	Intro: North American power grid
Synchronization in Power Networks and in Non-uniform Kuramoto Oscillators	
Florian Dörfler and Francesco Bullo Center for Control, Dynamical Systems & Computation University of California at Santa Barbara http://motion.me.ucsb.edu Mechanical Engineering Department Northwestern University, 27 May 2010	 " the largest and most complex machine engineered by humankind." [P. Kundur '94, V. Vittal '03,] " the greatest engineering achievement of the 20th century." [National Academy of Engineering 10] large-scale, complex, nonlinear, and rich dynamic behavior 100 years old and operating at its capacity limits recent blackouts: New England '03 + Italy '03, Brazil '09
Dörfler and Bullo (UCSB) Power Networks Synchronization 27may/10 0 Northwestern 1/34 Intro: Transient Stability in Power Networks	Dörfler and Bulo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 2 / 34 Intro: New England power grid
Che Netw Dork Cimes THE BLACKOUT OF 2003: Failure Reveals Creaky System, Experts Believe \$152003 Image: Constraint of the top three national priorities Expected additional synergetic effects in future "smart grid": > increasing complexity and renewable stochastic power sources > increasingly many transient disturbances to be detected and rejected	
Transient Stability: Generators have to maintain synchronism in presence of large transient disturbances such as faults or loss of • transmission lines and components,	 Power network topology: n generators ■, each connected to a generator terminal bus n generators terminal buses and m load buses ● form connected graph admittance matrix Y_{network} ∈ C^(2n+m)×(2n+m) characterizes the network

Intro: Mathematical Model of a Power Network	Intro: Mathematical Model of a Power Network
 generator nodes ■: swing equation for generator i ^{Mi}/_{πf₀}∂_i = −D_i∂_i + P_{mi} − P_{ei} ∂_i(t) is measured w.r.t. a 60Hz rotating frame network-preserving model: power flow equations for passive nodes ♦ & ● ⇒ DAE system 	• generator nodes • : swing equation for generator i $\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + P_{mi} - P_{ei}$ $\theta_i(t)$ is measured w.r.t. a 60Hz rotating frame • network-preserving model: power flow equations for passive nodes $\diamond \& \bullet \Rightarrow DAE$ system • network-reduced model: reduction to • nodes with all-to-all reduced (transfer) admittance matrix Y_{ij} $P_{ei} = E_i^2 G_{ii} + \sum_{j \neq i} E_i E_j Y_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$ Classic model $\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$
Dörfler and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 5 / 34	Dörfler and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 5 / 34
Dörfler and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 5 / 34 Intro: Transient Stability Analysis in Power Networks	Dörffer and Bullo (UCSB) Power Networks Synchronization 27may10 @ Morthweaten 5 / 34 Intro: Transient Stability Analysis in Power Networks
Dollar and Bulk (UCSB) Power Networks Synchronization 27my10 0 Mathemation 5 / 34 Intro: Transient Stability Analysis in Power Networks	Dollar and Bullo (UCSB) Power Networks Synchronization 27mg/10 Nethembertom 5/34 Intro: Transient Stability Analysis in Power Networks
Doller and Bullic (UCSB) Power Networks Synchronization 27mp10 0 Methodestrem 5 / 34 Intro: Transient Stability Analysis in Power Networks Classic Model	Dollar and Bullo (UCSB) Power Networks Synchronization 27mg/10 & Marthuestern 5 / 34 Intro: Transient Stability Analysis in Power Networks Classic Model
$\begin{array}{c c} \hline \text{Dollar and Bulk (UCSB)} & Paure Network $greed/netwised $T $2 Trays(10 0 Methanester $$ $j > 24$ \\\hline \hline \text{Intro: Transient Stability Analysis in Power Networks} \\\hline \hline \text{Classic Model} \\ \hline \frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij}) \\\hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c} \hline \ensuremath{\mathbb{Z}} \hline \mathbb{Z$	$\begin{array}{c c c c c c c } \hline \hline Dother and Bulle (UCSB) & Power Networks Synchronization & 21 may 10 0 Mathematican & 3 / 34 \\ \hline \hline Intro: Transient Stability Analysis in Power Networks \\ \hline \hline Classic Model \\ \hline \hline \frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij}) \\ \hline Transient stability and synchronization: \\ \hline \end{array}$
$\begin{array}{c c} \hline \ensuremath{\mathbb{Z}} \hline \mathbb{Z$	$\begin{array}{c c c c c c } \hline \hline Dother and Bula (UCSB) & Power Networks Synchronization & 21 may 10 0 Martheastra 0 $ / 31 \\ \hline \hline Intro: Transient Stability Analysis in Power Networks \\ \hline \hline Classic Model \\ \hline \hline $ \frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij}) \\ \hline \hline Transient stability and synchronization: \\ \hline Classic analysis methods: Hamiltonian arguments \\ \hline \end{array}$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c } \hline & \hline $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c } \hline & \hline $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Dottor and Bubic (0C50) Parce Records Synchronization 2780 (10 P Methadem of 10 P P P P P P P P P P P P P P P P P P	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Intro: Transient Stability Analysis in Power Networks	Detour – Consensus Protocols & Kuramoto Oscillators	
	Consensus protocol in \mathbb{R}^n :	
Classic Model	$\dot{\mathbf{x}}_{i} = -\sum_{\mathbf{x}_{i}} \mathbf{a}_{ii}(\mathbf{x}_{i} - \mathbf{x}_{i})$	
$\frac{M_i}{\pi f_0} \ddot{\theta}_i = -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$	a n agents with state $y_i \in \mathbb{R}$ and connected graph with weights $a_{ij} > 0$	
Transient stability and synchronization:	• objective is state agreement: $x_i(t) - x_j(t) \rightarrow 0$	
Classic analysis methods: Hamiltonian arguments	 application: social networks, computer science, systems theory robotic rendezvous, distributed computing, filtering and control. 	
$\frac{M_i}{\pi f_0}\ddot{\theta}_i = -D_i\dot{\theta}_i - \nabla U_i(\theta)^T \rightsquigarrow \dot{\theta}_i = -\nabla_i U(\theta)^T$	 some references: [M. DeGroot '74, J. Tsitsiklis '84,] 	
\Rightarrow Open problem [D. Hill and G. Chen '06]: power sys $\stackrel{?}{\longleftrightarrow}$ network:		
transient stability, performance, and robustness of a power network		
state, parameters, and topology of underlying network		
Dides and Dalls (IICO) Descentional Scenter Scenter Scenter (1)	Di-Beared Bulls (HCCD) Deven Naturala Sundanalanian (27am)(0.0 Madamatan 7.1.2)	
Detour – Consensus Protocols & Kuramoto Oscillators	Deteurs Concensus Protocols & Kurameta Oscillatore	
	Detour - Consensus Protocois & Ruramoto Oscillators	
Kuramoto model in T ⁿ :	Detour - Consensus Frotocois & Kuranioto Osciliators	
Kuramoto model in T ⁿ : $\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$	Kuramoto model in \mathbb{T}^n :	
Kuramoto model in \mathbb{T}^{n} : $\dot{\theta}_{i} = \omega_{i} - \frac{K}{n} \sum_{j \neq i} \sin(\theta_{i} - \theta_{j})$ • oscillators with phase $\theta_{i} \in \mathbb{T}$, frequency $\omega_{i} \in \mathbb{R}$, complete coupling	Kuramoto model in \mathbb{T}^n : $\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$	
Kuramoto model in \mathbb{T}^{n} : $\dot{\theta}_{i} = \omega_{i} - \frac{K}{n} \sum_{j \neq i} \sin(\theta_{i} - \theta_{j})$ • oscillators with phase $\theta_{i} \in \mathbb{T}$, frequency $\omega_{i} \in \mathbb{R}$, complete coupling • objective is synchronization: $\theta_{i}(t) - \theta_{j}(t)$ bounded, $\dot{\theta}_{i}(t) - \dot{\theta}_{j}(t) \to 0$	Kuramoto model in T ⁿ : $\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$	
Kuramoto model in \mathbb{T}^{n} : $\dot{\theta}_{i} = \omega_{i} - \frac{K}{n} \sum_{j \neq i} \sin(\theta_{i} - \theta_{j})$ • oscillators with phase $\theta_{i} \in \mathbb{T}$, frequency $\omega_{i} \in \mathbb{R}$, complete coupling • objective is synchronization: $\theta_{i}(t) - \theta_{j}(t)$ bounded, $\dot{\theta}_{i}(t) - \dot{\theta}_{j}(t) \rightarrow 0$ • application in physics, biology, engineering:	Kuramoto model in \mathbb{T}^n : $\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$ • degrees of synchronization: • phase locking: $ \theta_i - \theta_j $ bounded	
Second Construction of Protection of Pro	Kuramoto model in T ⁿ : $\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$ • degrees of synchronization: • phase locking: $ \theta_i - \theta_j $ bounded • frequency entrainment: $\dot{\theta}_i = \dot{\theta}_j$	
Kuramoto model in T?: $\hat{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$ • oscillators with phase $\theta_i \in \mathbb{T}$, frequency $\omega_i \in \mathbb{R}$, complete coupling • objective is synchronization: $\theta_i(t) - \theta_j(t)$ bounded, $\hat{\theta}_i(t) - \hat{\theta}_j(t) \to 0$ • application in physics, biology, engineering: coupled neurons, Josephson junctions, motion coordination, • some references: [Y. Kuramoto '75, A. Winfree '80,]	Kuramoto model in T ⁿ : $\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$ • degrees of synchronization: • phase locking: $ \theta_i - \theta_j $ bounded • frequency entrainment: $\dot{\theta}_i = \dot{\theta}_j$ • phase synchronization: $\theta_i = \theta_j$	
Kuramoto model in T ?: $\hat{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$ • oscillators with phase $\theta_i \in \mathbb{T}$, frequency $\omega_i \in \mathbb{R}$, complete coupling • objective is synchronization: $\theta_i(t) - \theta_j(t)$ bounded, $\hat{\theta}_i(t) - \hat{\theta}_j(t) \rightarrow 0$ • application in physics, biology, engineering: coupled neurons, Josephson junctions, motion coordination, • some references: [Y. Kuramoto '75, A. Winfree '80,]	Kuramoto model in T ⁿ : $\dot{\theta}_i = \omega_i - \frac{\kappa}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$ • degrees of synchronization: • phase locking: $ \theta_i - \theta_j $ bounded • frequency entrainment: $\dot{\theta}_i = \dot{\theta}_j$ • phase synchronization: • phase synchronization: • have synchronization: • known that	
Example Constructs Forecous & Fundameter Contractors Kuramoto model in TP: $\hat{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$ • oscillators with phase $\theta_i \in \mathbb{T}$, frequency $\omega_i \in \mathbb{R}$, complete coupling • objective is synchronization: $\theta_i(t) - \theta_j(t)$ bounded, $\hat{\theta}_i(t) - \hat{\theta}_j(t) \to 0$ • application in physics, biology, engineering: coupled neurons, Josephson junctions, motion coordination, • some references: [Y. Kuramoto '75, A. Winfree '80,]	Kuramoto model in T ⁿ : $\dot{\theta}_i = \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$ • degrees of synchronization: • phase locking: $ \theta_i - \theta_j $ bounded • frequency entrainment: $\dot{\theta}_i = \dot{\theta}_j$ • phase synchronization: $\theta_i = \theta_j$ • known that • K large & $ \omega_i - \omega_j $ small \Rightarrow frequency entrainment & phase locking • additionally, for $\omega_i = \omega_j \Rightarrow$ phase synchronization	

<image/> <image/> <equation-block><equation-block><equation-block><complex-block></complex-block></equation-block></equation-block></equation-block>	<section-header><image/><text><equation-block><equation-block><equation-block></equation-block></equation-block></equation-block></text></section-header>
 Introduction Power network model Synchronization and transient stability Consensus protocol and Kuramoto oscillators 	$\begin{split} \frac{M_i}{\pi f_0} \ddot{\theta}_i &= -D_i \dot{\theta}_i + \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij}) \\ \dot{\theta}_i &= \omega_i - \frac{K}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j) \implies \underbrace{D_i \dot{\theta}_i = \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})} \end{split}$
 Singular perturbation analysis (to relate power network and Kuramoto model) 	
 Synchronization analysis (of non-uniform Kuramoto model) Main synchronization result Sufficient condition (based on weakest lossless coupling) Sufficient condition (based on lossless algebraic connectivity) Structure-preserving power network models Kron-reduction of graphs Sufficient conditions for synchronization Conclusion 	
Conclusions	

Singular Perturbation Analysis	Outline	
Discussion of the assumption $\epsilon = \frac{M_{max}}{\pi f_0 D_{min}}$ sufficiently small: • physical interpretation: damping and sync on separate time-scales • classic assumption in literature on coupled oscillators: over-damped mechanical pendula and Josephson junctions • physical reality: with generator internal control effects $\epsilon \in \mathcal{O}(0.1)$ • simulation studies show accurate approximation even for large ϵ • first-order and second-order models have the same equilibria with the same stability properties, and the regions of attractions are bounded by the same senarize: (independent of ϵ .)	 Introduction Power network model Synchronization and transient stability Consensus protocol and Kuramoto oscillators Singular perturbation analysis (to relate power network and Kuramoto model) Synchronization analysis (of non-uniform Kuramoto model) Main synchronization result Sufficient condition (based on weakest lossless coupling) Sufficient condition (based on lossless algebraic connectivity) Structure-preserving power network models 	
by the same separatrices (independent of ϵ) • non-uniform Kuramoto model corresponds to reduced gradient system $\dot{\theta}_i = -\nabla_i U(\theta)^T$ used successfully in academia and industry since 1978	 Kron-reduction of graphs Sufficient conditions for synchronization Conclusions 	
Dörfler and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 15 / 34	Dörfler and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 16 / 34	
Main Synchronization Result	Main Synchronization Result	
Condition on network parameters:	Condition on network parameters:	
	Condition on network parameters:	
network connectivity $>$ network's non-uniformity $+$ network's losses,	network connectivity > network's non-uniformity + network's losses,	
network connectivity > network's non-uniformity + network's losses, Non-Uniform Kuramoto Model: exponential synchronization: phase locking & frequency entrainment guaranteed region of attraction: $ \theta_i(t_0) - \theta_j(t_0) < \pi/2 - \varphi_{max}$ gap in condition determines ultimate phase locking # further conditions on φ_{ij} and ω_{j} : explicit synchronization frequency, synchronization rates, exponential phase synchronization	Non-Uniform Kurameters: Non-Uniform Kuramoto Model: \Rightarrow exponential synchronization: phase locking & frequency entrainment \Rightarrow guaranteed region of attraction: $ \theta_i(t_0) - \theta_j(t_0) < \pi/2 - \varphi_{max}$ \Rightarrow gap in condition determines ultimate phase locking \Rightarrow further conditions or φ_{ij} and ω_i : explicit synchronization frequency, synchronization rates, exponential phase synchronization	
network connectivity > network's non-uniformity + network's losses, Non-Uniform Kuramoto Model: \Rightarrow exponential synchronization: phase locking & frequency entrainment \Rightarrow guaranteed region of attraction: $ \theta_i(t_0) - \theta_j(t_0) < \pi/2 - \varphi_{max}$ \Rightarrow gap in condition determines ultimate phase locking \Rightarrow further conditions on φ_{ij} and ω_{j} : explicit synchronization frequency, synchronization rates, exponential phase synchronization \bullet Power Network Model:	network connectivity > network's non-uniformity + network's losses, ● Non-Uniform Kuramoto Model: ⇒ exponential synchronization: phase locking & frequency entrainment ⇒ gap in condition determines ultimate phase locking ⇒ further conditions on φ _{ij} and ω _i : explicit synchronization frequency, synchronization rates, exponential phase synchronization ● Power Network Model:	
network connectivity > network's non-uniformity + network's losses, ● Non-Uniform Kuramoto Model: ⇒ exponential synchronization: phase locking & frequency entrainment ⇒ guaranteed region of attraction: θ ₁ (t ₀) - θ ₁ (t ₀) < π/2 - φ _{max} ⇒ gap in condition determines ultimate phase locking ⇒ further conditions on φ _{ij} and ω _j : explicit synchronization frequency, synchronization rates, exponential phase synchronization ● Power Network Model: ⇒ there exists c sufficiently small such that for all t ≥ 0	network connectivity > network's non-uniformity + network's losses, ■ Non-Uniform Kuramoto Model: ⇒ exponential synchronization: phase locking & frequency entrainment ⇒ gap in condition determines ultimate phase locking ⇒ further condition so φ _{ij} and ω _i : explicit synchronization frequency, synchronization rates, exponential phase synchronization ● Power Network Model: ⇒ there exists < sufficiently small such that for all t ≥ 0	
network connectivity > network's non-uniformity + network's losses, Non-Uniform Kuramoto Model: exponential synchronization: phase locking & frequency entrainment guaranteed region of attraction: $ \theta_i(t_0) - \theta_j(t_0) < \pi/2 - \varphi_{max}$ gap in condition determines ultimate phase locking further conditions on φ_{ij} and ω_j : explicit synchronization frequency, synchronization rates, exponential phase synchronization Power Network Model: there exists ϵ sufficiently small such that for all $t \ge 0$ $\theta_i(t)$ power network $-\theta_i(t)$ non-uniform Kuramoto model $= \mathcal{O}(\epsilon)$.	network connectivity > network's non-uniformity + network's losses, • Non-Uniform Kuramoto Model: \Rightarrow exponential synchronization: phase locking & frequency entrainment \Rightarrow guaranteed region of attraction: $ \theta_i(t_0) - \theta_j(t_0) < \pi/2 - \varphi_{max}$ \Rightarrow gap in condition determines ultimate phase locking \Rightarrow further conditions on φ_{ij} and ω_i : explicit synchronization frequency, synchronization rates, exponential phase synchronization • Power Network Model: \Rightarrow there exists c sufficiently small such that for all $t \ge 0$ $\theta_i(t)$ power network $= \theta_i(t)$ non-uniform Kuramoto model $= \mathcal{O}(\epsilon)$.	
network connectivity > network's non-uniformity + network's losses, Non-Uniform Kuramoto Model: exponential synchronization: phase locking & frequency entrainment guaranteed region of attraction: $ \theta_i(t_0) - \theta_j(t_0) < \pi/2 - \varphi_{max}$ gap in condition determines ultimate phase locking further conditions on φ_{ij} and ω_j : explicit synchronization frequency, synchronization rates, exponential phase synchronization Power Network Model: there exists ϵ sufficiently small such that for all $t \ge 0$ $\theta_i(t)$ power network $-\theta_i(t)$ non-uniform Kuramoto model $= \mathcal{O}(\epsilon)$. is for ϵ and network losses φ_{ij} sufficiently small, $\mathcal{O}(\epsilon)$ error converges	Instruction on network parameters: network connectivity > network's non-uniformity + network's losses, Image: Structure of the	

Main Synchronization Result	Outline
Condition on network parameters: network connectivity > network's non-uniformity + network's losses, • Non-Uniform Kuramoto Model: \Rightarrow exponential synchronization: phase locking & frequency entrainment \Rightarrow guaranteed region of attraction: $ \theta_i(t_0) - \theta_j(t_0) < \pi/2 - \varphi_{max}$ \Rightarrow gap in condition determines ultimate phase locking \Rightarrow further conditions on φ_{ij} and ω_j : explicit synchronization frequency, synchronization rates, exponential phase synchronization • Power Network Model: \Rightarrow there exists ϵ sufficiently small such that for all $t \ge 0$ $\theta_i(t)$ power network $-\theta_i(t)$ non-uniform Kuramoto model $= O(\epsilon)$. \Rightarrow for ϵ and network losses φ_{ij} sufficiently small, $O(\epsilon)$ error converges	 Introduction Power network model Synchronization and transient stability Consensus protocol and Kuramoto oscillators Singular perturbation analysis to relate power network and Kuramoto model) Synchronization neult Sufficient condition (based on weakest lossless coupling) Structure-preserving power network models Kron-reduction of graphs Sufficient conditions for synchronization
Dörfler and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 17 / 34	Dörfler and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 18 / 34
Synchronization of Non-Uniform Kuramoto Oscillators Non-uniform Kuramoto Model in T ^a : $D_i\dot{\theta}_i = \omega_i - \sum_{j \neq i} P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij})$ • Non-uniformity in network: D_i , ω_i , P_{ij} , φ_{ij} • Directed coupling between oscillator <i>i</i> and <i>j</i> • Phase shift φ_{ij} induces lossless and lossy couling: $P_{ij} \sin(\theta_i - \theta_j + \varphi_{ij}) = P_{ij} \cos(\varphi_{ij}) \sin(\theta_i - \theta_j) + P_{ij} \sin(\varphi_{ij}) \cos(\theta_i - \theta_j)$ • Synchronization analysis in multiple steps: • phase locking: $ \theta_i(t) - \theta_j(t) \to 0$ • phase synchronization: $ \theta_i(t) - \theta_j(t) \to 0$	Synchronization of Non-Uniform Kuramoto Oscillators Non-uniform Kuramoto Model in T ^o - rewritten: $\hat{\theta}_i = \frac{\omega_i}{D_i} - \sum_{j \neq i} \frac{P_{ij}}{D_i} \cos(\varphi_{ij}) \sin(\theta_i - \theta_j) + \frac{P_{ij}}{D_i} \sin(\varphi_{ij}) \cos(\theta_i - \theta_j)$ Condition (1) for synchronization: Assume the graph induced by $P = P^T$ is complete and $n \frac{P_{min}}{D_{max}} \cos(\varphi_{max}) \ge \max_{\substack{\{i,j\}}} \left(\frac{\omega_i}{D_i} - \frac{\omega_j}{D_j}\right) + \max_{\substack{i,j\}} \frac{P_{ij}}{D_j} \sin(\varphi_{ij}).$ Worst lossless coupling worst non-uniformity worst lossy coupling Gap determines the ultimate lack of phase locking in a $\frac{\pi}{2}$ interval.

Synchronization of Non-Onnorm Ruramoto Oscillators	Synchronization of Non-Uniform Kuramoto Oscillators	
Classic (uniform) Kuramoto Model in \mathbb{T}^n :	Theorem: Phase locking and frequency entrainment (1)	
. K	Non-uniform Kuramoto with complete $P = P^T$	
$\theta_i = \omega_i - \frac{1}{n} \sum_{j \neq i} \sin(\theta_i - \theta_j)$	Assume minimal coupling larger than a critical value i.e.	
	Assume minimal coupling larger than a critical value, i.e.,	
Condition (1) for synchronization:	$P \rightarrow P \rightarrow i = \frac{D_{\max}}{2} \left(\max\left(\frac{\omega_i}{\omega_i} - \frac{\omega_j}{\omega_j} \right) + \max\sum \frac{P_{ij}}{2} \sin(\omega_i) \right)$	
Kanana	$n\cos(\varphi_{\max}) \begin{pmatrix} \max_{i,j} \\ D_i \end{pmatrix} \begin{pmatrix} \max_{i} \\ D_j \end{pmatrix} + \begin{pmatrix} \max_{i} \\ D_j \end{pmatrix} = \sum_{i} \begin{pmatrix} \max_{j} \\ D_i \end{pmatrix}$	
n > w _{max} = w _{min}	Define a_{i} = precip(coo(a_{i})) ^P ritical) and cot of looked phases	
Gap determines the ultimate lack of phase locking in a $\frac{\pi}{2}$ interval.	Define $\gamma_{\min} = \arcsin(\cos(\varphi_{\max}) - \frac{P_{\min}}{P_{\min}})$ and set of locked phases	
	$\Delta(\gamma) := \{ \theta \in \mathbb{T}^n \max_{i \in \Omega} \theta_i - \theta_i \le \gamma \}$	
Condition (1) strictly improves existing bounds on Kuramoto model:	(1) (1) (1) (1) (1) (1) (1) (1)	
[F. de Smet et al. '07, N. Chopra et al. '09, G. Schmidt et al. '09,	Then $\forall \gamma \in [\gamma_{\min}, \frac{\pi}{2} - \varphi_{\max})$	
A. Jadbabale et al. 04, J.L. van Hemmen et al. 93].	 phase locking: the set Δ(γ) is positively invariant 	
Necessary condition for sync of <i>n</i> oscillators: $K > \frac{n}{2(n-1)}(\omega_{\max} - \omega_{\min})$	2) frequency entrainment: $\forall \theta(0) \in \Delta(\gamma)$ the frequencies $\dot{\theta}_i(t)$	
[J.L. van Hemmen et al. '93, A. Jadbabaie et al. '04, N. Chopra et al. '09]	synchronize exponentially to some frequency $\dot{\theta}_{\infty} \in [\dot{\theta}_{\min}(0), \dot{\theta}_{\max}(0)]$	
Dörfler and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 20 / 34	Dörfler and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 21 / 34	
Synchronization of Non-Uniform Kuramoto Oscillators	Outline	
Main proof ideas:	Introduction	
O Phase locking in Δ(γ) ⇔ arc-length V(θ(t)) is non-increasing	Power petwork model	
V(a(4))		
$V(\theta(t))$ ($V(\theta(t))$ = max([0,(t)] + i = [1 - n])	Synchronization and transient stability	
$\bigvee_{i \in \{0, (t)\}} \bigvee_{i \in \{1, \dots, n\}} V(\theta(t)) = \max\{ \theta_i(t) - \theta_j(t) \mid i, j \in \{1, \dots, n\}\}$	 Synchronization and transient stability Consensus protocol and Kuramoto oscillators 	
$\Leftrightarrow \begin{cases} V(\theta(t)) = \max\{ \theta_i(t) - \theta_j(t) \mid i, j \in \{1, \dots, n\}\} \\ D^+ V(\theta(t)) \stackrel{!}{\leq} 0 \end{cases}$	 Synchronization and transient stability Consensus protocol and Kuramoto oscillators Singular perturbation analysis 	
$\Leftrightarrow \begin{cases} V(\theta(t)) = \max\{ \theta_i(t) - \theta_j(t) \mid i, j \in \{1, \dots, n\}\} \\ D^+ V(\theta(t)) \stackrel{!}{\leq} 0 \end{cases}$	 Synchronization and transient stability Consensus protocol and Kuramoto oscillators Singular perturbation analysis (to relate power network and Kuramoto model) 	
$\Leftrightarrow \begin{cases} V(\theta(t)) = \max\{ \theta_i(t) - \theta_j(t) \mid i, j \in \{1, \dots, n\}\} \\ D^+ V(\theta(t)) \stackrel{!}{\leq} 0 \end{cases}$ $\sim \text{ contraction property from consensus literature:}$	 Synchronization and transient stability Synchronization and Kuramoto oscillators Singular perturbation analysis (to relate power network and Kuramoto model) 	
$\Leftrightarrow \begin{cases} V(\theta(t)) = \max\{ \theta_i(t) - \theta_j(t) \mid i, j \in \{1, \dots, n\}\}\\ D^+ V(\theta(t)) \stackrel{!}{\leq} 0\\ \sim \text{ contraction property from consensus literature:}\\ [D. Bertsekas et al. '94, L. Moreau '04 & '05, days and '95, days and '96, da$	 Synchronization and transient stability Synchronization and transient stability Consensus protocol and Kuramoto oscillators Singular perturbation analysis (to relate power network and Kuramoto model) Synchronization analysis (of non-uniform Kuramoto model) 	
$\leftrightarrow \begin{cases} V(\theta(t)) = \max\{ \theta_i(t) - \theta_j(t) \mid i, j \in \{1, \dots, n\}\}\\ D^+ V(\theta(t)) \stackrel{!}{\leq} 0\\ \sim \text{ contraction property from consensus literature:}\\ [D. Bertsekas et al. '94, L. Moreau '04 & '05, Z. Lin et al. '08,] \end{cases}$	 Synchronization and transient stability Consensus protocol and Kuramoto oscillators Singular perturbation analysis (to relate power network and Kuramoto model) Synchronization analysis (of non-uniform Kuramoto model) Main synchronization result 	
$\Leftrightarrow \begin{cases} V(\theta(t)) = \max\{ \theta_i(t) - \theta_j(t) \mid i, j \in \{1, \dots, n\}\} \\ D^+ V(\theta(t)) \stackrel{!}{\leq} 0 \\ \sim \text{ contraction property from consensus literature:} \\ [D. Bertsekas et al. '94, L. Moreau '04 & '05, Z. Lin et al. '08,] \end{cases}$	 Synchronization and transient stability Consensus protocol and Kuramoto oscillators Singular perturbation analysis (to relate power network and Kuramoto model) Synchronization analysis (of non-uniform Kuramoto model) Main synchronization result Sufficient condition (based on weakest lossless coupling) Sufficient condition (based on weakest lossless coupling) 	
$\Leftrightarrow \begin{cases} V(\theta(t)) = \max\{ \theta_i(t) - \theta_j(t) \mid i, j \in \{1, \dots, n\}\} \\ D^+ V(\theta(t)) \stackrel{!}{\leq} 0 \\ \sim \text{ contraction property from consensus literature:} \\ [D. Bersekas et al. '94, L. Moreau '04 & '05, Z. Lin et al. '08,] \end{cases}$ $\bullet \text{ Frequency entrainment in } \Delta(\gamma) \Leftrightarrow \text{ consensus protocol in } \mathbb{R}^n$	 Forder structure model Synchronization and transient stability Consensus protocol and Kuramoto oscillators Singular perturbation analysis (to relate power network and Kuramoto model) Synchronization analysis (of non-uniform Kuramoto model) Main synchronization result Sufficient condition (based on weakest lossless coupling) Sufficient condition (based on lossless algebraic connectivity) 	
$ \begin{cases} V(\theta(t)) = \max\{ \theta_i(t) - \theta_j(t) \mid i, j \in \{1, \dots, n\}\} \\ D^+ V(\theta(t)) \stackrel{!}{\leq} 0 \\ \sim \text{ contraction property from consensus literature:} \\ [D. Bertsekas et al. '94, L. Moreau '04 & '05, Z. Lin et al. '06,] \end{cases} $ $ 6 Frequency entrainment in \Delta(\gamma) \Leftrightarrow \text{ consensus protocol in } \mathbb{R}^n \frac{d}{\theta_i} = -\sum_{i=1}^{n} a_{ii}(t)(\theta_i - \theta_i), $	 Synchronization and transient stability Consensus protocol and Kuramoto oscillators Singular perturbation analysis (to relate power network and Kuramoto model) Synchronization analysis (of non-uniform Kuramoto model) Main synchronization result Sufficient condition (based on weakest lossless coupling) Structure-preserving power network model Kructure-preserving power network model Kructure-preserving power network model 	
$ \left\{ \begin{array}{l} V(\theta(t)) = \max\{ \theta_i(t) - \theta_j(t) \mid i, j \in \{1, \dots, n\}\} \\ D^+ V(\theta(t)) \stackrel{!}{\leq} 0 \\ \sim \text{ contraction property from consensus literature:} \\ [D. Bertsekas et al. '94, L. Moreau '04 & '05, Z. Lin et al. '08,] \\ \hline \mathbf{O} \text{ Frequency entrainment in } \Delta(\gamma) \Leftrightarrow \text{ consensus protocol in } \mathbb{R}^n \\ \frac{d}{dt} \dot{\theta}_i = -\sum_{j \neq i} a_{ij}(t)(\dot{\theta}_i - \dot{\theta}_j), \end{array} \right. $	 Four-Instant index Synchronization and transient stability Consensus protocol and Kuramoto oscillators Singular perturbation analysis (to relate power network and Kuramoto model) Synchronization nesult Sufficient condition (based on lossless algebraic connectivity) Structure-preserving power network model Kron-reduction of graphs Sufficient conditions for synchronization 	
$ \left\{ \begin{array}{l} V(\theta(t)) = \max\{ \theta_i(t) - \theta_j(t) \mid i, j \in \{1, \dots, n\}\} \\ D^+ V(\theta(t)) \stackrel{!}{\leq} 0 \\ \sim \text{ contraction property from consensus literature:} \\ [D. Bertsekas et al. '94, L. Moreau '04 & '05, Z. Lin et al. '08,] \\ \end{array} \right\} $	 Four-tendor model Synchronization and transient stability Consensus protocol and Kuramoto oscillators Singular perturbation analysis (to relate power network and Kuramoto model) Synchronization analysis (of non-uniform Kuramoto model) Main synchronization result Sufficient condition (based on weakest lossless coupling) Sufficient condition (based on lossless algebraic connectivity) Structure-preserving power network model Kron-reduction of graphs Sufficient conditions for synchronization Conclusions 	
$\Leftrightarrow \begin{cases} V(\theta(t)) = \max\{ \theta_i(t) - \theta_j(t) \mid i, j \in \{1, \dots, n\}\} \\ D^+ V(\theta(t)) \stackrel{!}{\leq} 0 \\ \sim \text{ contraction property from consensus literature:} \\ [D. Bertsekas et al. '94, L. Moreau '04 & '05, Z. Lin et al. '08,] \end{cases}$ $ \bullet \text{ Frequency entrainment in } \Delta(\gamma) \Leftrightarrow \text{ consensus protocol in } \mathbb{R}^n \\ \frac{d}{dt} \dot{\theta}_i = -\sum_{j \neq i} a_{ij}(t)(\dot{\theta}_i - \dot{\theta}_j), \\ \text{ where } a_{ij}(t) = \frac{P_{ij}}{D_i} \cos(\theta_i(t) - \theta_j(t) + \varphi_{ij}) > 0 \text{ for all } t \geq 0 \end{cases}$	 Former Reason model Synchronization and transient stability Consensus protocol and Kuramoto oscillators Singular perturbation analysis (to relate power network and Kuramoto model) Synchronization analysis (of non-uniform Kuramoto model) Main synchronization result Sufficient condition (based on weakest lossless coupling) Sufficient condition (based on weakest lossless algebraic connectivity) Structure-preserving power network model Kron-reduction of graphs Sufficient conditions for synchronization Conclusions 	

Simulation Studies

C ·	1 1 1	<u><u> </u></u>	12 C
Simu	lation	Stur	1100
Jinnu	ation	Juu	an Ca

	\bigcirc
Simulation data: • initial phases mostly clustered besides red phasor • disturbance in yellow phasor for ∈ [1.5s, 2.5s] • ϵ = 0.3s & network is non-uniform ⇒ sufficient conditions for synchronization are satisfied	Simulation data: • worst-case initial phase-differences: $\theta_i(0)$ in splay state • $\epsilon = 0.12s$ is small • strongly non-uniform network \Rightarrow sufficient conditions for synchronization are not satisfied
Result: singular perturbation analysis is accurate v both models synchronize v Doffer and Bullo (UCSB) Power Networks Synchronization 27/34	Result: singular perturbation analysis is accurate both models synchronize Dirfler and Bufle (UCSB) Power Networks Synchronization 27may10 @ Northwestern 28 / 34
Outline	Structure-preserving power network models
Outline Introduction Power network model Synchronization and transient stability Consensus protocol and Kuramoto oscillators Singular perturbation analysis (to relate power network and Kuramoto model) Nonchronization analysis (of non-uniform Kuramoto model)	 Structure-preserving power network models So far we considered a network-reduced power system model: network reduced to active nodes (generators) synchronization conditions on λ₂(P) and P_{min} all-to-all reduced admittance matrix Y_{reduced}~ P (for uniform voltage levels)
Introduction Power network model Synchronization and transient stability Consensus protocol and Kuramoto oscillators Singular perturbation analysis (to relate power network and Kuramoto model) Synchronization analysis (of non-uniform Kuramoto model) Main synchronization result Sufficient condition (based on veakest lossless coupling) Sufficient condition (based on lossless algebraic connectivity)	Structure-preserving power network models So far we considered a network-reduced power system model: • network reduced to active nodes (generators) • synchronization conditions on λ ₂ (P) and P _{min} • all-to-all reduced admittance matrix Y _{reduced} ~ P (for uniform voltage levels) Topological non-reduced network-preserving power system model: • boundary nodes (generators) & interior nodes (buses) • topological bus admittance matrix Y _{network}

30 / 34

Detour - Kron reduction of graphs

Detour – Kron reduction of graphs

	Synchronization of Non-Uniform Kuramoto Oscillators
Further Results	Theorem: A refined result on frequency entrainment Assume there exists $\gamma \in (0, \pi/2)$ such that the phases are locked in the set $\Delta(\gamma)$ and the graph induced by P has globally reachable node. 1) $\forall \theta(0) \in \Delta(\gamma)$ the frequencies $\hat{\theta}_i(t)$ synchronize exponentially to $\hat{\theta}_{\infty} \in [\hat{\theta}_{\min}(0), \hat{\theta}_{\max}(0)].$ 2) If $P = P^T$ & $\varphi_{ij} = 0$ for all $i, j \in \{1,, n\}$, then $\forall \theta(0) \in \Delta(\gamma)$ the frequencies $\hat{\theta}_i(t)$ synchronize exp. to the weighted mean frequency $\Omega = \frac{1}{\sum_i D_i} \sum_i D_i \omega_i$ and the exponential synchronization rate is no worse than $\lambda_{fe} = - \frac{\lambda_2(L(P_{ij}))}{\text{connectivity}} \frac{\cos(\gamma)}{\Delta(\gamma)} \frac{\cos(2(D1, 1))^2}{1LD1} / \frac{D_{\max}}{\text{slowest}}$ Result can be reduced to [N. Chopra et al. '09].
Dörffer and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 34 / 34	Dörfler and Bullo (UCSB) Power Networks Synchronization 27may10 @ Northwestern 34 / 34
Synchronization of Non-Uniform Kuramoto Oscillators	
Theorem: A result on phase synchronization	
Assume the graph induced by P has a globally reachable node, $\varphi_{ij} = 0$, and $\omega_i/D_i = \bar{\omega}$ for all $i \in \{1,, n\}$.	
1) $\forall \theta(0) \in \{\theta \in \mathbb{T}^n : \max_{\{i,j\}} \theta_i - \theta_j < \pi\}$ the phases $\theta_i(t)$ synchronize exponentially to $\theta_{\infty}(t) \in [\theta_{\min}(0), \theta_{\max}(0)] + \bar{\omega}t$; and	
2) if $P = P^T$ and $\forall \ H\theta(0)\ _2 \le \mu \rho$ with $\rho \in [0, \pi)$, then	
$ heta_{\infty}(t) = rac{\sum_i D_i heta_i(0)}{\sum_i D_i} + ar{\omega} t$	
and the exponential sync. rate is no worse than	
$\lambda_{ps} = -\underbrace{(\kappa/n)\min_{\{i,j\}} \{D_{\neq\{i,j\}}\}}_{\text{minimized}} \underbrace{\operatorname{sinc}(\rho)}_{\substack{\emptyset(0) \\ \text{connectivity}}} \underbrace{\lambda_2(L(P_{ij}))}_{\text{connectivity}}$	
weighting of D _i (6) connectivity	
Results can be reduced to [Z. Lin et al. '07] and [A. Jadbabaie et al. '04].	
Dörfler and Bullo (IICSB) Prever Networks Synchronization 27mav10.0 Northwestern 34 / 34	