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Intro: Transient Stability in Power Networks

Ehe New ork Times

THE BLACKOUT OF 2003: Failure Reveals Creaky System, Experts Believe 8152003

= Energy is one of the top three national priorities

Expected additional synergetic effects in future “smart grid”:
= increasing complexity and renewable stochastic power sources

= increasingly many transient disturbances to be detected and rejected

i

@ transmission lines and components,
@ generation or load.

z '~ Transient Stabil Generators have to
“maintain synchronism in presence of large
transient disturbances such as faults or loss of
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North American power grid

[P. Kundur '94, V. Vittal '03, ...]
“... the greatest engineering achievement of the 20th century.”
[National Academy of Engineering '10]
Q large-scale, complex, nonlinear, and rich dynamic behavior
@ 100 years old and operating at its capacity limits
= recent blackouts: New England '03 + Italy '03, Brazil '09
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Intro: New England power grid

Power network topology:
Qn B, each connected to a )
@ n generators terminal buses ¢ and m ® form connected graph

Yoetwork € CM*(20+m) characterizes the network
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Intro: Mathematical Model of a Power Network

@ generator nodes W: for generator /

M .- .
—0; = —Dif); + Prmi — Pei
wfy

0;(t) is measured w.r.t. a 60Hz rotating frame

@ network-preserving model:
for passive nodes () & ® = DAE system
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Intro: Transient Stability Analysis in Power Networks
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Classic Model

rbi= —Difi + wj — Zj#,. Pysin(0; — 0; + ¢;;)

Transient stability and synchronization:
o frequency equilibrium: (9,9,) =(0,0) for all /
o synchronous equilibrium: |0; — ;] bounded & 6; — 6; = 0 for all {i,j}
Classic problem setup in transient stability analysis:
@ power network in stable frequency equilibrium
@ — transient network disturbance and fault clearance

@ stability analysis of a new frequency equilibrium in post-fault network
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Intro: Mathematical Model of a Power Network

@ generator nodes M:
M,; X
—0; = —Dil + Prmj — Pej
h

0;(t) is measured w.r.t. a 60Hz rotating frame

for generator /

@ network-preserving model:
for passive nodes () & ® = DAE system

@ network-reduced model: reduction to B nodes with
all-to-all Y

P = E2Gy + Zj#i EiE; | Yy|sin(0; — 0 + o)
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mq; = —Dif; +wj — ZM Py sin(0; — 0; + i)

Transient stability and synchronization:

Classic analysis methods: Hamiltonian arguments
M: .
= —Di6; —v;U)T

Energy function analysis, (extended) invariance principle, analysis of
reduced gradient flow [N. Kakimoto et al. '78, H.-D. Chiang et al. '94 |

6; =-v;Uu0)"

Key objective: compute domain of attraction via numerical methods
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Intro: Transient Stability Analysis in Power Networks

Classic Model

Db + wj — Z#’, Pysin(0; — 0; + ¢;;)

7o

Transient stability and synchronization:

Classic analysis methods: Hamiltonian arguments

M —Dif; —VU(0)T ~ —V,;u(0)"
wfy
=> Open problem [D. Hill and G. Chen '06]: power sys 2 network:

transient stability, performance, and robustness of a power network
7
«~ state, parameters, and topology of underlying network
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Detour — Consensus Protocols & Ku
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moto Oscillators
Kuramoto model in T":

; K .
0 =w; — o Zj#,_ sin(0; — 0;)

oscillators with phase 6; € T, frequency w; € R, complete coupling
objective is synchronization: 6;(t) — 6;(t) bounded, 0i(t) — éj(t) -0

application in physics, biology, engineering:
coupled neurons, Josephson junctions, motion coordination, ...

some references: [Y. Kuramoto '75, A. Winfree '80, ...]
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Detour — Consensus Protocols & Kuramoto Oscillators
Consensus protocol in R":
Xi=— Z#, aij(xi = xj)

@ n agents with state x; € R and connected graph with weights a;; > 0

o objective is state agreement: x;(t) — x;(t) — 0

o application: social networks, computer science, systems theory
robotic rendezvous, distributed computing, filtering and control, ...

o some references: [M. DeGroot '74, J. Tsitsiklis '84, ...]
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Detour — Consensus Protocols & Kuramoto Oscillators

Kuramoto model in T":

; K '
b =wi—— Z,#,- sin(0; — 0;)

@ degrees of synchronization:
@ phase locking: |0; — ;| bounded
Q@ frequency entrainment: 6; = 0;
@ phase synchronization: 6; = 0;
@ known that
Q K large & |w; — wj| small = frequency entrainment & phase locking
@ additionally, for w; = w; = phase synchronization

Dérfler and Bullo (UCSB) Power Networks Synchronization 27may10 © Northwestern 9 / 34



Intro: The Big Picture

~ Open problem in synchronization and

" transient stability in power networks:
relation to underlying network state,
parameters, and topology

= Db +w; — Zm Pysin(0; — 0, + pij)

Kuramoto Oscillators:
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Outline

Q Introduction
© Power network model
@ Synchronization and transient stability
© Consensus protocol and Kuramoto oscillators

2]
(to relate power network and Kuramoto model)
@ Synchronization analysis (of non-uniform Kuramoto model)
© Main synchronization result

@ Sufficient condition (based on weakest lossless coupling)

@ Sufficient condition (based on lossless algebraic connectivity)
@ Structure-preserving power network models

© Kron-reduction of graphs

@ Sufficient conditions for synchronization

@ Conclusions
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Intro: The Big Picture

~ Open problem in synchronization and

" transient stability in power networks:

" relation to underlying network state,
parameters, and topology

—Difi +wi — Z Pysin(0; — 0, +¢)

Consensus Protocols: ,\ Kuramoto Oscillators:

el I AN A
‘ﬁ‘_-gﬂ‘; ’QQZ; ‘\ﬁ/‘,

== ag(wi— ) 6 4,—[—‘ sin(6; — 0,)

it n Liti
Possible connection has often been hinted at in the literature!
Power systems: [D. Subbarao et al., '01, G. Filatrella et al., '08, V. Fioriti et al., '09]
Networked control: [D. Hill et al., '06, M. Arcak, '07]
Dynamical systems: [H. Tanaka et al., '97]
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From the swing equations to the Kuramoto model

M;

— ~Dif)j + wi — E _Pyjsin(6; *9]+LPU)J

**Z sin(0;—0)) = Dif; w,‘*Z/ﬂP,‘/Siﬂ(ﬁ;fQﬁ»W/)J
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From the swing equations to the Kuramoto model

i)
wfy

- X5,

i = —Dif; + w; — Z/-#,' Pjjsin(6; — 0; + QV)J

sin(0i-0) = Dif; '—Zj#iPUSi”(ei—gj‘*‘Wu')J

worke = 0t

non-uniform
. Kuramoto
model

27may10 @ Northwestern

12/34

Time-scale separation in power network model:

o Motivation: harmonic oscillator
xT

for € < 1 = two time-scales
o Singular perturbation analysis:

&= f(x,2)\ /i = f(x,h(x))\ reduced (slow) system
full system | | _ X
& =g(w,2)) € =0z = h(z) quasi-steady state

initial error:

2(0) # h((0))

error exp. stable in fast time-scale

approximation error
in slow time-scale: O(e)
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Singular Perturbation Analysis
Time-scale separation in power network model:

@ Motivation: harmonic oscillator
€T

for e € 1 = two time-
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Singular Perturbation Analysis
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Time-scale separation in power network model:

@ power network model:

1) —Dib; +wj — Z

o Pjsin(0; — 0; + i)

Myas

@ singular perturbation parameter: € =760mm

@ reduced system for e = 0 is a non-uniform Kuramoto model:

Dif = wi — Z#, Pijsin(6; — 6; + ©j)

Tikhonov’s Theorem:
Assume the non-uniform Kuramoto model synchronizes exponentially.
Then V (6(0),6(0)) there exists € > 0 such that Ve < ¢* and V¢t >0

9/'(t)power network — %()non-uniform Kuramoto model = O(€) -
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Singular Perturbation Analysis

ax

Discussion of the assumption ¢ 7% sufficiently small:

@ physical interpretation: damping and sync on separate time-scales

@ classic assumption in literature on coupled oscillators: over-damped
mechanical pendula and Josephson junctions

@ physical reality: with generator internal control effects e € 0(0.1)
@ simulation studies show accurate approximation even for large €

@ first-order and second-order models have the same equilibria with the
same stability properties, and the regions of attractions are bounded
by the same separatrices (independent of ¢)

@ non-uniform Kuramoto model corresponds to reduced gradient system

0; = —V;U(0)T used successfully in academia and industry since 1978
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Main Synchronization Result

Condition on network parameters:

network connectivity > network's non-uniformity + network’s losses,
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Outline

Q Introduction
© Power network model
@ Synchronization and transient stability
@ Consensus protocol and Kuramoto oscillators
@ Singular perturbation analysis
(to relate power network and Kuramoto model)

@ Synchronization analysis (of non-uniform Kuramoto model)

o

@ Sufficient condition (based on weakest lossless coupling)

@ Sufficient condition (based on lossless algebraic connectivity)
@ Structure-preserving power network models

© Kron-reduction of graphs

@ Sufficient conditions for synchronization

@ Conclusions
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Main Synchronization Result

Condition on network parameters:

network connectivity > network’s non-uniformity -+ network’s losses,

Non-Uniform Kuramoto Model:

exponential synchronization: phase locking & frequency entrainment

o
=
= guaranteed region of attraction: 0;(to) — 0;(to)| <7/2 — @max
=> gap in condition determines ultimate phase locking

=

further conditions on ; and w;: explicit synchronization frequency,
synchronization rates, exponential phase synchronization

Dérfler and Bullo (UCSB) Power Networks Synchronization 27may10 © Northwestern 17 / 34



Main Synchronization Result

Condition on network parameters:

network connectivity > network’s non-uniformity + network'’s losses,

© Non-Uniform Kuramoto Model:
=> exponential synchronization: phase locking & frequency entrainment
= guaranteed region of attraction: |6;(to) — 0;(to)| <7/2 — Pmax
=> gap in condition determines ultimate phase locking

= further conditions on j; and w;: explicit synchronization frequency,

synchronization rates, exponential phase synchronization
@ Power Network Model:
= there exists ¢ sufficiently small such that for all t > 0

ei(t)power network — 9'(t)non—uniform Kuramoto model = O(e)-
= for ¢ and network losses g;; sufficiently small, O(e) error converges
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Synchronization of Non-Uniform Kuramoto Oscillators

Non-uniform Kuramoto Model in T":

Difly = wi — Z/-#,' Pjsin(6; — 0; + ;)

27mayl0 @ Northwestern 17 / 34

o Non-uniformity in network: Dj, w;, Pij, @i
o Directed coupling between oscillator i and j

o Phase shift ;; induces lossless and lossy couling:

Pijsin(8; — 0+ @) = Pjjcos(yj) sin(6; — 6;) + P sin(yj;) cos(6; — 6;)

@ Synchronization analysis in multiple steps:
Q phase locking: |6;(t) — 0;(t)| becomes bounded
@ frequency entrainment: §;(t) — 6;(t) — 0
@ phase synchronization: [0;(t) — 0;(t)| — 0
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Outline

Q Introduction

© Power network model
@ Synchronization and transient stability
@ Consensus protocol and Kuramoto oscillators

@ Singular perturbation analysis

(to relate power network and Kuramoto model)

@ Synchronization analysis (of non-uniform Kuramoto model)

© Main synchronization result

2]
@ Sufficient condition (based on lossless algebraic connectivity)

@ Structure-preserving power network models

© Kron-reduction of graphs
@ Sufficient conditions for synchronization

@ Conclusions
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Synchronization of Non-Uniform Kuramoto Oscillato

Non-uniform Kuramoto Model in T" - rewritten:

5 Wi Py . Py .
(= D 2 ﬁ cos(pjj)sin(f; — 0;) + Hi sin(ijj) cos(8; — ;)

Condition (1) for synchronization:
Assume the graph induced by P = P is complete and

Proin wi W Pij
an;ix cos(Pmax) > r{r}jx( ) +m/_a><zj D; sin(pij) -

P\D;  D;

worst lossless coupling  worst non-uniformity ~worst lossy coupling
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Gap determines the ultimate lack of phase locking in a 5 interval.
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Synchronization of Non-Uniform Kuramoto Oscillators

Classic (uniform) Kuramoto Model in T":

Condition (1) for synchronization:

K > Wmax — Wmin

Gap determines the ultimate lack of phase locking in a 5 interval.
Condition (1) strictly improves existing bounds on Kuramoto model:
[F. de Smet et al. '07, N. Chopra et al. '09, G. Schmidt et al. '09,
A. Jadbabaie et al. '04, J.L. van Hemmen et al. '93].

Necessary condition for sync of n oscillators: K > ﬁ(u}max — Wmin)

[J.L. van Hemmen et al. '93, A. Jadbabaie et al. '04, N. Chopra et al. '09]

Dérfler and Bullo_(UCSB) Power Networks Synchronization 27may10 @ Northwestern

Synchronization of Non-Uniform Kuramoto Oscillators
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Main proof ideas:

Q Phase locking in A(y) < arc-length V/(0(t)) is non-increasing
V(o)

V(B()) = max{0:(t) —
DHV((2)) <0

(O] 1 € {1

~ contraction property from consensus literature:
[D. Bertsekas et al. '94, L. Moreau '04 & '05,
Z. Linetal '08,...]
@ Frequency entrainment in A(y) < consensus protocol in R”
d

=2,

where aji(t) = % cos(6i(t) —

Lai(0)(6; — 6)).
0;(t) + ;) > 0 forall t >0
Dérfler and Bullo (UCSB)
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Synchronization of Non-Uniform Kuramoto Oscillators

Theorem: Phase locking and frequency entrainment (1)

Non-uniform Kuramoto with complete P = PT
Assume minimal coupling larger than a critical value, i.e.,

) +maxy, 2 Hig w,,)

Dinax < (w
ncos(Pmax) \ (19} \ D

Prmin > Peritical :=

Define Ymin = arcsin (cos(@max) P,;’“‘“‘) and

A7) :={0 € T7| maxijy 105 — 0] <7}

Then V' € [Ymin, 5 — ©max)

1) phase locking: the set A(y) is positively invariant

2) frequency entrainment: V 0(0) € A(7) the frequencies 0i(t)
synchronize exponentially to some frequency foe € [fmin(0), fmax(0)]
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Outline
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@ Introduction
© Power network model
@ Synchronization and transient stability
© Consensus protocol and Kuramoto oscillators
@ Singular perturbation analysis
(to relate power network and Kuramoto model)

@ Synchronization analysis (of non-uniform Kuramoto model)
@ Main synchronization result
@ Sufficient condition (based on weakest lossless coupling)
o
@ Structure-preserving power network model
© Kron-reduction of graphs
@ Sufficient conditions for synchronization

@ Conclusions
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Synchronization of Non-Uniform Kuramoto Oscillators

Non-uniform Kuramoto Model in T" - rewritten:

P P
51 ﬁ cos(wjj)sin(0; — 0;) + 3'/’ sin(iij) cos(0; — ;)

Condition (2) for synchronization:
Assume the graph induced by P = P is connected with unweighted
Laplacian L and weighted Laplacian L(Pjjcos(i;)) and

Ao(L(Pj cos(py))) >

lossless connectivity

f(Di) (1/ cos(¢pmax))
—~— —_—

non-uniform D;s necessary phase locking

i L | Il

non-uniformity

—sm (ij),

lossy couplmg

Gap determines the admissible initial lack of phase locking in a 7 interval.
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Synchronization of Non-Uniform Kuramoto Oscillators

Theorem: Phase locking and frequency entrainment (2

Graph induced by P = P is connected with unweighted Laplacian L, incidence
matrix H, and weighted Laplacian L(P; cos(j)).
Assume algebraic connectivity is larger than a critical value, i.e.,

[IHD" ]|, + Ve D) || [, 5, B sin(y), - ..]HQ‘

c0s(pmax) (15/m)p ming; jy {Dgiy b

where K.:ZD%V 1= /ming {DiD;}] maxiy DD}
e

Power Networks Synchronization

A2(L(Pj cos(pi))) > Acritical :=

sitcal COS(¢p

Define pmax € (5 —Pmax» ™) by Sinc(pmax) = WM

1) phase locking: V p € (7/2—@max; fmax), ¥ HH@( )|, < pp, thereis T >0
such that ||HO(t)||, < 7/2 — omax forall t > T

2) frequency entrainment: if |H0(0)||, < up the frequencies 6;(t)

synchronize exponentially to some frequency O € [6'.“.,. 0), 9max(0)]
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Synchronization of Non-Uniform Kuramoto Oscillators

Classic (uniform) Kuramoto Model in T":

: K 5
O =wi—— Zj#i sin(6; — ;)

n

Condition (2) for synchronization:
K>l — gDl

Gap determines the admissible initial lack of phase locking in a 7 interval.

Condition (2) corresponds to the bound in [N. Chopra et al. '09].
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Synchronization of Non-Uniform Kuramoto Oscillato

Main proof ideas:
Q@ Phase locking via ultimate boundedness arguments
W) <0
W(0) =0
w(o) >0

W(o) 0; — 6

1
B Zm 2 TTizi; Dk

@ Frequency entrainment for t > T < consensus protocol in R"

i(jl. =- ZJ%, a;(t)(0; - 0y).

where a;(t) = %”Lcos(b‘;(t) —0;(t) + ;) >0forall t > T
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Simulation Studies Simulation Studies
A \
” S N

/,.}

e

VAL
L

—o—o

Simulation data: Simulation data:
o initial phases mostly clustered besides red phasor o worst-case initial phase-differences: 6;(0) in splay state
o disturbance in phasor for € [1.5s,2.5s] @ €= 0.12s is small
@ ¢ = 0.3s & network is non-uniform @ strongly non-uniform network
= sufficient conditions for synchronization are satisfied = sufficient conditions for synchronization are not satisfied

Result: singular perturbation analysis is accurate v Result: singular perturbation analysis is accurate v
both models synchronize v~ both models synchronize v~
Dérfler and Bullo (UCSB) Power Networks Synchror 27may10 @ Northwestern 27/34 Dérfler and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 28 /34

Outline Structure-preserving power network models

@ Introduction

O Power “e.‘w"fk model . . A @ network reduced to active nodes (generators)
@ Synchronization and transient stability X

© Consensus protocol and Kuramoto oscillators

So far we considered a network-reduced power system model:

@ synchronization conditions on A2(P) and Ppin
@ Singular perturbation analysis
(to relate power network and Kuramoto model)
© Synchronization analysis (of non-uniform Kuramoto model)
© Main synchronization result
@ Sufficient condition (based on weakest lossless coupling)
© Sufficient condition (based on lossless algebraic connectivity)

o all-to-all reduced admittance matrix Yieduced™~ P
(for uniform voltage levels)

Topological non-reduced network-preserving power system model:
@ boundary nodes (generators) & interior nodes (buses)

@ topological bus admittance matrix Y petwork
o

X @ Schur-complement relationship:
@ Kron-reduction of graphs

@ Sufficient conditions for synchronization h Yieduced = Ynetwork/ Yinterior
@ Conclusions c.f. “Kron reduction”, “Dirichlet-to-Neumann map”
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Detour — Kron reduction of graphs

Kron reduction of a graph with Laplacian matrix
Y network: boundary nodes B, and interior nodes ®

@ Subsequent one-step removal of a single interior node ® :
o Topological evolution of the graph:

1 2) 3) 4) " 7

k
= Yieducea/ ®

@ Fully reduced Laplacian Yeducea given by Schur complement:

o Algebraic evolution of Laplacian matrix: YX*1

reduced —

Yieduced =

network Yietwork/Y interior

27mayl0 @ Northwestern 31 / 34

Y,

reduced =
netwnrk/) interior

Assumption I: lossless network, zero shunt admittances (no self loops)

.. becomes

f(D

@ Spectral condition for synchronization: \(P) >

A2(S(=Ynetwork))

H 02_01 )H

Assumption 1l: effective resistance R among boundary nodes is uniform
@ Resistance-based condition for synchronization: nP,;, > ... becomes

Drmax
2E2

= ls -5t
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Detour — Kron reduction of graphs

Y,

reduced =

R
network network/Y interior N

Graph-theoretic and algebraic properties of Kron reduction process:
@ Symmetric & irreducible Laplacians closed under Schur complement
@ interior network connected = reduced network complete

@ Spectral interlacing property: Ao(Vieduced) > Ao(Yonetwork)
= algebraic connectivity A, is non-decreasing

Q Effective resistance among boundary nodes M is invariant

J) uniform
31 Yeeduced (7,4)|

@ For boundary nodes B: effective resistance R(/,
< coupling Yieduced(i,j) uniform < 1/R(i,j) =
Power Networks Synchronization 32/34
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Conclusions
Summary:

7 Open problem in synchronization and
transient stability in power networks:
relation to underlying network state,
parameters, and topology

A

gular perturbat

alysis and algebr:
Time-varying theor
Consensus Protocols:

T

Non-uniform
Kuramoto Oscillators

Ongoing and Future Work:
o relation to network topology, clustering, and scalability
@ synchronization in optimal power flow problems
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Synchronization of Non-Uniform Kuramoto Oscillators
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Assume the graph induced by P has a globally reachable node, ¢; = 0,
and w;/D; =@ for all i € {1,...,n}.

1) V6(0) € {0 € T": max(;jy |0 — 0| < 7} the phases 6;(t)
synchronize exponentially to o (t) € [Omin(0), Omax(0)] + ©t; and

2) if P=PT and Y ||HO(0)||, < s1p with p € [0,), then

and the exponential sync. rate is no worse than
Aps = — (k/n) ming; n{D_s; i1} sinc| Ao(L(Py
ps = = (&/m) ming; j {Dygijy} sine(p) Aa(L(Py))

weighting of D; 6(0)  connectivity

EYED

Theorem: A result on phase hronization
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Results can be reduced to [Z. Lin et al. '07] and [A. Jadbabaie et al. '04].
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Theorem: A refined result on frequency entrainment

Synchronization of Non-Uniform Kuramoto Oscillators

Assume there exists € (0,7/2) such that the phases are locked in the set
A(7) and the graph induced by P has globally reachable node.

1) V6(0) € A(7) the frequencies 6;(t) synchronize exponentially to
Ooc € [Omin(0), Omax(0)]-
2) If P=PT & ; =0foralli,j€{l,...,n}, then V0(0) € A(y) the
frequencies 6;(t) synchronize exp. to the weighted mean frequency
1
>iDi Z"Diw
and the exponential synchronization rate is no worse than
Me = — No(L(Pj % £(D1,1))?/ Dimax
fe 2(L(P;j)) cos() cos(£(D1,1))* /' Drma
1£D1

0=

slowest

connectivity A(7)

Result can be reduced to [N. Chopra et al. '09].
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