos(\theta_{i} - \theta_{j}) \right)$
Notwork presoning newer network models	Synchronization condition (w)
Conclusions	$\underbrace{n_{D_{\max}}^{P_{\min}}\cos(\varphi_{\max})}_{\text{worst lossless coupling}} > \underbrace{\max_{i,j} \left(\frac{\omega_i}{D_i} - \frac{\omega_j}{D_j}\right)}_{\text{worst non-uniformity}} + \underbrace{\max_i \sum_{j} \frac{P_{ij}}{D_i}\sin(\varphi_{ij})}_{\text{worst lossly coupling}}$
Dörfler and Bullo (UCSB) Synchronization & Kron Reduction NECSYS '10 @ Annecy 18 / 30	Dörfler and Bullo (UCSB) Synchronization & Kron Reduction NECSYS '10 @ Annecy 19 / 30
Synchronization of non-uniform Kuramoto: consequences	Main proof ideas
$\begin{split} D_{i}\dot{\theta}_{i} &= \omega_{i} - \sum_{j \neq i} P_{ij} \sin(\theta_{i} - \theta_{j} + \varphi_{ij}) \\ n \frac{P_{\min}}{D_{\max}} \cos(\varphi_{\max}) > \max_{i,j} \left(\frac{\omega_{i}}{D_{i}} - \frac{\omega_{j}}{D_{j}}\right) + \max_{i} \sum_{j} \frac{P_{ij}}{D_{i}} \sin(\varphi_{ij}) \end{split}$ 1) phase cohesiveness: arc-invariance for all arc-lengths $\underbrace{\operatorname{arcsin}\left(\cos(\varphi_{\max}) \frac{RHS}{LHS}\right)}_{\gamma_{\min}} \leq \gamma \leq \frac{\pi}{2} - \frac{\varphi_{\max}}{\gamma_{\max}} \end{split}$ practical phase sync: in finite time, arc-length γ_{\min} 2) frequency synch: from all initial conditions in a γ_{\max} arc, exponential frequency synchronization	• Cohesiveness $\theta(t) \in \Delta(\gamma) \Leftrightarrow \text{arc-length } V(\theta(t)) \text{ is non-increasing}$ $V^{(\theta(t))} \Leftrightarrow \begin{cases} V(\theta(t)) = \max\{ \theta_i(t) - \theta_j(t) \mid i, j \in \{1, \dots, n\}\} \\ D^+ V(\theta(t)) \stackrel{!}{\leq} 0 \end{cases}$ $\sim \text{ contraction property } [D. Bertsekas et al. '94, L. Moreau '04 & '05, Z. Lin et al. '08,]$ • Frequency synchronization in $\Delta(\gamma) \Leftrightarrow \text{ consensus protocol in } \mathbb{R}^n$ $\frac{d}{dt}\dot{\theta}_i = -\sum_{j \neq i} a_{ij}(t)(\dot{\theta}_i - \dot{\theta}_j),$ where $a_{ij}(t) = \frac{P_{ij}}{D_i} \cos(\theta_i(t) - \theta_j(t) + \varphi_{ij}) > 0$ for all $t \ge 0$

Sunchronization of non uniform Kuramata: condition

Dörfler and Bullo (UCSB)

24 / 30

Dörfler and Bullo (UCSB)

