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Applications of autonomous systems

Unmanned vehicles

Equipped with suite of sensors

Inaccessible environments

Civilian applications:

Environmental monitoring:

Measure weather systems
Observe animal species
Detect and assess wildfires

Search and rescue missions

Space exploration

Monitoring infrastructure

Slocum glider

NASA – next generation Mars rover
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Applications of autonomous systems

Military applications:

Surveillance

Reconnaissance missions

Perimeter defense and security

Expenditures of $60 billion over next 10 years

Globalhawk Aerovironment Wasp
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The future of autonomy

Current missions (typical scenario):

single vehicle or few decoupled vehicles

pre-specified task

tightly coupled with human control

Future missions
1 Fleets (swarms) of networked vehicles

2 Complex sets of tasks that evolve during execution

3 Increased autonomy, humans as supervisors

Requires real-time task allocation and vehicle routing
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Task allocation

Given:

a group of vehicles, and

a set of tasks

Task example:
take a picture at a location

Task allocation

Decide which vehicles should perform which tasks.

Centralized: operator assigns vehicles to tasks
(requires vehicle positions, workloads, etc.)

Distributed: vehicles divide tasks among themselves
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Vehicle routing

Given:

An allocation of tasks to vehicles

Vehicle routing

Determine a path that allows each vehicle to complete its tasks.

Task A is of higher priority than task B

A task requires multiple vehicles: vehicles need to rendezvous

Task locations are not stationary
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Dynamic and distributed aspects

Distributed:
Vehicles have only local information

Dynamic:

Existing tasks evolve over time

New tasks arise in real-time

Number of vehicles changes

Complete solution cannot be computed off-line.

As new information becomes available, vehicles must

re-allocate tasks

re-plan paths
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Technical approach:
structure, fundamental limits, efficient algorithms

For a distributed/dynamic problem:

1 Identify underlying problem structure
e.g., adimensional analysis, intrinsic regimes,

phase transitions in parameter space

2 Determine fundamental limits on performance

3 Design provably efficient algorithms
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The remainder of the talk

Illustrate

problem structure, fundamental limits, efficient algorithms

via two scenarios:

1 Distributed Task Allocation
motivated by a surveillance application

2 Dynamic Vehicle Routing
motivated by a perimeter defense application
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Distributed task allocation
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A distributed task allocation problem

n omnidirectional vehicles

limited comm. range and bandwidth

m ≤ n task locations

once task is reached by a vehicle,
vehicle is forever engaged

Two problem scenarios:

1 Supervisor broadcasts all task locations to each vehicle
2 Vehicles search for task locations with limited range sensor

Problem: distributed algorithm to

allow group of vehicles to divide tasks among themselves

minimize time until last task location is reached

Smith, Bullo. IEEE TAC 2009
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Centralized solution

In the centralized setting, problem is matching in a bipartite graph

Specifically, bottleneck matching:
find a matching M which minimizes

max
M

di ,j

Solvable in polynomial time

1

2

3

4

1

2

3

4

d1,1

d1,2

d1,3

d1,4
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Distributed challenges

Multi-vehicle task allocation work:

Auction based (Moore and Passino, 2007)

Game theoretic (Arslan et al., 2007)

Auction and consensus (Brunet, Choi and How, 2008)

Today, combination of key challenges:

1 range constraint and lack of connectivity

2 tight bandwidth constraint

and novel goals:

3 determine fundamental limits on scalability

4 develop provably efficient algorithms
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Underlying structure: environment size regimes

If # of vehicles increases (n → +∞)

Then area A(n) must increase to “make room”

comm. disk

Sparse: A(n)/n → +∞
Dense: A(n)/n → 0+

Critical: A(n)/n → constant
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Fundamental limits on completion time

Worst-case completion time

# of tasks = # of vehicles (m = n)

Broadcast or search scenario

Sparse Critical Dense
(A(n)� n) (A(n) ≈ n) (A(n)� n)

Fundamental limit Ω
(√

nA(n)
)

Ω(n) Ω
(
A(n)

)
Asymptotic notation: T ∈ Ω(n) implies there is C > 0 such that

T lower bounded by Cn
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Two allocation algorithms

The Ring algorithm

Compute common ring

Broadcast scenario

The Grid algorithm

Elect leader in each cell

Broadcast or search
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Algorithms match fundamental limit

Worst-case time, (# of tasks m) = (# of vehicles n)

Sparse Critical Dense

Fundamental limit Ω
(√

nA(n)
)

Ω(n) Ω
(
A(n)

)
Ring Alg O

(√
nA(n)

)
O(n) O

(√
nA(n)

)
Grid Alg O

(
A(n)

)
O(n) O

(
A(n)

)
Efficient algorithms

Ring Alg in sparse and critical environments

Grid Alg in dense and critical environments

Additional stochastic results have been obtained
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Summary of distributed task allocation

Distributed task allocation with communication constraints

The results:

problem structure: sparse/critical/dense

fundamental limits on completion time

efficient algorithms in all three regimes

The technical approach utilizes:

Distributed algorithms and networking

Combinatorial optimization

Random geometric graphs
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Text: Distributed Control of Robotic Networks

1 intro to distributed algorithms
(graph theory, synchronous networks,
and averaging algos)

2 geometric models and geometric
optimization problems

3 model for robotic, relative sensing
networks, and complexity

4 algorithms for rendezvous,
deployment, boundary estimation

Status: Freely downloadable at
http://coordinationbook.info
with tutorial slides & software libraries.
Shortly on sale by Princeton Univ Press
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Dynamic vehicle routing

Bullo, Smith and Bopardikar (UCSB) Allocation and Routing CMU seminar on 30apr09 21 / 39

Prior work on dynamic vehicle routing

Dynamic traveling repairperson problem

Tasks arrive sequentially in time

Each task location is randomly distributed in service region

Each task requires on-site service
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Key references

Key references

Shortest path (Beardwood, Halton and Hammersly, 1959)

Formulation on a graph (Psaraftis, 1988)

Euclidean plane (Bertsimas and Van Ryzin, 1990–1993)

Recent developments in dynamic vehicle routing:

Nonholonomic UAVs (Savla, Frazzoli, FB: TAC, (53)6 ’08)

Adaptation and decentralization (Pavone, Frazzoli, FB: TAC, sub ’09)

Distinct-priority targets (SLS, Pavone, FB, Frazzoli: SICON, sub ’09)

Heterogeneous vehicles and teaming (SLS, FB: SCL, sub ’08)

Moving targets (SBD, SLS, FB: CDC & TAC, sub ’09)
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A perimeter defense / boundary guarding problem

Single vehicle with unit speed

Task locations (targets):

arrive sequentially on a segment

move vertically with speed v

Task completed if
target captured before reaching deadline

W

L

Goal

Design policies that maximize expected fraction of targets captured

Assume that task arrivals are:

Poisson in time with rate λ =⇒ E [N(∆t)] = λ∆t

uniformly distributed on line segment

Bullo, Smith and Bopardikar (UCSB) Allocation and Routing CMU seminar on 30apr09 24 / 39



Underlying problem structure

For fixed W , problem parameters are

speed ratio v :

v =
target speed

vehicle speed

arrival rate λ

deadline distance L

W

L

L = +∞ L is finite
Stabilize queue Maximize capture fraction

v < 1 translational path policy translational path policy

v ≥ 1 Not possible for any λ > 0 longest path policy
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Fundamental limits for L = +∞ and v < 1

For every policy:

λ ≤ 4

vW
, for stability

As v → 1−, for stability

λ ≤ 3
√

2

W
√
− log(1− v)
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Interesting consequence for v → 1−:
For stability, λ must go to zero as v → 1−, but very slowly
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Example of proof techniques

For stability, λ ≤ 4
vW

1 Distribution of unserviced targets in region of area A:
Number is Poisson distributed with parameter λA/(vW )
Conditioned on number, targets are uniform

2 Targets reachable in time T from (X ,Y ) are

{(x , y) | (X − x)2 + ((Y − vT )− y)2 ≤ T 2}

3 Probability that closest target is not reachable in T seconds

≥ exp
(
− λπT 2/(vW )

)
4 Expected time to travel between targets

E [travel time] ≥ 1

2

√
vW

λ

5 To capture all, λE [travel time] ≤ 1
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Translational path for v < 1

Shortest translational path policy

Input: Optimal location p∗

1 If no targets, then move to p∗

2 Else, capture all targets via shortest
translational path

3 Repeat

Can compute p∗ to minimize:

worst-case capture time

expected capture time

speed ratio of 0.6
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Translational path for v < 1

speed ratio of 0.2

Shortest path computation
(Hammar and Nilsson, 2002):

q1

q2

q3

q4

q5

q6

q7

Order: scaled shortest static path
Motion: intercept on straight line
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Stability of translational path for v < 1

Stability for L = +∞
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Fundamental limit

As v → 1−, policy is optimal
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Stability of translational path for v < 1
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As v → 1−, policy is optimal
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Maximize capture fraction for v < 1

Modify translational path policy Fundamental limit

cap fraction ≤ min
{

1, 2√
vλW

}
To analyze policy, assume

speed ratio v is small

arrival rate λ is large

Then, capture fraction

≥ min

{
1,

1.4√
vλW

}
Factor 1.42 of optimal

Numerical results suggest good performance away from limit
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Where are we?

L = +∞ L is finite
Stabilize queue Maximize capture fraction

v < 1 translational path policy modified trans. path policy

v ≥ 1 Not possible for any λ > 0
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Where are we?

L = +∞ L is finite
Stabilize queue Maximize capture fraction

v < 1 translational path policy modified trans. path policy

v ≥ 1 Not possible for any λ > 0 ?
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Maximize fraction of targets for v ≥ 1

For v ≥ 1, it is optimal to remain on deadline

Reachable targets

Reachability graph is directed and acyclic
Longest path can be computed in polynomial time
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Fundamental limit for v ≥ 1

Noncausal information = a priori knowledge of
arrival time and location of every future target

Optimal performance with noncausal information

1 Compute infinite reachability graph of all future targets

2 Compute longest path in graph

3 Capture each target on path

Consequences for algorithm performance (capture fraction)

noncausal performance can be computed

noncausal performance is upper bound on causal performance
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Capture fraction with v ≥ 1: Longest path policy

Longest path (LP) policy

1 Compute the reachability graph of all
unserviced targets

2 Compute longest path in graph

3 Capture first target on path by
intercepting on deadline

4 Repeat

Capture fraction for L > vW :

Factor
(
1− vW

L

)
of optimal
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Numerical capture fraction for v ≥ 1

Environment with W = 2 and L = 5.
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Fundamental limit

v = 2 and thus L > vW
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Fundamental limit

v = 5 and thus L < vW
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v = 5 and thus L < vW
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Summary of boundary guarding

The results:

Identified four regimes

Derived fundamental limits on capture fraction

Developed provably efficient algorithms

L = +∞ L is finite
Stabilize queue Maximize capture fraction

v < 1 translational path policy translational path policy

v ≥ 1 Not possible for any λ > 0 longest path policy

The technical approach utilizes:

Stochastic processes and queueing

Combinatorial optimization
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Summary of boundary guarding: policies

L = +∞ L is finite
Stabilize queue Maximize capture fraction

v < 1

v ≥ 1 Not possible for any λ > 0
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Summary

Future autonomous missions

Fleets (swarms) of networked vehicles

Complex sets of tasks that evolve during execution

Increased autonomy, humans as supervisors

Enabling technology: real-time task allocation and vehicle routing

Technical approach: Fundamental theory and algorithms

1 underlying problem structure

2 fundamental limits on performance

3 simple, provably efficient algorithms

Bullo, Smith and Bopardikar (UCSB) Allocation and Routing CMU seminar on 30apr09 39 / 39


