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Intro: North American power grid

“. . . the largest and most complex machine engineered by humankind.”

[P. Kundur ’94, V. Vittal ’03, . . . ]

“. . . the greatest engineering achievement of the 20th century.”

[National Academy of Engineering ’10]

1 large-scale, complex, nonlinear, and rich dynamic behavior

2 100 years old and operating at its capacity limits

⇒ recent blackouts: New England ’03 + Italy ’03, Brazil ’09
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Intro: Transient Stability in Power Networks

THE BLACKOUT OF 2003: Failure Reveals Creaky System, Experts Believe 8/15/2003

Energy is one of the top three national priorities

Expected additional synergetic effects in future “smart grid”:

⇒ increasing complexity and renewable stochastic power sources

⇒ increasingly many transient disturbances to be detected and rejected

Transient Stability: Generators have to
maintain synchronism in presence of large
transient disturbances such as faults or loss of

transmission lines and components,
generation or load.
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Intro: New England power grid
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Fig. 9. The New England test system [10], [11]. The system includes
10 synchronous generators and 39 buses. Most of the buses have constant
active and reactive power loads. Coupled swing dynamics of 10 generators
are studied in the case that a line-to-ground fault occurs at point F near bus
16.

test system can be represented by

δ̇i = ωi,
Hi

πfs

ω̇i = −Diωi + Pmi −GiiE
2
i −

10
∑

j=1,j !=i

EiEj ·

· {Gij cos(δi − δj) + Bij sin(δi − δj)},















(11)

where i = 2, . . . , 10. δi is the rotor angle of generator i with
respect to bus 1, and ωi the rotor speed deviation of generator
i relative to system angular frequency (2πfs = 2π× 60Hz).
δ1 is constant for the above assumption. The parameters
fs, Hi, Pmi, Di, Ei, Gii, Gij , and Bij are in per unit
system except for Hi and Di in second, and for fs in Helz.
The mechanical input power Pmi to generator i and the
magnitude Ei of internal voltage in generator i are assumed
to be constant for transient stability studies [1], [2]. Hi is
the inertia constant of generator i, Di its damping coefficient,
and they are constant. Gii is the internal conductance, and
Gij + jBij the transfer impedance between generators i
and j; They are the parameters which change with network
topology changes. Note that electrical loads in the test system
are modeled as passive impedance [11].

B. Numerical Experiment

Coupled swing dynamics of 10 generators in the
test system are simulated. Ei and the initial condition
(δi(0),ωi(0) = 0) for generator i are fixed through power
flow calculation. Hi is fixed at the original values in [11].
Pmi and constant power loads are assumed to be 50% at their
ratings [22]. The damping Di is 0.005 s for all generators.
Gii, Gij , and Bij are also based on the original line data
in [11] and the power flow calculation. It is assumed that
the test system is in a steady operating condition at t = 0 s,
that a line-to-ground fault occurs at point F near bus 16 at
t = 1 s−20/(60Hz), and that line 16–17 trips at t = 1 s. The
fault duration is 20 cycles of a 60-Hz sine wave. The fault
is simulated by adding a small impedance (10−7j) between
bus 16 and ground. Fig. 10 shows coupled swings of rotor
angle δi in the test system. The figure indicates that all rotor
angles start to grow coherently at about 8 s. The coherent
growing is global instability.

C. Remarks

It was confirmed that the system (11) in the New Eng-
land test system shows global instability. A few comments
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Fig. 10. Coupled swing of phase angle δi in New England test system.
The fault duration is 20 cycles of a 60-Hz sine wave. The result is obtained
by numerical integration of eqs. (11).

are provided to discuss whether the instability in Fig. 10
occurs in the corresponding real power system. First, the
classical model with constant voltage behind impedance is
used for first swing criterion of transient stability [1]. This is
because second and multi swings may be affected by voltage
fluctuations, damping effects, controllers such as AVR, PSS,
and governor. Second, the fault durations, which we fixed at
20 cycles, are normally less than 10 cycles. Last, the load
condition used above is different from the original one in
[11]. We cannot hence argue that global instability occurs in
the real system. Analysis, however, does show a possibility
of global instability in real power systems.

IV. TOWARDS A CONTROL FOR GLOBAL SWING

INSTABILITY

Global instability is related to the undesirable phenomenon
that should be avoided by control. We introduce a key
mechanism for the control problem and discuss control
strategies for preventing or avoiding the instability.

A. Internal Resonance as Another Mechanism

Inspired by [12], we here describe the global instability
with dynamical systems theory close to internal resonance
[23], [24]. Consider collective dynamics in the system (5).
For the system (5) with small parameters pm and b, the set
{(δ,ω) ∈ S1 × R | ω = 0} of states in the phase plane is
called resonant surface [23], and its neighborhood resonant
band. The phase plane is decomposed into the two parts:
resonant band and high-energy zone outside of it. Here the
initial conditions of local and mode disturbances in Sec. II
indeed exist inside the resonant band. The collective motion
before the onset of coherent growing is trapped near the
resonant band. On the other hand, after the coherent growing,
it escapes from the resonant band as shown in Figs. 3(b),
4(b), 5, and 8(b) and (c). The trapped motion is almost
integrable and is regarded as a captured state in resonance
[23]. At a moment, the integrable motion may be interrupted
by small kicks that happen during the resonant band. That is,
the so-called release from resonance [23] happens, and the
collective motion crosses the homoclinic orbit in Figs. 3(b),
4(b), 5, and 8(b) and (c), and hence it goes away from
the resonant band. It is therefore said that global instability
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Power network topology:

1 n generators �� , each connected to a generator terminal bus �♦

2 n generators terminal buses �♦ and m load buses •◦ form connected graph

3 admittance matrix Ynetwork ∈ C(2n+m)×(2n+m) characterizes the network
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Intro: Mathematical Model of a Power Network

generator nodes �� : swing equation for generator i

Mi

πf0
θ̈i = −Di θ̇i + Pmi − Pei

θi (t) is measured w.r.t. a 60Hz rotating frame

network-preserving model: power flow equations
for passive nodes �♦ & •◦ ⇒ DAE system
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Intro: Mathematical Model of a Power Network

generator nodes �� : swing equation for generator i

Mi

πf0
θ̈i = −Di θ̇i + Pmi − Pei

θi (t) is measured w.r.t. a 60Hz rotating frame

network-preserving model: power flow equations
for passive nodes �♦ & •◦ ⇒ DAE system

network-reduced model: reduction to �� nodes with
all-to-all reduced (transfer) admittance matrix Yij

Pei = E 2
i Gii +

∑
j 6=i

EiEj |Yij | sin(θi − θj + ϕij)
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Classic model

Mi

πf0
θ̈i = −Di θ̇i + ωi −

∑
j 6=i

Pij sin(θi − θj + ϕij)
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Intro: Transient Stability Analysis in Power Networks

Classic Model

Mi

πf0
θ̈i = −Di θ̇i + ωi −

∑
j 6=i

Pij sin(θi − θj + ϕij)

Transient stability and synchronization:

frequency equilibrium: (θ̇i , θ̈i ) = (0, 0) for all i

synchronous equilibrium: |θi − θj | bounded & θ̇i − θ̇j = 0 for all {i , j}

Classic problem setup in transient stability analysis:

1 power network in stable frequency equilibrium

2 → transient network disturbance and fault clearance

3 stability analysis of a new frequency equilibrium in post-fault network
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Intro: Transient Stability Analysis in Power Networks

Classic Model

Mi

πf0
θ̈i = −Di θ̇i + ωi −

∑
j 6=i

Pij sin(θi − θj + ϕij)

Transient stability and synchronization:

Classic analysis methods: Hamiltonian arguments

Mi

πf0
θ̈i = −Di θ̇i −∇iU(θ)T

Energy function analysis, (extended) invariance principle, analysis of
reduced gradient flow [N. Kakimoto et al. ’78, H.-D. Chiang et al. ’94 ]

θ̇i = −∇iU(θ)T

Key objective: compute domain of attraction via numerical methods
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Intro: Transient Stability Analysis in Power Networks

Classic Model

Mi

πf0
θ̈i = −Di θ̇i + ωi −

∑
j 6=i

Pij sin(θi − θj + ϕij)

Transient stability and synchronization:

Classic analysis methods: Hamiltonian arguments

Mi

πf0
θ̈i = −Di θ̇i −∇Ui (θ)

T ; θ̇i = −∇iU(θ)T

⇒ Open problem [D. Hill and G. Chen ’06]: power sys
?

! network:

transient stability, performance, and robustness of a power network
?

! state, parameters, and topology of underlying network
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Detour – Consensus Protocols & Kuramoto Oscillators

Consensus protocol in Rn:

ẋi = −
∑

j 6=i
aij(xi − xj)

n agents with state xi ∈ R and connected graph with weights aij > 0

objective is state agreement: xi (t)− xj(t) → 0

application: social networks, computer science, systems theory
robotic rendezvous, distributed computing, filtering and control, . . .

some references: [M. DeGroot ’74, J. Tsitsiklis ’84, . . . ]

R
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Detour – Consensus Protocols & Kuramoto Oscillators

Kuramoto model in Tn:

θ̇i = ωi −
K

n

∑
j 6=i

sin(θi − θj)

oscillators with phase θi ∈ T, frequency ωi ∈ R, complete coupling

objective is synchronization: θi (t)− θj(t) bounded, θ̇i (t)− θ̇j(t) → 0

application in physics, biology, engineering:
coupled neurons, Josephson junctions, motion coordination, . . .

some references: [Y. Kuramoto ’75, A. Winfree ’80, . . . ]

T
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Detour – Consensus Protocols & Kuramoto Oscillators

Kuramoto model in Tn:

θ̇i = ωi −
K

n

∑
j 6=i

sin(θi − θj)

degrees of synchronization:
1 phase locking: |θi − θj | bounded

2 frequency entrainment: θ̇i = θ̇j

3 phase synchronization: θi = θj

known that
1 K large & |ωi − ωj | small ⇒ frequency entrainment & phase locking

2 additionally, for ωi = ωj ⇒ phase synchronization

Dörfler and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 9 / 34



Intro: The Big Picture

Mi

πf0
θ̈i = −Diθ̇i + ωi −

∑
j !=i

Pij sin(θi − θj + ϕij)

Consensus Protocols: 

ẋi = −
∑

j !=i
aij(xi − xj)

Kuramoto Oscillators:

θ̇i = ωi −
K

n

∑
j !=i

sin(θi − θj)

?

Open problem in synchronization and 
transient stability in power networks:
relation to underlying network state, 
parameters, and topology 
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Intro: The Big Picture

Mi

πf0
θ̈i = −Diθ̇i + ωi −

∑
j !=i

Pij sin(θi − θj + ϕij)

Consensus Protocols: 

ẋi = −
∑

j !=i
aij(xi − xj)

Kuramoto Oscillators:

θ̇i = ωi −
K

n

∑
j !=i

sin(θi − θj)

?

Open problem in synchronization and 
transient stability in power networks:
relation to underlying network state, 
parameters, and topology 

Possible connection has often been hinted at in the literature!

Power systems: [D. Subbarao et al., ’01, G. Filatrella et al., ’08, V. Fioriti et al., ’09]
Networked control: [D. Hill et al., ’06, M. Arcak, ’07]
Dynamical systems: [H. Tanaka et al., ’97]
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Outline

1 Introduction
1 Power network model
2 Synchronization and transient stability
3 Consensus protocol and Kuramoto oscillators

2 Singular perturbation analysis
(to relate power network and Kuramoto model)

3 Synchronization analysis (of non-uniform Kuramoto model)
1 Main synchronization result
2 Sufficient condition (based on weakest lossless coupling)
3 Sufficient condition (based on lossless algebraic connectivity)

4 Structure-preserving power network models
1 Kron-reduction of graphs
2 Sufficient conditions for synchronization

5 Conclusions
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From the swing equations to the Kuramoto model

Mi

πf0
θ̈i = −Di θ̇i + ωi −

∑
j 6=i

Pij sin(θi − θj + ϕij)

θ̇i = ωi−
K

n

∑
j 6=i

sin(θi−θj) =⇒ Di θ̇i = ωi−
∑

j 6=i
Pij sin(θi−θj+ϕij)
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From the swing equations to the Kuramoto model

Mi

πf0
θ̈i = −Di θ̇i + ωi −

∑
j 6=i

Pij sin(θi − θj + ϕij)

θ̇i = ωi−
K

n

∑
j 6=i

sin(θi−θj) =⇒ Di θ̇i = ωi−
∑

j 6=i
Pij sin(θi−θj+ϕij)
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Singular Perturbation Analysis

Time-scale separation in power network model:

Motivation: harmonic oscillator
x

ẍ = −2
ε
ẋ− x !(λ)

!(λ)

ε = 1

ε > 1
ε < 1ε! 1

for ε! 1 ⇒ two time-scales
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Singular Perturbation Analysis

Time-scale separation in power network model:

Motivation: harmonic oscillator
x

ẍ = −2
ε
ẋ− x !(λ)

!(λ)

ε = 1

ε > 1
ε < 1ε! 1

for ε! 1 ⇒ two time-scales

Singular perturbation analysis:

ε

ẋ = f(x, z)
εż = g(x, z)

ẋ = f(x, h(x))
z = h(x)ε = 0 quasi-steady state

reduced (slow) system

initial error:

error exp. stable in fast time-scale

approximation error
in slow time-scale:O(ε)z(0) != h(x(0))

full system
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Singular Perturbation Analysis

Time-scale separation in power network model:

power network model:

Mi

πf0
θ̈i = −Di θ̇i + ωi −

∑
j 6=i

Pij sin(θi − θj + ϕij)

singular perturbation parameter: ε =
Mmax

πf0Dmin

reduced system for ε = 0 is a non-uniform Kuramoto model:

Di θ̇i = ωi −
∑

j 6=i
Pij sin(θi − θj + ϕij)

Tikhonov’s Theorem:
Assume the non-uniform Kuramoto model synchronizes exponentially.
Then ∀ (θ(0), θ̇(0)) there exists ε∗ > 0 such that ∀ ε < ε∗ and ∀ t ≥ 0

θi (t)power network − θi (t)non-uniform Kuramoto model = O(ε) .
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Singular Perturbation Analysis

Discussion of the assumption ε =
Mmax

πf0Dmin
sufficiently small:

1 physical interpretation: damping and sync on separate time-scales

2 classic assumption in literature on coupled oscillators: over-damped
mechanical pendula and Josephson junctions

3 physical reality: with generator internal control effects ε ∈ O(0.1)

4 simulation studies show accurate approximation even for large ε

5 first-order and second-order models have the same equilibria with the
same stability properties, and the regions of attractions are bounded
by the same separatrices (independent of ε)

6 non-uniform Kuramoto model corresponds to reduced gradient system
θ̇i = −∇iU(θ)T used successfully in academia and industry since 1978
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Outline

1 Introduction
1 Power network model
2 Synchronization and transient stability
3 Consensus protocol and Kuramoto oscillators

2 Singular perturbation analysis
(to relate power network and Kuramoto model)

3 Synchronization analysis (of non-uniform Kuramoto model)
1 Main synchronization result
2 Sufficient condition (based on weakest lossless coupling)
3 Sufficient condition (based on lossless algebraic connectivity)

4 Structure-preserving power network models
1 Kron-reduction of graphs
2 Sufficient conditions for synchronization

5 Conclusions
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Main Synchronization Result

Condition on network parameters:

network connectivity > network’s non-uniformity + network’s losses,

1 Non-Uniform Kuramoto Model:

⇒ exponential synchronization: phase locking & frequency entrainment

⇒ guaranteed region of attraction: |θi (t0)− θj(t0)|<π/2− ϕmax

⇒ gap in condition determines ultimate phase locking

⇒ further conditions on ϕij and ωi : explicit synchronization frequency,
synchronization rates, exponential phase synchronization

2 Power Network Model:

⇒ there exists ε sufficiently small such that for all t ≥ 0

θi (t)power network − θi (t)non-uniform Kuramoto model = O(ε) .

⇒ for ε and network losses ϕij sufficiently small, O(ε) error converges
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Synchronization of Non-Uniform Kuramoto Oscillators

Non-uniform Kuramoto Model in Tn:

Di θ̇i = ωi −
∑

j 6=i
Pij sin(θi − θj + ϕij)

Non-uniformity in network: Di , ωi , Pij , ϕij

Directed coupling between oscillator i and j

Phase shift ϕij induces lossless and lossy couling:

Pij sin(θi − θj +ϕij) = Pij cos(ϕij) sin(θi − θj)+Pij sin(ϕij) cos(θi − θj)

Synchronization analysis in multiple steps:

1 phase locking: |θi (t)− θj(t)| becomes bounded

2 frequency entrainment: θ̇i (t)− θ̇j(t) → 0
3 phase synchronization: |θi (t)− θj(t)| → 0
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Synchronization of Non-Uniform Kuramoto Oscillators

Non-uniform Kuramoto Model in Tn - rewritten:

θ̇i =
ωi

Di
−

∑
j 6=i

Pij

Di
cos(ϕij) sin(θi − θj) +

Pij

Di
sin(ϕij) cos(θi − θj)

Condition (1) for synchronization:
Assume the graph induced by P = PT is complete and

n
Pmin

Dmax
cos(ϕmax)︸ ︷︷ ︸

worst lossless coupling

> max
{i ,j}

(ωi

Di
−

ωj

Dj

)
︸ ︷︷ ︸

worst non-uniformity

+max
i

∑
j

Pij

Di
sin(ϕij)︸ ︷︷ ︸

worst lossy coupling

.

Gap determines the ultimate lack of phase locking in a π
2 interval.
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Synchronization of Non-Uniform Kuramoto Oscillators

Classic (uniform) Kuramoto Model in Tn:

θ̇i = ωi −
K

n

∑
j 6=i

sin(θi − θj)

Condition (1) for synchronization:

K > ωmax − ωmin

Gap determines the ultimate lack of phase locking in a π
2 interval.

Condition (1) strictly improves existing bounds on Kuramoto model:
[F. de Smet et al. ’07, N. Chopra et al. ’09, G. Schmidt et al. ’09,
A. Jadbabaie et al. ’04, J.L. van Hemmen et al. ’93].

Necessary condition for sync of n oscillators: K > n
2(n−1)(ωmax − ωmin)

[J.L. van Hemmen et al. ’93, A. Jadbabaie et al. ’04, N. Chopra et al. ’09]
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Synchronization of Non-Uniform Kuramoto Oscillators

Theorem: Phase locking and frequency entrainment (1)

Non-uniform Kuramoto with complete P = PT

Assume minimal coupling larger than a critical value, i.e.,

Pmin > Pcritical :=
Dmax

n cos(ϕmax)

(
max
{i ,j}

(ωi

Di
−

ωj

Dj

)
+ max

i

∑
j

Pij

Di
sin(ϕij)

)
Define γmin = arcsin

(
cos(ϕmax)

Pcritical
Pmin

)
and set of locked phases

∆(γ) := {θ ∈ Tn| max{i ,j} |θi − θj | ≤ γ}

Then ∀ γ ∈ [γmin,
π
2 − ϕmax)

1) phase locking: the set ∆(γ) is positively invariant

2) frequency entrainment: ∀ θ(0) ∈ ∆(γ) the frequencies θ̇i (t)
synchronize exponentially to some frequency θ̇∞ ∈ [θ̇min(0), θ̇max(0)]

Dörfler and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 21 / 34

Synchronization of Non-Uniform Kuramoto Oscillators

Main proof ideas:

1 Phase locking in ∆(γ) ⇔ arc-length V (θ(t)) is non-increasing

V (θ(t))

⇔

 V (θ(t)) = max{|θi (t)− θj(t)| | i , j ∈ {1, . . . , n}}

D+V (θ(t))
!
≤ 0

∼ contraction property from consensus literature:
[D. Bertsekas et al. ’94, L. Moreau ’04 & ’05,
Z. Lin et al. ’08, . . . ]

2 Frequency entrainment in ∆(γ) ⇔ consensus protocol in Rn

d

d t
θ̇i = −

∑
j 6=i

aij(t)(θ̇i − θ̇j) ,

where aij(t) =
Pij

Di
cos(θi (t)− θj(t) + ϕij) > 0 for all t ≥ 0
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Outline

1 Introduction
1 Power network model
2 Synchronization and transient stability
3 Consensus protocol and Kuramoto oscillators

2 Singular perturbation analysis
(to relate power network and Kuramoto model)

3 Synchronization analysis (of non-uniform Kuramoto model)
1 Main synchronization result
2 Sufficient condition (based on weakest lossless coupling)
3 Sufficient condition (based on lossless algebraic connectivity)

4 Structure-preserving power network model
1 Kron-reduction of graphs
2 Sufficient conditions for synchronization

5 Conclusions
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Synchronization of Non-Uniform Kuramoto Oscillators

Non-uniform Kuramoto Model in Tn - rewritten:

θ̇i =
ωi

Di
−

∑
j 6=i

Pij

Di
cos(ϕij) sin(θi − θj) +

Pij

Di
sin(ϕij) cos(θi − θj)

Condition (2) for synchronization:
Assume the graph induced by P = PT is connected with unweighted
Laplacian L and weighted Laplacian L(Pij cos(ϕij)) and

λ2(L(Pij cos(ϕij)))︸ ︷︷ ︸
lossless connectivity

> f (Di )︸ ︷︷ ︸
non-uniform Di s

·
(
1/ cos(ϕmax)

)︸ ︷︷ ︸
necessary phase locking

×

( ∣∣∣∣∣∣[ . . . ,
ωi

Di
−

ωj

Dj
, . . .

]∣∣∣∣∣∣
2︸ ︷︷ ︸

non-uniformity

+
√

λmax(L)
∣∣∣∣∣∣[ . . . ,

∑
j

Pij

Di
sin(ϕij), . . .

]∣∣∣∣∣∣
2︸ ︷︷ ︸

lossy coupling

)

Gap determines the admissible initial lack of phase locking in a π interval.
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Synchronization of Non-Uniform Kuramoto Oscillators

Classic (uniform) Kuramoto Model in Tn:

θ̇i = ωi −
K

n

∑
j 6=i

sin(θi − θj)

Condition (2) for synchronization:

K > ||[. . . , ωi − ωj , . . . ]||2

Gap determines the admissible initial lack of phase locking in a π interval.

Condition (2) corresponds to the bound in [N. Chopra et al. ’09].
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Synchronization of Non-Uniform Kuramoto Oscillators

Theorem: Phase locking and frequency entrainment (2)

Graph induced by P = PT is connected with unweighted Laplacian L, incidence
matrix H, and weighted Laplacian L(Pij cos(ϕij)).

Assume algebraic connectivity is larger than a critical value, i.e.,

λ2(L(Pij cos(ϕij))) > λcritical :=

‚‚HD−1ω
‚‚

2
+

p
λmax(L)

˛̨˛̨ˆ
. . . ,

P
j

Pij

Di
sin(ϕij), . . .

˜˛̨˛̨
2

cos(ϕmax)(κ/n)µ min{i,j}{D 6={i,j}}
,

where κ :=
nX

k=1

1

D 6=k
, µ :=

p
mini 6=j{DiDj}/ maxi 6=j{DiDj}

Define ρmax∈(π
2 −ϕmax, π) by sinc(ρmax)= λcritical cos(ϕmax)

λ2(L(Pij cos(ϕij)))(π/2−ϕmax)
.

1) phase locking: ∀ ρ ∈ (π/2−ϕmax, ρmax), ∀ ‖Hθ(0)‖2 ≤ µρ, there is T ≥ 0
such that ‖Hθ(t)‖2 < π/2− ϕmax for all t > T

2) frequency entrainment: if ‖Hθ(0)‖2 ≤ µρ the frequencies θ̇i (t)

synchronize exponentially to some frequency θ̇∞ ∈ [θ̇min(0), θ̇max(0)]
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Synchronization of Non-Uniform Kuramoto Oscillators

Main proof ideas:

1 Phase locking via ultimate boundedness arguments

t = 0 t = T

θ(t)
Ẇ(θ) < 0
Ẇ(θ) = 0
Ẇ(θ) > 0

W(θ) =
∑

{i ,j}

1

2
∏n

k 6=i ,j Dk
|θi − θj |2

2 Frequency entrainment for t > T ⇔ consensus protocol in Rn

d

dt
θ̇i = −

∑
j 6=i

aij(t)(θ̇i − θ̇j) ,

where aij(t) =
Pij

Di
cos(θi (t)− θj(t) + ϕij) > 0 for all t > T

Dörfler and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 26 / 34



Simulation Studies

t = 0.00s t = 0.22s t = 0.33s

t = 0.44s t = 0.56s t = 0.67s

t = 0.78s t = 0.89s t = 3.00s

Simulation data:

initial phases mostly clustered besides red phasor

disturbance in yellow phasor for ∈ [1.5s, 2.5s]

ε = 0.3s & network is non-uniform

⇒ sufficient conditions for synchronization are satisfied

Result: singular perturbation analysis is accurate X
both models synchronize X
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Simulation Studies

t = 0.00s t = 0.03s t = 0.08s

t = 0.14s t = 0.24s t = 0.32s

t = 0.41s t = 0.51s t = 3.00s

Simulation data:

worst-case initial phase-differences: θi (0) in splay state

ε = 0.12s is small

strongly non-uniform network

⇒ sufficient conditions for synchronization are not satisfied

Result: singular perturbation analysis is accurate X
both models synchronize X
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Outline

1 Introduction
1 Power network model
2 Synchronization and transient stability
3 Consensus protocol and Kuramoto oscillators

2 Singular perturbation analysis
(to relate power network and Kuramoto model)

3 Synchronization analysis (of non-uniform Kuramoto model)
1 Main synchronization result
2 Sufficient condition (based on weakest lossless coupling)
3 Sufficient condition (based on lossless algebraic connectivity)

4 Structure-preserving power network models
1 Kron-reduction of graphs
2 Sufficient conditions for synchronization

5 Conclusions
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Structure-preserving power network models

So far we considered a network-reduced power system model:
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network reduced to active nodes (generators)

synchronization conditions on λ2(P) and Pmin

all-to-all reduced admittance matrix Yreduced∼ P
(for uniform voltage levels)

Topological non-reduced network-preserving power system model:
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9

boundary nodes (generators) & interior nodes (buses)

topological bus admittance matrix Ynetwork

Schur-complement relationship:

Yreduced = Ynetwork/Yinterior

c.f. “Kron reduction”, “Dirichlet-to-Neumann map”
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Detour – Kron reduction of graphs

Kron reduction of a graph with Laplacian matrix
Ynetwork, boundary nodes �� , and interior nodes •◦
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1 Subsequent one-step removal of a single interior node •◦ :

Topological evolution of the graph:
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Algebraic evolution of Laplacian matrix: Yk+1
reduced = Yk

reduced/ •◦
2 Fully reduced Laplacian Yreduced given by Schur complement:
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Detour – Kron reduction of graphs
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Graph-theoretic and algebraic properties of Kron reduction process:

1 Symmetric & irreducible Laplacians closed under Schur complement

2 interior network connected ⇒ reduced network complete

3 Spectral interlacing property: λ2(Yreduced) ≥ λ2(Ynetwork)
⇒ algebraic connectivity λ2 is non-decreasing

4 Effective resistance among boundary nodes �� is invariant

5 For boundary nodes �� : effective resistance R(i , j) uniform
⇔ coupling Yreduced(i , j) uniform ⇔ 1/R(i , j) = n

2 |Yreduced(i , j)|
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Structure-preserving power network models
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Assumption I: lossless network, zero shunt admittances (no self loops)

1 Spectral condition for synchronization: λ2(P) ≥ ... becomes

λ2(=(−Ynetwork))) >
∣∣∣∣∣∣(ω2

D2
− ω1

D1
, . . .

)∣∣∣∣∣∣
2
· f (Di )

E 2

Assumption II: effective resistance R among boundary nodes is uniform

2 Resistance-based condition for synchronization: nPmin≥ ... becomes

1

R
> max

{i ,j}

{ωi

Di
−

ωj

Dj

}
· Dmax

2E 2
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Conclusions

Summary:

Open problem in synchronization and 
transient stability in power networks:
relation to underlying network state, 
parameters, and topology 

Time-varying
Consensus Protocols: 

Non-uniform 
Kuramoto Oscillators

singular perturbation
analysis and algebraic

graph theory

Kuramoto, consensus,
and nonlinear control tools

Ongoing and Future Work:

relation to network topology, clustering, and scalability

synchronization in optimal power flow problems

Dörfler and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 34 / 34



Further Results
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Synchronization of Non-Uniform Kuramoto Oscillators

Theorem: A refined result on frequency entrainment

Assume there exists γ ∈ (0, π/2) such that the phases are locked in the set
∆(γ) and the graph induced by P has globally reachable node.

1) ∀ θ(0) ∈ ∆(γ) the frequencies θ̇i (t) synchronize exponentially to
θ̇∞ ∈ [θ̇min(0), θ̇max(0)].

2) If P = PT & ϕij = 0 for all i , j ∈ {1, . . . , n}, then ∀ θ(0) ∈ ∆(γ) the

frequencies θ̇i (t) synchronize exp. to the weighted mean frequency

Ω =
1∑
i Di

∑
i
Diωi

and the exponential synchronization rate is no worse than

λfe = − λ2(L(Pij))︸ ︷︷ ︸
connectivity

cos(γ)︸ ︷︷ ︸
∆(γ)

cos(∠(D1, 1))2︸ ︷︷ ︸
16⊥D1

/ Dmax︸ ︷︷ ︸
slowest

Result can be reduced to [N. Chopra et al. ’09].
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Synchronization of Non-Uniform Kuramoto Oscillators

Theorem: A result on phase synchronization

Assume the graph induced by P has a globally reachable node, ϕij = 0,
and ωi/Di = ω̄ for all i ∈ {1, . . . , n}.

1) ∀ θ(0) ∈ {θ ∈ Tn : max{i ,j} |θi − θj | < π} the phases θi (t)
synchronize exponentially to θ∞(t) ∈ [θmin(0), θmax(0)] + ω̄t; and

2) if P = PT and ∀ ‖Hθ(0)‖2 ≤ µρ with ρ ∈ [0, π), then

θ∞(t) =

∑
i Diθi (0)∑

i Di
+ ω̄t

and the exponential sync. rate is no worse than

λps = − (κ/n) min{i ,j}{D 6={i ,j}}︸ ︷︷ ︸
weighting of Di

sinc(ρ)︸ ︷︷ ︸
θ(0)

λ2(L(Pij))︸ ︷︷ ︸
connectivity

Results can be reduced to [Z. Lin et al. ’07] and [A. Jadbabaie et al. ’04].
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