Coordination of Robotic Networks:
On Task Allocation and Vehicle Routing

Francesco Bullo

Center for Control,
Dynamical Systems & Computation
University of California at Santa Barbara
http://motion.me.ucsb.edu

Electrical and Computer Engineering Department
Carnegie Mellon University
April 30, 2009
Acknowledgements

Applications of autonomous systems

• Unmanned vehicles
• Equipped with suite of sensors
• Inaccessible environments

Civilian applications:

• Environmental monitoring:
 • Measure weather systems
 • Observe animal species
 • Detect and assess wildfires

• Search and rescue missions
• Space exploration
• Monitoring infrastructure
Applications of autonomous systems

Military applications:

- Surveillance
- Reconnaissance missions
- Perimeter defense and security
- Expenditures of $60 billion over next 10 years
The future of autonomy

Current missions (typical scenario):
- single vehicle or few decoupled vehicles
- pre-specified task
- tightly coupled with human control

Future missions

1. Fleets (swarms) of networked vehicles
2. Complex sets of tasks that evolve during execution
3. Increased autonomy, humans as supervisors

Requires real-time task allocation and vehicle routing
Given:
- a group of vehicles, and
- a set of tasks

Task example:
take a picture at a location

Task allocation
Decide which vehicles should perform which tasks.

- **Centralized**: operator assigns vehicles to tasks
 (requires vehicle positions, workloads, etc.)
- **Distributed**: vehicles divide tasks among themselves
Given:
- a group of vehicles, and
- a set of tasks

Task example:
take a picture at a location

Task allocation
Decide which vehicles should perform which tasks.

- **Centralized**: operator assigns vehicles to tasks
 (requires vehicle positions, workloads, etc.)
- **Distributed**: vehicles divide tasks among themselves
Vehicle routing

Given:
An allocation of tasks to vehicles

- Task A is of higher priority than task B
- A task requires multiple vehicles: vehicles need to rendezvous
- Task locations are not stationary

Determine a path that allows each vehicle to complete its tasks.
Vehicle routing

Given:
An allocation of tasks to vehicles

Vehicle routing

Determine a path that allows each vehicle to complete its tasks.

- Task A is of higher priority than task B
- A task requires multiple vehicles: vehicles need to rendezvous
- Task locations are not stationary
Vehicle routing

Given:
An allocation of tasks to vehicles

Vehicle routing
Determine a path that allows each vehicle to complete its tasks.

- Task A is of higher priority than task B
- A task requires multiple vehicles: vehicles need to rendezvous
- Task locations are not stationary
Vehicle routing

Given:
An allocation of tasks to vehicles

Vehicle routing

Determine a path that allows each vehicle to complete its tasks.

- Task A is of higher priority than task B
- A task requires multiple vehicles: vehicles need to rendezvous
- Task locations are not stationary
Vehicle routing

Given:

An allocation of tasks to vehicles

Vehicle routing

Determine a path that allows each vehicle to complete its tasks.

- Task A is of higher priority than task B
- A task requires multiple vehicles: vehicles need to rendezvous
- Task locations are not stationary
Dynamic and distributed aspects

Distributed:
Vehicles have only local information

Dynamic:
- Existing tasks evolve over time
- New tasks arise in real-time
- Number of vehicles changes

Complete solution *cannot be computed off-line.*

As new information becomes available, vehicles must
- re-allocate tasks
- re-plan paths
Technical approach:
structure, fundamental limits, efficient algorithms

For a distributed/dynamic problem:

1. Identify **underlying problem structure**
 e.g., adimensional analysis, intrinsic regimes, phase transitions in parameter space

2. Determine **fundamental limits** on performance

3. Design provably **efficient algorithms**
Illustrate

problem structure, fundamental limits, efficient algorithms

via two scenarios:

1. Distributed Task Allocation
 motivated by a surveillance application

2. Dynamic Vehicle Routing
 motivated by a perimeter defense application
Distributed task allocation
A distributed task allocation problem

- n omnidirectional vehicles
 - limited comm. range and bandwidth
- $m \leq n$ task locations
 - once task is reached by a vehicle, vehicle is forever engaged

Two problem scenarios:

1. Supervisor broadcasts all task locations to each vehicle
2. Vehicles search for task locations with limited range sensor

Problem: distributed algorithm to

- allow group of vehicles to divide tasks among themselves
- minimize time until last task location is reached
A distributed task allocation problem

- n omnidirectional vehicles
 - limited comm. range and bandwidth
- $m \leq n$ task locations
 - once task is reached by a vehicle, vehicle is forever engaged

Two problem scenarios:

1. Supervisor broadcasts all task locations to each vehicle
2. Vehicles search for task locations with limited range sensor

Problem: distributed algorithm to

- allow group of vehicles to divide tasks among themselves
- minimize time until last task location is reached
A distributed task allocation problem

- n omnidirectional vehicles
 - limited comm. range and bandwidth
- $m \leq n$ task locations
 - once task is reached by a vehicle, vehicle is forever engaged

Two problem scenarios:
1. Supervisor broadcasts all task locations to each vehicle
2. Vehicles search for task locations with limited range sensor

Problem: distributed algorithm to
- allow group of vehicles to divide tasks among themselves
- minimize time until last task location is reached
Centralized solution

In the centralized setting, problem is matching in a bipartite graph.

Specifically, bottleneck matching:
find a matching M which minimizes

$$\max_M d_{i,j}$$

Solvable in polynomial time.
Distributed challenges

Multi-vehicle task allocation work:
- Auction based (Moore and Passino, 2007)
- Game theoretic (Arslan et al., 2007)
- Auction and consensus (Brunet, Choi and How, 2008)

Today, combination of key challenges:
1. range constraint and lack of connectivity
2. tight bandwidth constraint

and novel goals:
3. determine fundamental limits on scalability
4. develop provably efficient algorithms
Underlying structure: environment size regimes

If the number of vehicles increases ($n \to +\infty$)

Then the area $A(n)$ must increase to "make room"

Sparse: $A(n)/n \to +\infty$

Critical: $A(n)/n \to \text{constant}$

Dense: $A(n)/n \to 0^+$
Fundamental limits on completion time

Worst-case completion time

- \# of tasks = \# of vehicles \((m = n)\)
- Broadcast or search scenario

<table>
<thead>
<tr>
<th>Sparse ((A(n) \gg n))</th>
<th>Critical ((A(n) \approx n))</th>
<th>Dense ((A(n) \ll n))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\Omega(\sqrt{nA(n)}))</td>
<td>(\Omega(n))</td>
<td>(\Omega(A(n)))</td>
</tr>
</tbody>
</table>

Asymptotic notation: \(T \in \Omega(n)\) implies there is \(C > 0\) such that

\[T \text{ lower bounded by } Cn\]
Two allocation algorithms

The Ring algorithm

- Compute common ring
- Broadcast scenario
Two allocation algorithms

The Ring algorithm
- Compute common ring
- Broadcast scenario

The Grid algorithm
- Elect leader in each cell
- Broadcast or search
Algorithms match fundamental limit

Worst-case time, \((\# \text{ of tasks } m) = (\# \text{ of vehicles } n)\)

<table>
<thead>
<tr>
<th></th>
<th>Sparse</th>
<th>Critical</th>
<th>Dense</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fundamental limit</td>
<td>(\Omega(\sqrt{nA(n)}))</td>
<td>(\Omega(n))</td>
<td>(\Omega(A(n)))</td>
</tr>
<tr>
<td>Ring Alg</td>
<td>(O(\sqrt{nA(n)}))</td>
<td>(O(n))</td>
<td>(O(\sqrt{nA(n)}))</td>
</tr>
<tr>
<td>Grid Alg</td>
<td>(O(A(n)))</td>
<td>(O(n))</td>
<td>(O(A(n)))</td>
</tr>
</tbody>
</table>

Efficient algorithms

- Ring Alg in sparse and critical environments
- Grid Alg in dense and critical environments

Additional stochastic results have been obtained
Summary of distributed task allocation

Distributed task allocation with communication constraints

The results:

- **problem structure**: sparse/critical/dense
- **fundamental limits** on completion time
- **efficient algorithms** in all three regimes

The technical approach utilizes:

- Distributed algorithms and networking
- Combinatorial optimization
- Random geometric graphs
Distributed Control of Robotic Networks

A Mathematical Approach to Motion Coordination Algorithms

Francesco Bullo
Jorge Cortés
Sonia Martínez

1. intro to distributed algorithms (graph theory, synchronous networks, and averaging algos)
2. geometric models and geometric optimization problems
3. model for robotic, relative sensing networks, and complexity
4. algorithms for rendezvous, deployment, boundary estimation

Dynamic vehicle routing
Prior work on dynamic vehicle routing

Dynamic traveling repairperson problem
- Tasks arrive sequentially in time
- Each task location is randomly distributed in service region
- Each task requires on-site service
Key references

- Shortest path (Beardwood, Halton and Hammersly, 1959)
- Formulation on a graph (Psaraftis, 1988)
- Euclidean plane (Bertsimas and Van Ryzin, 1990–1993)

Recent developments in dynamic vehicle routing:

- Nonholonomic UAVs (Savla, Frazzoli, FB: TAC, (53)6 ’08)
- Adaptation and decentralization (Pavone, Frazzoli, FB: TAC, sub ’09)
- Distinct-priority targets (SLS, Pavone, FB, Frazzoli: SICON, sub ’09)
- Heterogeneous vehicles and teaming (SLS, FB: SCL, sub ’08)
- Moving targets (SBD, SLS, FB: CDC & TAC, sub ’09)
A perimeter defense / boundary guarding problem

- Single vehicle with unit speed
- Task locations (targets):
 - arrive sequentially on a segment
 - move vertically with speed v
- Task completed if target captured before reaching deadline

Goal

Design policies that maximize expected fraction of targets captured

Assume that task arrivals are:
- Poisson in time with rate $\lambda \implies \mathbb{E}[N(\Delta t)] = \lambda \Delta t$
- uniformly distributed on line segment
Underlying problem structure

For fixed W, problem parameters are

- speed ratio ν:
 \[\nu = \frac{\text{target speed}}{\text{vehicle speed}} \]

- arrival rate λ

- deadline distance L

<table>
<thead>
<tr>
<th>$L = +\infty$</th>
<th>L is finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilize queue</td>
<td>Maximize capture fraction</td>
</tr>
<tr>
<td>$\nu < 1$</td>
<td>$\nu \geq 1$</td>
</tr>
<tr>
<td>translational path policy</td>
<td>longest path policy</td>
</tr>
</tbody>
</table>

Not possible for any $\lambda > 0$.
For fixed W, problem parameters are

- speed ratio ν: $\nu = \frac{\text{target speed}}{\text{vehicle speed}}$
- arrival rate λ
- deadline distance L

<table>
<thead>
<tr>
<th>$L = +\infty$</th>
<th>L is finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilize queue</td>
<td>Maximize capture fraction</td>
</tr>
<tr>
<td>$\nu < 1$</td>
<td>translational path policy</td>
</tr>
<tr>
<td>$\nu \geq 1$</td>
<td>Not possible for any $\lambda > 0$</td>
</tr>
<tr>
<td></td>
<td>translational path policy</td>
</tr>
<tr>
<td></td>
<td>longest path policy</td>
</tr>
</tbody>
</table>
For fixed W, problem parameters are

- speed ratio ν:
 \[\nu = \frac{\text{target speed}}{\text{vehicle speed}} \]

- arrival rate λ

- deadline distance L

<table>
<thead>
<tr>
<th>$L = +\infty$</th>
<th>L is finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilize queue</td>
<td>Maximize capture fraction</td>
</tr>
</tbody>
</table>

- $\nu < 1$: translational path policy | translational path policy
- $\nu \geq 1$: Not possible for any $\lambda > 0$ | longest path policy
Fundamental limits for $L = +\infty$ and $\nu < 1$

For every policy:

$$\lambda \leq \frac{4}{\nu W},$$
for stability

No policy can capture all

Interesting consequence for $\nu \to 1$:

For stability, λ must go to zero as $\nu \to 1$, but very slowly
Fundamental limits for $L = +\infty$ and $v < 1$

For every policy:

$$\lambda \leq \frac{4}{\nu W}, \quad \text{for stability}$$

As $v \to 1^-$, for stability

$$\lambda \leq \frac{3\sqrt{2}}{W \sqrt{-\log(1 - v)}}$$
Example of proof techniques

For stability, $\lambda \leq \frac{4}{\sqrt{vW}}$

1. Distribution of unserviced targets in region of area A:
 - Number is Poisson distributed with parameter $\lambda A / (vW)$
 - Conditioned on number, targets are uniform

2. Targets reachable in time T from (X, Y) are
 $\{(x, y) \ | \ (X - x)^2 + ((Y - vT) - y)^2 \leq T^2 \}$

3. Probability that closest target is not reachable in T seconds
 $\geq \exp(-\lambda \pi T^2 / (vW))$

4. Expected time to travel between targets
 $\mathbb{E} \left[\text{travel time} \right] \geq \frac{1}{2} \sqrt{\frac{vW}{\lambda}}$

5. To capture all, $\lambda \mathbb{E} \left[\text{travel time} \right] \leq 1$
Translational path for $v < 1$

Shortest translational path policy

Input: Optimal location p^*

1. If no targets, then move to p^*
2. Else, capture all targets via **shortest translational path**
3. Repeat

Can compute p^* to minimize:

- worst-case capture time
- expected capture time

speed ratio of 0.6
Translational path for $v < 1$

Order: scaled shortest static path
Motion: intercept on straight line

Shortest path computation (Hammar and Nilsson, 2002):

Speed ratio of 0.2
Stability of translational path for $\nu < 1$

Stability for $L = +\infty$

![Graph showing the relationship between arrival rate and speed ratio for stability analysis.](image)
Stability of translational path for $\nu < 1$

Stability for $L = +\infty$

As $\nu \to 1^-$, policy is optimal

Bullo, Smith and Bopardikar (UCSB)
Allocation and Routing
CMU seminar on 30apr09 30 / 39
Stability of translational path for $\nu < 1$

Stability for $L = +\infty$

Numerical region for policy

![Graph showing stability and numerical region for policy](image-url)
Maximize capture fraction for $v < 1$

Modify translational path policy

Fundamental limit

$$\text{cap fraction} \leq \min \left\{ 1, \frac{2}{\sqrt{v\lambda W}} \right\}$$

To analyze policy, assume

- speed ratio v is small
- arrival rate λ is large

Then, capture fraction

$$\geq \min \left\{ 1, \frac{1.4}{\sqrt{v\lambda W}} \right\}$$

Factor 1.42 of optimal

Numerical results suggest good performance away from limit
Where are we?

<table>
<thead>
<tr>
<th>L</th>
<th>L is finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L = +\infty$</td>
<td>Maximize capture fraction</td>
</tr>
<tr>
<td>Stabilize queue</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ν</th>
<th>Policy</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1</td>
<td>translational path policy</td>
</tr>
<tr>
<td>≥ 1</td>
<td>Not possible for any $\lambda > 0$</td>
</tr>
<tr>
<td></td>
<td>modified trans. path policy</td>
</tr>
</tbody>
</table>
Where are we?

<table>
<thead>
<tr>
<th>$L = +\infty$</th>
<th>L is finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilize queue</td>
<td>Maximize capture fraction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\nu < 1$</th>
<th>$\nu \geq 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>translational path policy</td>
<td>Not possible for any $\lambda > 0$</td>
</tr>
</tbody>
</table>
| modified trans. path policy | }
Where are we?

<table>
<thead>
<tr>
<th>$L = +\infty$</th>
<th>L is finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilize queue</td>
<td>Maximize capture fraction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\nu < 1$</th>
<th>$\nu \geq 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>translatonal path policy</td>
<td>Not possible for any $\lambda > 0$</td>
</tr>
</tbody>
</table>
Maximize fraction of targets for $v \geq 1$

For $v \geq 1$, it is optimal to remain on deadline
Maximize fraction of targets for $v \geq 1$

For $v \geq 1$, it is optimal to remain on deadline
Maximize fraction of targets for $v \geq 1$

For $v \geq 1$, it is optimal to remain on deadline
Maximize fraction of targets for $v \geq 1$

For $v \geq 1$, it is optimal to remain on deadline
Maximize fraction of targets for $v \geq 1$

For $v \geq 1$, it is optimal to remain on deadline

Reachability graph is directed and acyclic
Fundamental limit for $\nu \geq 1$

Noncausal information = *a priori* knowledge of arrival time and location of every future target

Optimal performance with noncausal information
1. Compute infinite reachability graph of all future targets
2. Compute longest path in graph
3. Capture each target on path

Consequences for algorithm performance (capture fraction)
- noncausal performance can be computed
- noncausal performance is upper bound on causal performance
Capture fraction with $\nu \geq 1$: Longest path policy

Longest path (LP) policy

1. Compute the reachability graph of all unserviced targets
2. Compute longest path in graph
3. Capture first target on path by intercepting on deadline
4. Repeat

Capture fraction for $L > \nu W$:

Factor $(1 - \frac{\nu W}{L})$ of optimal
Numerical capture fraction for $v \geq 1$

Environment with $W = 2$ and $L = 5$.

$v = 2$ and thus $L > vW$

$v = 5$ and thus $L < vW$
Numerical capture fraction for $v \geq 1$

Environment with $W = 2$ and $L = 5$.

$v = 2$ and thus $L > vW$

$v = 5$ and thus $L < vW$
Summary of boundary guarding

The results:

- Identified **four regimes**
- Derived **fundamental limits on capture fraction**
- Developed provably **efficient algorithms**

<table>
<thead>
<tr>
<th>$L = +\infty$</th>
<th>L is finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilize queue</td>
<td>Maximize capture fraction</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$v < 1$</th>
<th>$v \geq 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>translational path policy</td>
<td>Not possible for any $\lambda > 0$</td>
</tr>
<tr>
<td>translational path policy</td>
<td>longest path policy</td>
</tr>
</tbody>
</table>

The technical approach utilizes:

- Stochastic processes and queueing
- Combinatorial optimization
Summary of boundary guarding: policies

<table>
<thead>
<tr>
<th>$L = +\infty$</th>
<th>L is finite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilize queue</td>
<td>Maximize capture fraction</td>
</tr>
</tbody>
</table>

| $\nu < 1$ | ![Diagram](image1.png) |
| $\nu \geq 1$ | ![Diagram](image2.png) |

- Not possible for any $\lambda > 0$
Future autonomous missions

- Fleets (swarms) of networked vehicles
- Complex sets of tasks that evolve during execution
- Increased autonomy, humans as supervisors

Enabling technology: real-time task allocation and vehicle routing

Technical approach: Fundamental theory and algorithms

1. underlying problem structure
2. fundamental limits on performance
3. simple, provably efficient algorithms