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Summary

observations from distinct fields:

1 power networks are coupled oscillators

2 Kuramoto oscillators synchronize for large coupling

3 graph theory quantifies coupling in a network

4 hence, power networks synchronize for large coupling

Today’s talk:

theorems about these observations

synch tests for “net-preserving” and “reduced” models
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Motivation: the current US power grid

“. . . the largest and most complex machine engineered by humankind.”

[P. Kundur ’94, V. Vittal ’03, . . . ]

“. . . the greatest engineering achievement of the 20th century.”

[National Academy of Engineering ’10]

1 large-scale, nonlinear dynamics, complex interactions

2 100 years old and operating at its capacity limits

⇒ recent blackouts: New England ’03, Italy ’03, Brazil ’09
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Motivation: the future smart grid

Energy is one of the top three national priorities, [B. Obama, ’09]

Expected developments in “smart grid”:

⇒ increasing consumption

⇒ increasing adoption of renewable power sources:
1 large number of distributed power sources
2 power transmission from remote areas

⇒ large-scale heterogeneous networks with stochastic disturbances

Transient Stability

Generators to swing synchronously despite
variability/faults in generators/network/loads
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Motivation: the Mediterranean ring project

Synchronous grid interconnection between EU and Mediterranean region:

1 Provide increased levels of energy security to participating nations;

2 Import/export electric power among nations;

3 Cut back on the primary electricity reserve requirements within each country.

Reference: “Oscillation behavior of the enlarged European power system” by M. Kurth
and E. Welfonder. Control Engineering Practice, 2005.
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Mathematical model of a power network

New England Power Grid
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Fig. 9. The New England test system [10], [11]. The system includes
10 synchronous generators and 39 buses. Most of the buses have constant
active and reactive power loads. Coupled swing dynamics of 10 generators
are studied in the case that a line-to-ground fault occurs at point F near bus
16.

test system can be represented by

δ̇i = ωi,
Hi

πfs

ω̇i = −Diωi + Pmi −GiiE
2
i −

10
∑

j=1,j !=i

EiEj ·

· {Gij cos(δi − δj) + Bij sin(δi − δj)},















(11)

where i = 2, . . . , 10. δi is the rotor angle of generator i with
respect to bus 1, and ωi the rotor speed deviation of generator
i relative to system angular frequency (2πfs = 2π× 60Hz).
δ1 is constant for the above assumption. The parameters
fs, Hi, Pmi, Di, Ei, Gii, Gij , and Bij are in per unit
system except for Hi and Di in second, and for fs in Helz.
The mechanical input power Pmi to generator i and the
magnitude Ei of internal voltage in generator i are assumed
to be constant for transient stability studies [1], [2]. Hi is
the inertia constant of generator i, Di its damping coefficient,
and they are constant. Gii is the internal conductance, and
Gij + jBij the transfer impedance between generators i
and j; They are the parameters which change with network
topology changes. Note that electrical loads in the test system
are modeled as passive impedance [11].

B. Numerical Experiment

Coupled swing dynamics of 10 generators in the
test system are simulated. Ei and the initial condition
(δi(0),ωi(0) = 0) for generator i are fixed through power
flow calculation. Hi is fixed at the original values in [11].
Pmi and constant power loads are assumed to be 50% at their
ratings [22]. The damping Di is 0.005 s for all generators.
Gii, Gij , and Bij are also based on the original line data
in [11] and the power flow calculation. It is assumed that
the test system is in a steady operating condition at t = 0 s,
that a line-to-ground fault occurs at point F near bus 16 at
t = 1 s−20/(60Hz), and that line 16–17 trips at t = 1 s. The
fault duration is 20 cycles of a 60-Hz sine wave. The fault
is simulated by adding a small impedance (10−7j) between
bus 16 and ground. Fig. 10 shows coupled swings of rotor
angle δi in the test system. The figure indicates that all rotor
angles start to grow coherently at about 8 s. The coherent
growing is global instability.

C. Remarks

It was confirmed that the system (11) in the New Eng-
land test system shows global instability. A few comments
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Fig. 10. Coupled swing of phase angle δi in New England test system.
The fault duration is 20 cycles of a 60-Hz sine wave. The result is obtained
by numerical integration of eqs. (11).

are provided to discuss whether the instability in Fig. 10
occurs in the corresponding real power system. First, the
classical model with constant voltage behind impedance is
used for first swing criterion of transient stability [1]. This is
because second and multi swings may be affected by voltage
fluctuations, damping effects, controllers such as AVR, PSS,
and governor. Second, the fault durations, which we fixed at
20 cycles, are normally less than 10 cycles. Last, the load
condition used above is different from the original one in
[11]. We cannot hence argue that global instability occurs in
the real system. Analysis, however, does show a possibility
of global instability in real power systems.

IV. TOWARDS A CONTROL FOR GLOBAL SWING

INSTABILITY

Global instability is related to the undesirable phenomenon
that should be avoided by control. We introduce a key
mechanism for the control problem and discuss control
strategies for preventing or avoiding the instability.

A. Internal Resonance as Another Mechanism

Inspired by [12], we here describe the global instability
with dynamical systems theory close to internal resonance
[23], [24]. Consider collective dynamics in the system (5).
For the system (5) with small parameters pm and b, the set
{(δ,ω) ∈ S1 × R | ω = 0} of states in the phase plane is
called resonant surface [23], and its neighborhood resonant
band. The phase plane is decomposed into the two parts:
resonant band and high-energy zone outside of it. Here the
initial conditions of local and mode disturbances in Sec. II
indeed exist inside the resonant band. The collective motion
before the onset of coherent growing is trapped near the
resonant band. On the other hand, after the coherent growing,
it escapes from the resonant band as shown in Figs. 3(b),
4(b), 5, and 8(b) and (c). The trapped motion is almost
integrable and is regarded as a captured state in resonance
[23]. At a moment, the integrable motion may be interrupted
by small kicks that happen during the resonant band. That is,
the so-called release from resonance [23] happens, and the
collective motion crosses the homoclinic orbit in Figs. 3(b),
4(b), 5, and 8(b) and (c), and hence it goes away from
the resonant band. It is therefore said that global instability
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Power network topology:

1 n generators �� , each connected to a generator terminal bus �♦

2 n generators terminal buses �♦ and m load buses •◦ form connected graph

3 admittance matrix Ynetwork∈ C(2n+m)×(2n+m) characterizes the network
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Mathematical model of a power network

Network-preserving DAE power network model:

1 n generators �� = boundary nodes:

Mi

πf0
θ̈i = −Di θ̇i + Pmech.in,i − Pelectr.out,i
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2 n + m passive �♦ & •◦ = interior nodes:

• loads are modeled as shunt admittances

• algebraic Kirchhoff equations:

I = YnetworkV

Y1,3Y1,2

Y1,shunt

1
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Mathematical model of a power network

Network-Reduction to an ODE power network model
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[
Iboundary

0

]
=

[
Yboundary Ybound-int

Y T
bound-int Yinterior

]
︸ ︷︷ ︸

Ynetwork

[
Vboundary

Vinterior

]

Schur complement

Yreduced = Ynetwork/Yinterior =⇒ Iboundary = YreducedVboundary
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network reduced to active nodes (generators)

Yreduced induces complete “all-to-all” coupling graph
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Mathematical model of a power network

Network-Reduced ODE power network model:

classic interconnected swing equations
[Anderson et al. ’77, M. Pai ’89, P. Kundur ’94, . . . ]:

Mi

πf0
θ̈i = −Di θ̇i + ωi −

∑
j 6=i

Pij sin(θi − θj + ϕij)
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“all-to-all” reduced network Yreduced with

Pij = |Vi ||Vj | |Yreduced,i , j | > 0 max. power transferred i ↔ j

ϕij = arctan(<(Yred,i , j)/=(Yred,i , j)) ∈ [0, π/2) reflect losses i ↔ j

ωi = Pmech.in,i − |Vi |2<(Yreduced,i , i ) effective power input of i
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Transient stability analysis: problem statement

Mi

πf0
θ̈i = −Di θ̇i + ωi −

∑
j 6=i

Pij sin(θi − θj + ϕij)

Classic transient stability:

1 power network in stable frequency equilibrium
(θ̇i , θ̈i ) = (0, 0) for all i

2 → transient network disturbance and fault clearance

3 stability analysis of a new frequency equilibrium in post-fault network

General synchronization problem:

• synchronous equilibrium: |θi − θj | small & θ̇i = θ̇j for all i , j
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Transient stability analysis: literature review

Mi

πf0
θ̈i = −Di θ̇i + ωi −

∑
j 6=i

Pij sin(θi − θj + ϕij)

Classic methods use Hamiltonian and gradient systems arguments:

1 write
Mi

πf0
θ̈i = −Di θ̇i −∇iU(θ)T

2 study θ̇i = −∇iU(θ)T

Key objective: compute domain of attraction via numerical methods
[N. Kakimoto et al. ’78, H.-D. Chiang et al. ’94 ]

Open Problem “power sys dynamics + complex nets” [Hill and Chen ’06]

transient stability, performance, and robustness of a power network
?

! underlying graph properties (topological, algebraic, spectral, etc)
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Detour: consensus protocols & Kuramoto oscillators

Consensus protocol in Rn:

ẋi = −
∑

j 6=i
aij(xi − xj)

n identical agents with state
variable xi ∈ R
application: agreement and
coordination algorithms, . . .

references: [M. DeGroot ’74,

J. Tsitsiklis ’84, L. Moreau ’04, ...]

R

Kuramoto model in Tn:

θ̇i = ωi −
K

n

∑
j 6=i

sin(θi − θj)

n non-identical oscillators with
phase θi ∈ T & frequency ωi ∈ R
application: sync phenomena in
nature, Josephson junctions, . . .

references: [C. Huygens XVII,

Y. Kuramoto ’75, A. Winfree ’80, ...]

T
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Detour: synchrony among oscillators

Kuramoto model in Tn

θ̇i = ωi −
K

n

∑
j 6=i

sin(θi − θj)

notions of synchronization

1 phase cohesiveness: |θi (t)− θj(t)| < γ
for small γ < π/2 ... arc invariance

2 frequency synchronized: θ̇i (t) = θ̇j(t)

3 phase synchronized: θi (t) = θj(t)

Detour – Kron reduction of graphs
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Ynetwork/Y interior
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Some properties of the Kron reduction process:

1 Well-posedness: Symmetric & irreducible (loopy) Laplacian matrices
can be reduced and are closed under Kron reduction

2 Topological properties:

interior network connected ⇒ reduced network complete

at least one node in interior network features a self-loop !

⇒ all nodes in reduced network feature self-loops !

3 Algebraic properties: self-loops in interior network . . .

decrease mutual coupling in reduced network

increase self-loops in reduced network
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1 Well-posedness: Symmetric & irreducible (loopy) Laplacian matrices
can be reduced and are closed under Kron reduction

2 Topological properties:

interior network connected ⇒ reduced network complete

at least one node in interior network features a self-loop !

⇒ all nodes in reduced network feature self-loops !

3 Algebraic properties: self-loops in interior network . . .

decrease mutual coupling in reduced network
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Some properties of the Kron reduction process:

1 Well-posedness: Symmetric & irreducible (loopy) Laplacian matrices
can be reduced and are closed under Kron reduction

2 Topological properties:

interior network connected ⇒ reduced network complete

at least one node in interior network features a self-loop !

⇒ all nodes in reduced network feature self-loops !

3 Algebraic properties: self-loops in interior network . . .

decrease mutual coupling in reduced network

increase self-loops in reduced network
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Classic intuition:

1 K small & |ωi − ωj | large ⇒ no synchronization

2 K large & |ωi − ωj | small ⇒ cohesive + freq synchronization
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The big picture

Mi

πf0
θ̈i = −Diθ̇i + ωi −

∑
j !=i

Pij sin(θi − θj + ϕij)

Consensus Protocols: 

ẋi = −
∑

j !=i
aij(xi − xj)

Kuramoto Oscillators:

θ̇i = ωi −
K

n

∑
j !=i

sin(θi − θj)

?

Open problem in synchronization and 
transient stability in power networks:
relation to underlying network state, 
parameters, and topology 
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The big picture

Mi

πf0
θ̈i = −Diθ̇i + ωi −

∑
j !=i

Pij sin(θi − θj + ϕij)

Consensus Protocols: 

ẋi = −
∑

j !=i
aij(xi − xj)

Kuramoto Oscillators:

θ̇i = ωi −
K

n

∑
j !=i

sin(θi − θj)

?

Open problem in synchronization and 
transient stability in power networks:
relation to underlying network state, 
parameters, and topology 

Previous observations about this connection:
Power systems: [D. Subbarao et al., ’01, G. Filatrella et al., ’08, V. Fioriti et al., ’09]
Networked control: [D. Hill et al., ’06, M. Arcak, ’07]
Dynamical systems: [H. Tanaka et al., ’97, A. Arenas ’08]
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Singular perturbation analysis

Mi

πf0
θ̈i = −Di θ̇i + ωi −

∑
j 6=i

Pij sin(θi − θj + ϕij)

1 assume time-scale separation between synchronization and damping

singular perturbation parameter ε =
Mmax

πf0Dmin

2 non-uniform Kuramoto (slow time-scale, for ε = 0)

Di θ̇i = ωi −
∑

j 6=i
Pij sin(θi − θj + ϕij)

3 if cohesiveness + exponential freq sync for non-uniform Kuramoto,
then ∀ (θ(0), θ̇(0)), exists ε∗ > 0 such that ∀ ε < ε∗ and ∀ t ≥ 0

θi (t)power network − θi (t)non-uniform Kuramoto = O(ε)
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Singular perturbation analysis: proof

Key technical problem:

Kuramoto defined over manifold Tn, no fixed point

Tikhonov’s Theorem: exp. stable point in Euclidean space

Solution

define grounded variables in Rn−1

δ1 = θ1 − θn · · · δn−1 = θn−1 − θn

equivalence of solutions:
1 grounded Kuramoto solutions satisfy maxi,j(δi (t)− δi (t)) < π
2 Kuramoto solutions are arc invariant with γ = π,

ie, θ1(t), . . . , θn(t) belong to open half-circle, function of t

equivalence of exponential convergence
1 exponential frequency synchronization for Kuramoto
2 exponential convergence to equilibrium for grounded Kuramoto
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Singular perturbation analysis: discussion

assumption ε =
Mmax

πf0Dmin
sufficiently small

1 generator internal control effects imply ε ∈ O(0.1)

2 topological equivalence independent of ε: 1st-order and 2nd-order
models have the same equilibria, the Jacobians have the same inertia,
and the regions of attractions are bounded by the same separatrices

3 non-uniform Kuramoto corresponds to reduced gradient system
θ̇i = −∇iU(θ)T used successfully in academia and industry since 1978

4 physical interpretation: damping and sync on separate time-scales

5 classic assumption in literature on coupled oscillators: over-damped
mechanical pendula and Josephson junctions

6 simulation studies show accurate approximation even for large ε
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Synchronization of non-uniform Kuramoto: condition

Non-uniform Kuramoto Model in Tn:

Di θ̇i = ωi −
∑

j 6=i
Pij sin(θi − θj + ϕij)

Non-uniformity in network: Di , ωi , Pij , ϕij

Phase shift ϕij induces lossless and lossy coupling:

θ̇i =
ωi

Di
−
∑

j 6=i

(
Pij

Di
cos(ϕij) sin(θi − θj) +

Pij

Di
sin(ϕij) cos(θi − θj)

)

Synchronization condition (?)

n
Pmin

Dmax
cos(ϕmax)︸ ︷︷ ︸

worst lossless coupling

> max
i ,j

(ωi

Di
−

ωj

Dj

)
︸ ︷︷ ︸

worst non-uniformity

+ max
i

∑
j

Pij

Di
sin(ϕij)︸ ︷︷ ︸

worst lossy coupling
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Synchronization of non-uniform Kuramoto: consequences

Di θ̇i = ωi −
∑

j 6=i
Pij sin(θi − θj + ϕij)

n
Pmin

Dmax
cos(ϕmax) > max

i ,j

(ωi

Di
−

ωj

Dj

)
+ max

i

∑
j

Pij

Di
sin(ϕij)

1) phase cohesiveness: arc-invariance for all arc-lengths

arcsin
(
cos(ϕmax)

RHS

LHS

)
︸ ︷︷ ︸

γmin

≤ γ ≤ π

2
− ϕmax︸ ︷︷ ︸
γmax

practical phase sync: in finite time, arc-length γmin

2) frequency synch: from all initial conditions in a γmax arc,
exponential frequency synchronization
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Main proof ideas

1 Cohesiveness θ(t) ∈ ∆(γ) ⇔ arc-length V (θ(t)) is non-increasing

V (θ(t))

⇔

 V (θ(t)) = max{|θi (t)− θj(t)| | i , j ∈ {1, . . . , n}}

D+V (θ(t))
!
≤ 0

∼ contraction property [D. Bertsekas et al. ’94, L.
Moreau ’04 & ’05, Z. Lin et al. ’08, . . . ]

2 Frequency synchronization in ∆(γ) ⇔ consensus protocol in Rn

d

dt
θ̇i = −

∑
j 6=i

aij(t)(θ̇i − θ̇j) ,

where aij(t) =
Pij

Di
cos(θi (t)− θj(t) + ϕij) > 0 for all t ≥ 0
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Synchronization of non-uniform Kuramoto: uniform

Classic (uniform) Kuramoto Model in Tn:

θ̇i = ωi −
K

n

∑
j 6=i

sin(θi − θj)

Necessary and sufficient condition

(sufficiency) synchronization condition (?) reads

K > max
i ,j

(
ωi − ωj

)
also necessary when considering all distributions of ω ∈ [ωmin, ωmax]

Condition (?) strictly improves existing bounds on Kuramoto model:
[F. de Smet et al. ’07, N. Chopra et al. ’09, G. Schmidt et al. ’09,

A. Jadbabaie et al. ’04, S.J. Chung et al. ’10, J.L. van Hemmen et al. ’93].

Necessary condition synchronization: K > n
2(n−1)(ωmax − ωmin)

[J.L. van Hemmen et al. ’93, A. Jadbabaie et al. ’04, N. Chopra et al. ’09]
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Synchronization of non-uniform Kuramoto: alternative

Non-uniform Kuramoto Model in Tn - rewritten:

Di θ̇i = ωi −
∑

j 6=i
Pij sin(θi − θj + ϕij)

λ2(L(Pij cos(ϕij)))︸ ︷︷ ︸
lossless connectivity

> f (Di )︸ ︷︷ ︸
non-uniform Di s

·
(
1/ cos(ϕmax)

)︸ ︷︷ ︸
phase shifts

×

×
( ∣∣∣∣∣∣[ . . . ,

ωi

Di
−

ωj

Dj
, . . .

]∣∣∣∣∣∣
2︸ ︷︷ ︸

non-uniformity

+
√

λmax(L)
∣∣∣∣∣∣[ . . . ,

∑
j

Pij

Di
sin(ϕij), . . .

]∣∣∣∣∣∣
2︸ ︷︷ ︸

lossy coupling

)

Similar synch, quadratic Lyap, uniform test K > ||[. . . , ωi − ωj , . . . ]||2
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Synchronization of non-uniform Kuramoto

Non-uniform Kuramoto Model in Tn

Di θ̇i = ωi −
∑

j 6=i
Pij sin(θi − θj + ϕij)

Further interesting results:

1 explicit synchronization frequency

2 exponential rate of frequency synchronization

3 conditions for phase synchronization

4 results for general non-complete graphs

. . . to be found in our papers.
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Network-preserving power network models

So far we considered a network-reduced power system model:
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synchronization conditions on λ2(P) and Pmin

all-to-all reduced admittance matrix Yreduced ∼ P/V 2

(for uniform voltage levels |Vi | = V )

Topological non-reduced network-preserving power system model:
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10
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9

topological bus admittance matrix Ynetwork

indicating transmission lines and loads (self-loops)

Schur complement:Yreduced = Ynetwork/Yinterior

c.f. “Kron reduction”, “Dirichlet-to-Neumann map”,
“Schur contraction”, “Gaussian elimination”, . . .
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Kron reduction of graphs: definition

Kron reduction of a graph with

boundary �� , interior •◦ , non-neg self-loops 	

loopy Laplacian matrix Ynetwork

25

8

27 28

8

30

30

8

30

28

1 Iterative 1-dim Kron reduction:

Topological evolution of the corresponding graph
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Algebraic evolution of Laplacian matrix: Yk+1
reduced = Yk

reduced/ •◦
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Kron reduction of graphs: properties

1 Well-posedness: set of loopy Laplacian matrices is closed

2 Equivalence: iterative 1-dim reduction = 1-step reduction
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3 Topological properties:

interior network connected ⇒ reduced network complete

at least one node in interior network features a self-loop 	

⇒ all nodes in reduced network feature self-loops 	

4 Algebraic properties: self-loops in interior network

decrease mutual coupling in reduced network

increase self-loops in reduced network
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Kron reduction of graphs: properties

Some properties of the Kron reduction process:
...

5 Spectral properties:

interlacing property: λi (Ynetwork) ≤ λi (Yreduced) ≤ λi+n−|�|(Ynetwork)

algebraic connectivity λ2 is non-decreasing along Kron

6 Effective resistance:

Effective resistance R(i , j) among boundary nodes �� is invariant

For boundary nodes �� : effective resistance R(i , j) uniform
⇔ coupling Yreduced(i , j) uniform ⇔ 1/R(i , j) = n

2 |Yreduced(i , j)|
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Synchronization in network-preserving models

Assumption I: lossless network and uniform voltage levels V at generators

1 Spectral condition for synchronization: λ2(P) ≥ ... becomes

λ2(i · Lnetwork) >
∣∣∣∣∣∣(ω2

D2
− ω1

D1
, . . .

)∣∣∣∣∣∣
2
· f (Di )

V 2
+ min{ 	}

Assumption II: effective resistance R among generator nodes is uniform

2 Resistance-based condition for synchronization: nPmin≥ ... becomes

1

R
> max

i ,j

{ωi

Di
−

ωj

Dj

}
·Dmax

2V 2
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Conclusions

Open problem in synchronization and 
transient stability in power networks:
relation to underlying network state, 
parameters, and topology 

Time-varying
Consensus Protocols 

Non-uniform 
Kuramoto Oscillators

singular perturbations
and graph theory

Kuramoto, consensus,
and nonlinear control tools

Ambitious workplan
1 sharpest conditions for most realistic models
2 stochastic instead of worst-case analysis
3 networks of DC/AC power inverters
4 control via voltage regulation and “flexible AC transmission systems”
5 “distance to instability” and optimal islanding for failure management

transition to DOE laboratories and utilities
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