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Robotic coordination
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“Distributed Control of Robotic Networks”

1 intro to distributed algorithms (graph
theory, synchronous networks, and
averaging algos)

2 geometric models and geometric
optimization problems

3 model for robotic, relative sensing
networks, and complexity

4 algorithms for rendezvous,
deployment, boundary estimation

Status: Published by Princeton Univ
Press. Manuscript and slides freely
available at
http://coordinationbook.info
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Prototypical Dynamic Vehicle Routing Problem

Given:

a group of vehicles, and

a set of service demands

Objective:
provide service in minimum time
service = take a picture at location

Vehicle routing (All info known ahead of time, Dantzig ’59)

Determine a set of paths that allow vehicles to service the demands

Dynamic vehicle routing (New info in real time, Psaraftis ’88)

New demands arise in real-time

Existing demands evolve over time
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Light and heavy load regimes

Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 @ ARL 8 / 34

Literature review on DVR

Shortest path through randomly-generated and worst-case points
(Beardwood, Halton and Hammersly, 1959 — Steele, 1990)

Traveling salesman problem solvers (Lin, Kernighan, 1973)

DVR formulation on a graph (Psaraftis, 1988)

DVR on Euclidean plane (Bertsimas and Van Ryzin, 1990–1993)

Unified receding-horizon policy (Papastavrou, 1996)

Recent developments in DVR for robotic networks:

Adaptation and decentralization (Pavone, Frazzoli, FB: TAC, in press)

Nonholonomic / Dubins UAVs (Savla, Frazzoli, FB: TAC 2008)

Pickup delivery tasks (Waisanen, Shah, and Dahleh: TAC 2008)

Heterogeneous vehicles and team forming (Smith and Bullo: SCL 2009)

Distinct-priority demands (Smith, Pavone, FB, Frazzoli: SICON, in press)

Moving demands (Bopardikar, Smith, Hespanha, FB: TAC, in press)
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Algo #1: Receding-Horizon Shortest-Path policy

Receding-Horizon Shortest-Path (RH-SP)

For η ∈ (0, 1], single agent performs:

1: while no customers, move to center
2: while customers waiting

1 compute shortest path through current targets

2 service η-fraction of path
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Algo #1: Receding-Horizon Shortest-Path policy

Receding-Horizon Shortest-Path (RH-SP)

For η ∈ (0, 1], single agent performs:

1: while no customers, move to center
2: while customers waiting

1 compute shortest path through current targets

2 service η-fraction of path

M. Pavone, E. Frazzoli, and F. Bullo. Distributed and adaptive algorithms for vehicle
routing in a stochastic and dynamic environment. IEEE Transactions on Automatic
Control, August 2009. (Submitted, Apr 2009) to appear
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RH-SP analysis

Implementation:

NP-hard computation, but effective heuristics

Stability:

1 queue is stable if service time < interarrival time

2 service time =
length shortest path(n)

n
(n = # customers)

3 queue is stable if (length of shortest path(n)) = sublinear f(n)
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RH-SP analysis

Implementation:

NP-hard computation, but effective heuristics

Stability:

1 queue is stable if service time < interarrival time

2 service time =
length shortest path(n)

n
(n = # customers)

3 queue is stable if (length of shortest path(n)) = sublinear f(n)

Combinatorics in Euclidean space (Steel ’90)

Worst-case and expected bounds

length shortest path(n) ≤ βworst

√
n

lim
n→+∞

length shortest path(n) = βexpected

√
n
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RH-SP analysis: continued

Adaptation: the policy does not require knowledge of

1 vehicle velocity v , environment Q

2 arrival rate λ and spatial density function f

3 expected on-site service s̄

Performance:

1 in light load, delay is optimal

2 in heavy load, delay is within a multiplicative factor from optimal

3 multiplicative factor depends upon f and is conjectured to equal 2

no known adaptive algo with better performance
very little known outside of asymptotic regimes
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Algo #2: Load balancing via territory partitioning

RH-SP + Partitioning

Each agent i:

1: computes own cell vi in optimal partition
2: applies RH-SP policy on vi
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Euclidean TSP and Dubins TSP

Euclidean TSP (ETSP)

NP-hard

effective heuristics available

length(ETSP) ∈ O(
√

n)

Dubins TSP (DTSP)
Given a set of points find the shortest tour with bounded curvature

not a finite dimensional problem

no prior algorithms or results (as
of 2006)

length(DTSP) sub-linear in n ?

K. Savla, E. Frazzoli, and F. Bullo. Traveling Salesperson Problems for the Dubins
vehicle. IEEE Transactions on Automatic Control, 53(6):1378–1391, 2008
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Stochastic DTSP

Problem Statement Given a set of n independently and uniformly
distributed points, design polynomial-time algorithm with smallest
expected DTSP tour length

Theorem: For n iid uniformly distributed points:

E[length of DTSP(n)] ∼ n2/3

Aerospace Robotics and Embedded Systems Laboratory

A nearest-neighbor lower bound

• The area of the set of points reachable with a path 

of length ! by a Dubins’ car with turning radius >= 

" is

• The expected distance to the nearest target, out of 
n uniformly-distributed targets is 

• The length of the tour cannot be less than n times 
such a distance, hence:

Area[Rδ] =
δ3

3ρ
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for Dubins! vehicle. 

E[DTSPρ(n)] ≥
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Lower bound proof based on “area of reachable set”

1 area of reachable set in time t by Dubins with radius ρ is O(t3)

2 expected number of points in area is O(nt3) (for n iid uniform targets)

3 expected distance to nearest target is O(n−1/3)

4 length of tour cannot be less than n times this distance

J. J. Enright and E. Frazzoli. UAV routing in a stochastic time-varying environment.
In IFAC World Congress, Prague, Czech Republic, July 2005
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Constructive upper bound
based on environment tiling tuned to vehicle dynamics

10

ρ

   

p− p+
Bρ(!)

!

Fig. 2. Construction of the “bead” Bρ(!). The figure shows how the upper half of the boundary is constructed, the bottom half is symmetric.

Next, we study the probability of targets belonging to a given bead. Consider a bead B entirely contained in Q

and assume n points are uniformly randomly generated in Q. The probability that the ith point is sampled in B is

µ(!) =
Area(Bρ(!))

Area(Q)
.

Furthermore, the probability that exactly k out of the n points are sampled in B has a binomial distribution, i.e.,

indicating with nB the total number of points sampled in B,

Pr[nB = k| n samples] =
(

n

k

)
µk(1− µ)n−k.

If the bead length ! is chosen as a function of n in such a way that ν = n · µ(!(n)) is a constant, then the limit

for large n of the binomial distribution is [31] the Poisson distribution of mean ν, that is,

lim
n→+∞

Pr[nB = k| n samples] =
νk

k!
e−ν .

C. The Recursive Bead-Tiling Algorithm

In this section, we design a novel algorithm that computes a Dubins path through a point set in Q. The proposed

algorithm consists of a sequence of phases; during each of these phases, a Dubins tour (i.e., a closed path with

bounded curvature) will be constructed that “sweeps” the set Q. We begin by considering a tiling of the plane such

June 30, 2006 DRAFT

Q

Key properties of the bead

1 Beads tile the plane

2 Approaching and leaving a bead horizontally, Dubins can service a target

first analysis of joint combinatorics, dynamics and stochastic
extensions to STLC systems by Itani, Dahleh and Frazzoli

extensions to multi-vehicle Dubins

Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 @ ARL 17 / 34

Today’s Outline

1 Robotic Coordination: Brief Review

2 Dynamic Vehicle Routing (DVR)

3 Extensions
DVR for Nonholonomic Vehicles
DVR for Moving Demands
DVR with heterogeneous demands requiring teams
DVR with priority levels

4 DVR Load Balancing via Territory Partitioning

5 Conclusions

Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 @ ARL 18 / 34

Dynamic vehicle routing for moving demands

Very little is know about moving demands:

1 no polynomial time algorithms for shortest path

2 no length estimates

3 no efficient DVR algorithms

S. D. Bopardikar, S. L. Smith, F. Bullo, and J. P. Hespanha. Dynamic vehicle routing for
translating demands: Stability analysis and receding-horizon policies. IEEE Transactions on
Automatic Control, 55(11), 2010. (Submitted, Mar 2009) to appear
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Translating demands: problem setup

Problem parameters:

speed ratio v :

v =
demand speed

vehicle speed

arrival rate λ

segment width W

deadline distance L

W

L

L = +∞ L is finite
Stabilize queue Maximize capture fraction

v < 1 translational path policy translational path policy

v ≥ 1 Not possible for any λ > 0 longest path policy
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Translating demands: policies

L = +∞ L is finite
Stabilize queue Maximize capture fraction

v < 1

v ≥ 1 Not possible for any λ > 0
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Moving demands: more general scenarios

Relaxed assumptions:

Non-Poisson

Non-uniform

Different speeds

Different directions

Finite capture radius

More general setup:

Higher dimensions

Advance information

S. L. Smith, S. D. Bopardikar, and F. Bullo. A dynamic boundary guarding problem with
translating demands. In IEEE Conf. on Decision and Control, pages 8543–8548, Shanghai,
China, December 2009

Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 @ ARL 22 / 34

Today’s Outline

1 Robotic Coordination: Brief Review

2 Dynamic Vehicle Routing (DVR)

3 Extensions
DVR for Nonholonomic Vehicles
DVR for Moving Demands
DVR with heterogeneous demands requiring teams
DVR with priority levels

4 DVR Load Balancing via Territory Partitioning

5 Conclusions

Francesco Bullo (UCSB) Dynamic Vehicle Routing 16apr10 @ ARL 23 / 34



DVR with heterogeneous demands requiring teams

Problem setup:

Heterogeneous vehicles

Tasks require vehicle teams

Goal: Minimize task delay

Consider only unbiased policies:
Equal expected delay to all tasks

Provably efficient policies in certain scenarios
Very rich problem

S. L. Smith and F. Bullo. The dynamic team forming problem: Throughput and
delay for unbiased policies. Systems & Control Letters, 58(10-11):709–715, 2009
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DVR with priority levels

Problem setup:

n vehicles

Two classes of tasks α, β

α – high priority
β – low priority

Goal: minimize cDα + (1− c)Dβ

c ∈ (0, 1) gives bias toward α

c = 0.80
p = 0.82

Provably efficient policy

Extends to m classes

S. L. Smith, M. Pavone, F. Bullo, and E. Frazzoli. Dynamic vehicle routing with
priority classes of stochastic demands. SIAM Journal on Control and Optimization,
48(5):3224–3245, 2010
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Territory partitioning akin to animal territory dynamics

Tilapia mossambica, “Hexagonal

Territories,” Barlow et al, ’74

Red harvester ants, “Optimization, Conflict, and

Nonoverlapping Foraging Ranges,” Adler et al, ’03

Sage sparrows, “Territory dynamics in a sage sparrows

population,” Petersen et al ’87
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Optimal partitioning cost functions

Expected wait time (light load problem)

H(p, v) =

∫
v1

‖q − p1‖dq + · · ·+
∫
vn

‖q − pn‖dq

n robots at p = {p1, . . . , pn}
environment is partitioned into v = {v1, . . . , vn}

H(p, v) =
n∑

i=1

∫
vi

f (‖q − pi‖)φ(q)dq

φ : R2 → R≥0 density

f : R≥0 → R penalty function
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From optimality conditions to algorithms

H(p, v) =
n∑

i=1

∫
vi

f (‖q − pi‖)φ(q)dq

Theorem (Alternating Algorithm, Lloyd ’57)

1 at fixed positions, optimal partition is Voronoi

2 at fixed partition, optimal positions are “generalized centers”

3 alternate v-p optimization
=⇒ local optimum = center Voronoi partition
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Gossip partitioning policy

1 Random communication between two regions
2 Compute two centers
3 Compute bisector of centers
4 Partition two regions by bisector

F. Bullo, R. Carli, and P. Frasca. Gossip coverage control for robotic networks: Dynam-
ical systems on the the space of partitions. SIAM Review, January 2010. Submitted
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Gossip partitioning policy: sample implementation

Player/Stage platform

realistic robot models in discretized environments

integrated wireless network model & obstacle-avoidance planner

J. W. Durham, R. Carli, P. Frasca, and F. Bullo. Discrete partitioning and cover-
age control with gossip communication. In ASME Dynamic Systems and Control
Conference, Hollywood, CA, October 2009
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Gossip partitioning policy: analysis results

1 class of dynamical systems on space of partitions
i.e., study evolution of the regions rather of the agents

2 convergence to centroidal Voronoi partitions (under mild conditions)

3 novel results in topology, analysis and geometry:
1 compactness of space of finitely-convex partitions with respect to the

symmetric difference metric
2 continuity of various geometric maps (Voronoi as function of

generators, centroid location as function of set, multicenter functions)
3 LaSalle convergence theorems for dynamical systems on metric

spaces with deterministic and stochastic switches

conjectures about topology of space of partitions
asymmetric gossip algorithms, akin to stigmergy

tolerance to failures, arrivals, and dynamic environments
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