	Sequential decision aggregation: Outline			
Sequential Decision Aggregation: Accuracy and Decision Time				
Sandra H. Dandach, Ruggero Carli and Francesco Bullo	Setup & Literature Review			
Center for Control, Dynamical Systems & Computation	SDA: analysis of decision probabilities			
University of California at Santa Barbara http://motion.me.ucsb.edu	SDA: scalability analysis of accuracy/decision time			
MURI FA95500710528 Project Review: Behavioral Dynamics in Cooperative Control of Mixed Human/Robot Teams Center for Human and Robot Decision Dynamics, Aug 13, 2010	Conclusions and future directions			
Dandsch, Carli, Bullo (UCSB) Sequential Decision Aggregation 13aug2010 1/16 Setup & Literature Review	Dandach, Carll, Bullo (UCSB) Sequential Decision Aggregation 13aug2019 2 / 16 Setup & Literature Review			
Assumptions: N identical individuals, arbitrary local rule Independent information Aggregation of individual decisions	Assumptions: Assumptions: N identical individuals, arbitrary local rule Independent information Aggregation of individual decisions			
 Group decision rule = SDA algorithm q out of N rule: decision as soon as q nodes report concordant opinion Fastest rule fastest node decides for network (q = 1) Majority rule network agrees with majority decision (q = [N/2]) 	 Group decision rule = SDA algorithm q out of N rule: decision as soon as q nodes report concordant opinion Fastest rule fastest node decides for network (q = 1) Majority rule network agrees with majority decision (q = [N/2]) 			
	Goal #1: characterize decision probabilities of SDA as function of: threshold and SDM decision probabilities Goal #2: express accuracy & decision time as function of: decision threshold × group size			
Dandach Cardi Bullo (UCSB) Sequential Decision Agregation 13aus/0010 3 / 16	Dandach Catli Bullo (UCSD) Sequential Decision Approximation 13aus/2010 3 / 16			

Setup & Literature Review	Literature review #1
Assumptions: N identical individuals, arbitrary local rule Independent information Aggregation of individual decisions	 Distributed/decentralized detection P. K. Varchney. Distributed Detection and Data Fusion. Signal Processing and Data Fusion. Springer Verlag. 1996 V. V. Veeravalli, T. Başar, and H. V. Poor. Decentralized sequential detection with sensors performing sequential tests. Math Control. Signals & Systems, 7(4):292–205, 1994
Group decision rule = SDA algorithm q out of N rule: decision as soon as q nodes report concordant opinion • Fastest rule fastest node decides for network (q = 1) • Majority rule network agrees with majority decision (q = [N/2])	 J. N. Tsitsiklis. Decentralized detection. In H. V. Poor and J. B. Thomas, editors, Advances in Statistical Signal Processing volume 2, pages 297-344, 1993 JF. Chamberland and V. V. Veeravalli. Decentralized detection in sensor networks. <i>IEEE Trans Signal Processing</i>, 51(2):407-416, 2003 Social networks
Goal #1: characterize decision probabilities of SDA as function of: threshold and SDM decision probabilities Goal #2: express accuracy & decision time as function of: decision threshold × group size	D. Acemoglu, M. A. Dahleh, I. Lobel, and A. Ozdaglar. Bayesian learning in social networks. Working Paper 14040, National Bureau of Economic Research, May 2008
Dandsch, Carli, Bullo (UCSB) Sequential Decision Aggregation 13aug2010 3 / 16 iterature review #2	Dandach, Carll, Bullo (UCSB) Sequential Decision Aggregation 13aug2010 4 / 16 Literature review #2
 For decentralized detection, with conditional independence of observations: Tsitsiklis '93: Bayesian decision problem with fusion center. For large networks identical local decision rules are asymptotically optimal Varshney '96: on non-identical decision rules with q out of N, threshold rules are optimal at the nodes levels finding optimal thresholds requires solving N + 2^N equations Varshney '96: on optimal fusion rules for identical local decisions, "q out of N" is optimal at the fusion center level 	 For decentralized detection, with conditional independence of observations: Tsitsiklis '93: Bayesian decision problem with fusion center. For large networks identical local decision rules are asymptotically optimal Varshney '96: on non-identical decision rules with <i>q</i> out of <i>N</i>, threshold rules are optimal at the nodes levels finding optimal thresholds requires solving <i>N</i> + 2^N equations Varshney '96: on optimal fusion rules for identical local decisions, "<i>q</i> out of <i>N</i>" is optimal at the fusion center level
Contributions today	Contributions today
• arbitrary decision makers (rather than optimal local rules)	• arbitrary decision makers (rather than optimal local rules)
 sequential aggregation (rather than "complete" aggregation) scalability analysis of accuracy / decision time 	 sequential aggregation (rather than "complete" aggregation) scalability analysis of accuracy / decision time

Today's Outline

🚺 Setup & Literature Review

2 SDA: analysis of decision probabilities

3) SDA: scalability analysis of accuracy/decision time

Conclusions and future directions

Model of sequential decision maker

Sequential decision maker (SDM)

$$p_{i|j}(t) :=$$
 Probability "say H_i given H_j " at time t

$$p_{i|j} = \sum_{t=1}^{+\infty} p_{i|j}(t), \qquad E[T|H_i] = \sum_{t=1}^{+\infty} t(p_{1|i}(t) + p_{0|i}(t))$$

Assume knowledge of $\{p_{i|j}(t)\}_{t\in\mathbb{N}}$ for individual SDM, known exactly, calculated numerically, or measured empirically

Sequential decision aggregation: Computational approach	Sequential decision aggregation: Computational approach
$ \begin{array}{l} \mbox{Goal: as function of SDM decision probabilities } \{p_{i j}(t)\}_{t\in\mathbb{N}^{1}} \\ \mbox{ compute SDA decision probabilities } \{p_{i j}(t;N,q)\}_{t\in\mathbb{N}} \end{array} $	$ \begin{array}{l} \mbox{Goal: as function of SDM decision probabilities } \{p_{ijj}(t)\}_{t\in\mathbb{N}^{i}} \\ \mbox{ compute SDA decision probabilities } \{p_{ijj}(t;N,q)\}_{t\in\mathbb{N}} \end{array} $
	General result: q out of N decision probabilities
	$\begin{split} p_{ij}(t;N,q) &= \sum_{s_0=0}^{q-1} \sum_{s_1=0}^{q-1} \binom{N}{s_1+s_0} \alpha(t-1,s_0,s_1) \beta_{ij}(t,s_0,s_1) \\ &+ \sum_{s=q}^{\lfloor N/2 \rfloor} \binom{N}{2s} \tilde{\alpha}(t-1,s) \tilde{\beta}_{ij}(t,s) \end{split}$
As function of t and sizes, formulas for $\alpha,\beta,\bar{\alpha},{\rm and}\bar{\beta}$ computational complexity linear in N	As function of t and sizes, formulas for $\alpha,\beta,\bar{\alpha},{\rm and}\bar{\beta}$ computational complexity linear in N
Dandach, Canii, Bullo (UCSB) Sequential Decision Aggregation 13aug2010 9 / 16	Dandach, Cahl, Bullo (UCSB) Sequential Decision Aggregation 13aug2010 9 / It
Sequential decision aggregation: Computational approach	Illustration of results
Sequential decision aggregation: Computational approach Goal: as function of SDM decision probabilities $\{p_{ijj}(t)\}_{t \in \mathbb{N}},$ compute SDA decision probabilities $\{p_{ijj}(t; N, q)\}_{t \in \mathbb{N}}$ General result: <i>q</i> out of <i>N</i> decision probabilities	Illustration of results
Sequential decision aggregation: Computational approach Goal: as function of SDM decision probabilities { $p_{ijj}(t)$ } _{tEN} , compute SDA decision probabilities { $p_{ijj}(t; N, q)$ } _{tEN} General result: <i>q out of N</i> decision probabilities $p_{ijj}(t; N, q) = \sum_{s_0=0}^{q-1} \sum_{s_1=0}^{q-1} {N \choose s_1 + s_0} \alpha(t-1, s_0, s_1) \beta_{ijj}(t, s_0, s_1)$ $+ \sum_{s=q}^{[N/2]} {N \choose 2s} \tilde{\alpha}(t-1, s) \tilde{\beta}_{ijj}(t, s)$	Illustration of results Illustration of results Image: space of the space of

Dandach, Carli, Bullo (UCSB) Sequential Decision Aggregation 13aug2010 9 / 16 Dandach, Carli, Bullo (UCSB) Sequential

Sequential Decision Aggregation

13aug2010 10 / 16

Today's Outline	Asymptotic results for the Fastest rule
	Expected Decision Time:
Setup & Literature Review	$\lim_{N \to \infty} \mathbb{E}\left[T H_1, N, fastest\right] = \text{earliest possible decision time}$ $=: t_{min} = \min\{t \in \mathbb{N} \mid \text{either } p_{1 1}(t) \neq 0 \text{ or } p_{0 1}(t) \neq 0\}$
SDA: analysis of decision probabilities	Accuracy: $(0, \text{ if } p_{11}(t_{min}) > p_{01}(t_{min}))$
SDA: scalability analysis of accuracy/decision time	$\lim_{N \to \infty} p_{0 1}(N, fastest) = \begin{cases} 1 & \text{if } p_{1 1}(t_{min}) < p_{0 1}(t_{min}) \\ 1, & \text{if } p_{1 1}(t_{min}) < p_{0 1}(t_{min}) \end{cases}$
Conclusions and future directions	 SDA accuracy is function of (SDM probability at t_{min}), not of (SDA cumulative probability)! hence SDA accuracy is not monotoric with M
	 hence, SDA accuracy is not information with N hence, SDA accuracy is unrelated to SDM accuracy for large N
Dandach, Cafe, Bullo (UCSB) Sequential Decision Aggregation 13aug2010 11 / 16 Asymptotic results for the Fastest rule 1	Dandsch, Catl, Bullo (UCSB) Sequential Decision Aggregation 13aug2010 12 / 16 Asymptotic results for the Majority rule
Expected Decision Time: $\lim_{N\to\infty} \mathbb{E} [T H_1, N, fastest] = \text{earliest possible decision time}$ $=: t_{min} = \min\{t \in \mathbb{N} \mid \text{either } \rho_{1 1}(t) \neq 0 \text{ or } \rho_{0 1}(t) \neq 0\}$ Accuracy:	Expected Decision Time: Assume $p_{1 1} > p_{0 1}$ and define $t_{<\frac{1}{2}} := \max\{t \in \mathbb{N} \mid p_{1 1}(0) + \dots + p_{1 1}(t) < 1/2\},$ $t_{>\frac{1}{2}} := \min\{t \in \mathbb{N} \mid p_{1 1}(0) + \dots + p_{1 1}(t) > 1/2\}$
$\lim_{N \to \infty} p_{0 1}(N, fastest) = \begin{cases} 0, & \text{if } \rho_{1 1}(t_{min}) > \rho_{0 1}(t_{min}) \\ 1, & \text{if } \rho_{1 1}(t_{min}) < \rho_{0 1}(t_{min}) \end{cases}$	$\lim_{N\to\infty} \mathbb{E}\Big[T H_1, N, majority\Big] = \frac{1}{2}\Big(t_{<\frac{1}{2}} + t_{>\frac{1}{2}} + 1\Big)$ Accuracy: Monotonicity with group size and, as $N \to \infty$
 SDA accuracy is function of (SDM probability at t_{min}), not of (SDA cumulative probability)! hence, SDA accuracy is not monotonic with N hence, SDA accuracy is unrelated to SDM accuracy for large N 	$p_{0 1}(N, majority) \to \begin{cases} 0, & \text{if } p_{0 1} < 1/2 \\ 1, & \text{if } p_{0 1} > 1/2 \\ \sqrt{N/(2\pi)} \left(4p_{0 1}\right)^{\left\lceil \frac{N}{2} \right\rceil}, & \text{if } p_{0 1} < 1/4 \end{cases}$

Asymptotic results for the Majority rule

Lessons learned about SDA

xpected Decision	Time:	Assume p	1 > p	oll and	define	
------------------	-------	----------	--------	---------	--------	--

$$\begin{split} t_{<\frac{1}{2}} &:= \max\{t \in \mathbb{N} \mid p_{1|1}(0) + \dots + p_{1|1}(t) < 1/2\}, \\ t_{>\frac{1}{\pi}} &:= \min\{t \in \mathbb{N} \mid p_{1|1}(0) + \dots + p_{1|1}(t) > 1/2\} \end{split}$$

Then

$$\lim_{N\to\infty} \mathbb{E}\left[T|H_1, N, \textit{majority}\right] = \frac{1}{2}\left(t_{<\frac{1}{2}} + t_{>\frac{1}{2}} + 1\right)$$

Accuracy: Monotonicity with group size and, as $N \rightarrow \infty$

	0,	if $p_{0 1} < 1/2$
$p_{0 1}(N, majority) \rightarrow \langle$	1,	if $p_{0 1} > 1/2$
	$\sqrt{N/(2\pi)} (4p_{0 1})^{\lceil \frac{N}{2} \rceil},$	if $p_{0 1} < 1/4$

	Accuracy	Expected decision time		
Fastest	SDM accuracy at t _{min}	earliest possible decision time t_{min}		
Majority	exponentially better than SDM	average of half-times $t_{<\frac{1}{2}},t_{>\frac{1}{2}}$		

Dandach, Carli, Bullo (UCSB)	Sequential Decision Aggregation	13aug2010	13 / 16	Dandach, Carli, Bullo (UCSB)	Sequential Decision Aggregation	13aug2010	14 / 16
A fair comparison				Conclusions and f	uture directions		

- · to compare different thresholds, re-scale local accuracy
- . the group accuracy is now same (eg, low or high)
- · compare the decision time

for most cases majority rule is best for some small inaccurate networks, fastest rule is best

Summary fundamental understanding of "sequential aggregation"

- applicable to broad range of agent models, eg, mixed networks
- applicable to family of threshold-based rules
- tradeoffs in fastest vs majority
- role of time in sequential aggregation

Future directions

- models with heterogeneous agents
- Improve models with interactions between agents
- o models with correlated information
- how to use this analysis for design

Dandach, Carli, Bullo (UCSB) Sequential Decision Aggregation