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Setup & Literature Review

Assumptions:

1 N identical individuals, arbitrary local rule

2 Independent information

3 Aggregation of individual decisions !"##$%&"'(")((

*$%+,+"',(

-( .( /( 0(

Group decision rule = SDA algorithm

q out of N rule: decision as soon as q nodes report concordant opinion

Fastest rule fastest node decides for network (q = 1)

Majority rule network agrees with majority decision (q = dN/2e)

Goal #1: characterize decision probabilities of SDA
as function of: threshold and SDM decision probabilities

Goal #2: express accuracy & decision time
as function of: decision threshold × group size
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Literature review #2

For decentralized detection, with conditional independence of observations:

Tsitsiklis ’93: Bayesian decision problem with fusion center. For large
networks identical local decision rules are asymptotically optimal

Varshney ’96: on non-identical decision rules with q out of N,
1 threshold rules are optimal at the nodes levels
2 finding optimal thresholds requires solving N + 2N equations

Varshney ’96: on optimal fusion rules for identical local decisions, “q
out of N” is optimal at the fusion center level

Contributions today

arbitrary decision makers (rather than optimal local rules)

sequential aggregation (rather than “complete” aggregation)

scalability analysis of accuracy / decision time
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Model of sequential decision maker

Sequential decision maker (SDM)

pi |j(t) := Probability “say Hi given Hj” at time t

pi |j =
+∞∑
t=1

pi |j(t), E [T |Hi ] =
+∞∑
t=1

t
(
p1|i (t) + p0|i (t)

)

Assume knowledge of {pi |j(t)}t∈N for individual SDM,
known exactly, calculated numerically, or measured empirically
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Hz) and an elevated firing state (30 Hz) in a network of binary
units (Fig. 2C). This mechanism works well when the occur-
rence of each transition is equally probable at an arbitrary time
point during a delay period. The consecutive rate distributions

of the different graded-activity types exhibited quite different
profiles (Fig. 2, E and F). Most characteristically, the distribu-
tion obtained from the stepwise rate changes in single neurons
exhibits a trough near the peak of the distribution obtained
from the truly graded rate changes. Thus the rate distribution
enables us to examine which type of graded activity given
spike trains are more likely to represent.

Graded activity in recurrent neural networks

We then constructed a recurrent network consisting of 500
excitatory neurons and 100 inhibitory neurons (see METHODS).
In the network model, excitatory neurons receive excitatory
and inhibitory recurrent synaptic inputs, excitatory and inhib-
itory background synaptic inputs, and an external input to
induce graded activity. Inhibitory neurons receive synaptic
input from excitatory neurons as well as excitatory and inhib-
itory background synaptic inputs. Each excitatory neuron
projects to 10% of randomly chosen other excitatory neurons
and to all inhibitory neurons, whereas each inhibitory neuron
projects to all excitatory neurons, but not to other inhibitory
neurons. We note that the temporal integration performance
was relatively independent of the connectivity of synapses. In

FIG. 2. Comparison between different temporal integration mechanisms. A:
graded activity may be modeled as a trial- or an ensemble-average of gradually
increasing firing rates of individual neurons. B: climbing activity (bottom) was
constructed from nonstationary Poisson spike trains with a gradually increas-
ing mean firing rate (top). C: graded activity in our model consists of
temporally organized bimodal transitions between the baseline and elevated
firing states. In the individual neurons, the transitions should occur at arbitrary
temporal positions with equal probabilities. Both trial average and ensemble
average give equally good representations of graded activity in the present
model. D: climbing activity (bottom) was constructed from artificial bimodal
Poisson spike trains showing stepwise increases in the mean firing rate (top).
E: consecutive firing-rate distribution (see METHODS) exhibits a single peak in
the climbing activity shown in B. F: by contrast, the firing-rate distribution is
bimodal in the climbing activity shown in D.

FIG. 1. Bimodal firing states of model excitatory neuron. A: responses of a
single excitatory neuron to a brief stimulus are shown in the absence of recurrent
synaptic inputs and the fluctuating components of background synaptic inputs (the
“frozen” condition). External input was set as Iext ! 0 nA (top), for which the
response was not bistable, and Iext ! 0.025 nA (bottom), for which the response
was bistable. In the latter case, neuronal firing was terminated by a hyperpolarizing
input. Horizontal bars show the duration of the stimuli. B: model neuron with
bistability repeats noise-driven transitions between the baseline and elevated firing
states under the influences of continuous synaptic bombardments (top). Monitor-
ing the intracellular calcium density enables us to distinguish the epochs of the
elevated firing state (bottom, gray shades). C: presence of the 2 distinct firing states
results in a bimodal consecutive firing-rate distribution. D: bimodal firing-rate
distribution is shown at Iext ! 0.035 nA.

3862 H. OKAMOTO, Y. ISOMURA, M. TAKADA, AND T. FUKAI

J Neurophysiol • VOL 97 • JUNE 2007 • www.jn.org
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Sequential decision aggregation: Intermediate events
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aggregate states and divide in groups characterized by count

calculate the probability of transition between the different groups

characterize two states for network decisions H0 and H1
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Sequential decision aggregation: Computational approach

Goal: as function of SDM decision probabilities {pi |j(t)}t∈N,
compute SDA decision probabilities {pi |j(t;N, q)}t∈N

General result: q out of N decision probabilities

pi |j(t;N, q) =

q−1∑
s0=0

q−1∑
s1=0

(
N

s1 + s0

)
α(t − 1, s0, s1)βi |j(t, s0, s1)

+

bN/2c∑
s=q

(
N

2s

)
ᾱ(t − 1, s)β̄i |j(t, s)

As function of t and sizes, formulas for α, β, ᾱ, and β̄
computational complexity linear in N
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ᾱ(t − 1, s)β̄i |j(t, s)

As function of t and sizes, formulas for α, β, ᾱ, and β̄
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Illustration of results
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Asymptotic results for the Fastest rule

Expected Decision Time:

lim
N→∞

E [T |H1,N, fastest] = earliest possible decision time

=: tmin = min{t ∈ N | either p1|1(t) 6= 0 or p0|1(t) 6= 0}

Accuracy:

lim
N→∞

p0|1(N, fastest) =

{
0, if p1|1(tmin) > p0|1(tmin)

1, if p1|1(tmin) < p0|1(tmin)

1 SDA accuracy is function of (SDM probability at tmin),
not of (SDA cumulative probability)!

2 hence, SDA accuracy is not monotonic with N

3 hence, SDA accuracy is unrelated to SDM accuracy for large N

Dandach, Carli, Bullo (UCSB) Sequential Decision Aggregation 13aug2010 12 / 16

Asymptotic results for the Fastest rule

Expected Decision Time:

lim
N→∞

E [T |H1,N, fastest] = earliest possible decision time

=: tmin = min{t ∈ N | either p1|1(t) 6= 0 or p0|1(t) 6= 0}

Accuracy:

lim
N→∞

p0|1(N, fastest) =

{
0, if p1|1(tmin) > p0|1(tmin)

1, if p1|1(tmin) < p0|1(tmin)

1 SDA accuracy is function of (SDM probability at tmin),
not of (SDA cumulative probability)!

2 hence, SDA accuracy is not monotonic with N

3 hence, SDA accuracy is unrelated to SDM accuracy for large N

Dandach, Carli, Bullo (UCSB) Sequential Decision Aggregation 13aug2010 12 / 16

Asymptotic results for the Majority rule

Expected Decision Time: Assume p1|1 > p0|1 and define

t< 1
2

:= max{t ∈ N | p1|1(0) + · · ·+ p1|1(t) < 1/2},

t> 1
2

:= min{t ∈ N | p1|1(0) + · · ·+ p1|1(t) > 1/2}

Then

lim
N→∞

E
[
T |H1,N,majority

]
=

1

2

(
t< 1

2
+ t> 1

2
+ 1

)
Accuracy: Monotonicity with group size and, as N →∞

p0|1(N,majority) →


0, if p0|1 < 1/2

1, if p0|1 > 1/2√
N/(2π) (4p0|1)

dN
2
e, if p0|1 < 1/4
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Lessons learned about SDA

Accuracy Expected decision time

Fastest SDM accuracy at tmin earliest possible decision time tmin

Majority exponentially better than SDM average of half-times t< 1
2
, t> 1
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A fair comparison

to compare different thresholds, re-scale local accuracy

the group accuracy is now same (eg, low or high)

compare the decision time
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for most cases majority rule is best
for some small inaccurate networks, fastest rule is best
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Conclusions and future directions

Summary fundamental understanding of “sequential aggregation”

1 applicable to broad range of agent models, eg, mixed networks

2 applicable to family of threshold-based rules

3 tradeoffs in fastest vs majority

4 role of time in sequential aggregation

Future directions

1 models with heterogeneous agents

2 models with interactions between agents

3 models with correlated information

4 how to use this analysis for design
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