# Boundary patrol using robotic networks without localization

Topology and Minimalism RSS Workshop, June 28, 2008



#### Francesco Bullo

Center for Control, Dynamical Systems and Computation University of California at Santa Barbara http://motion.mee.ucsb.edu

Challenges

(i) scalability

(iiii) robustness

(iv) models

(ii) performance

Ack: Sara Susca (PhD, UCSB), Sonia Martínez (UCSD)

#### Incomplete state of the art



AeroVironment Inc, "Raven" small unmanned aerial vehicle

iRobot Inc, "PackBot" unmanned ground vehicle

**Distributed algorithms** 

automata-theoretic: "Distributed Algorithms" by N. Lynch, D. Peleg numerical: "Parallel and Distributed Computation" by by Bertsekas and Tsitsiklis

Motion coordination "rendezvous" by Suzuki and Yamashita "consensus, flocking, agreement" by Jadbabaie, Olfati-Saber "formation control" by Baillieul, Morse, Anderson

#### **Research directions**

Build: distributed systems embedded actuator/sensors networks

**Develop distributed disciplines:** 

- (i) sensor fusion
- (ii) communications
- (iii) coordinated control
- (iv) task allocation and scheduling







Environmental monitoring

Building monitoring and evac

Security systems

#### Scenario 1: Boundary estimation

Assumption: local sensing and tracking, interpolation via waypoints Objective: estimate/interpolate moving boundary

adaptive polygonal approximation



# Scenario 1: Interpolation theory



#### For strictly convex bodies (Gruber '80)

- sufficient condition for optimality: each two consecutive interpolation points
- $p_k$ ,  $p_{k+1}$  are separated by same line integral  $\int_{p_l \to p_{k+1}} \kappa(\ell)^{1/3} d\ell$

• error estimate 
$$pprox rac{1}{12n^2} \left( \int_{\partial Q} \kappa(\ell)^{1/3} d\ell 
ight)^3$$

### Scenario 1: Estimate-Update and Pursuit

#### (i) projection step



(ii) update interpolation points for "pseudo-uniform" interpolation placement



(iii) accelerate/decelerate for uniform vehicle placement

#### Scenario 1: Performance/robustness



- (i) asynchronous distributed over ring
- (ii) convergence to equally distributed interpolation points and equally spaced vehicles
- (iii) time complexity: worst case  $O(n^2 \log(n))$ , where  $n = \frac{\# \text{ interpolation points}}{\# \text{ vehicles}}$
- (iv) ISS robust to: evolving boundary, interpolation, sensor noise

#### Scenario 1: translation into average consensus

• pseudo-distance between interpolation points  $(p_k, p_{k+1})$ 

$$d(k) = \lambda \int_{p_k \to p_{k+1}} \kappa(\ell)^{1/3} d\ell + (1-\lambda) \int_{p_k \to p_{k+1}} d\ell$$

• "go to center of Voronoi cell" update is peer-to-peer averaging rule



- linear model is:
  - stochastic matrices: switching, symmetric and nondegenerate
  - union of associated graphs over time is a ring (i.e., jointly connected graphs)
  - convergence rate as in Toeplitz tridagonal problem

# Scenario 2: Synchronized boundary patrolling

- $(\mathsf{i})$  some UAVs move along boundary of sensitive territory
- (ii) short-range communication and sensing
- (iii) surveillance objective:
  - minimize service time for appearing events communication network connectivity
- Example motion:



#### Analogy with mechanics and dynamics

- $(i) \mbox{ robots with "communication impacts" analogous to beads on a ring$
- (ii) classic subject in dynamical systems and geometric mechanics billiards in polygons, iterated impact dynamics, gas theory of hard spheres
- (iii) rich dynamics with even just 3 beads (distinct masses, elastic collisions) dynamics akin billiard flow inside acute triangle dense periodic and nonperiodic modes, chaotic collision sequences

SMA BRIDE Na 47, Na 2, pp. 273-500 © 2005 Society for Industrial and Applied Mathemat

Iterated Impact Dynamics of *N*-Beads on a Ring\*

> Bryan Cooley Paul K. Newton

Abstract: When N-beads slide along a frictionless hoop, that collision sequence gives rise to a dynamical system that can be studied via matrix products. It is of general interest to understand the distribution of velocities and the corresponding eigenvalues spectrum that a dyncn collision sequence can produce. We formulate the problem for general N and state some basic theorems regarding the eigenvalues of the collision matrices and their products. The

joint work with: Susca, Martínez

# Boundary patrolling: synchronized bead oscillation

starting from random initial posi-

every bead impacts its neighbor at

Desired synchronized behavior:

tions and velocities

• simultaneous impacts

the same point



#### Design specification for synchronization algorithm

 $\label{eq:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:achieve:ac$ 

- (i) arbitrary initial positions, velocities and directions of motion
- (ii) beads can measure traveled distance, however no absolute localization capability, no knowledge of circle length
- (iii) no knowledge about n, adaptation to changing n (even and odd)
- $(\mathrm{iv})$  anynomous agents with memory and message sizes independent of  $\boldsymbol{n}$
- $\left(\nu\right)$  smooth dependency upon effect of measurement and control noise

Fully-adaptive feedback synchronization



# Slowdown-Impact-Speedup algorithm

#### Simulations results: balanced synchronization

Algorithm: (for presentation's sake, beads sense their position)

1st phase: compute average speed v and desired sweeping arcs

**2nd phase** for  $f \in ]\frac{1}{2}, 1[$ , each bead:

- $\bullet$  moves at nominal speed v if inside its desired sweeping arc
- $\bullet$  slows down (fv) when moving away of its desired sweeping arc hesitate when early
- when impact, change direction
- speeds up when moving towards its desired sweeping arc

Balanced initial condition:

- ullet n is even
- $d_i$  is direction of motion
- $\sum_{i=1}^{n} d_i(0) = \sum_{i=1}^{n} d_i(t) = 0$
- n/2 move initially clockwise



# First phase: average speed and sweeping arcChallengesIf an impact between bead i and i + 1 occurs:<br/>• beads average nominal speeds: $v_i^+ = v_{i+1}^+ = 0.5(v_i + v_{i+1})$ <br/>• beads change their direction of motion if $d_i = -d_{i+1}$ (head-head type)<br/>• beads update their desired sweeping arc(i) how to prove balanced synchronization?<br/>(ii) what happens for unbalanced initial conditions $\sum_i^n d_i(0) \neq 0$ ?<br/>(iii) what happens for n is odd?(iv) how to describe the system with a single variable?

## Modeling detour

- configuration space
- (i) order-preserving dynamics  $\theta_i \in \operatorname{Arc}(\theta_{i-1}, \theta_{i+1})$  on  $\mathbb{T}^n$ (ii)  $\Delta^n \times \{\mathsf{c}, \mathsf{cc}\}^n \times (\mathbb{R}_{>0})^n \times (\operatorname{arcs})^n \times \{\operatorname{away, towards}\}^n$



- hybrid system with
  - (i) piecewise constant dynamics
- (ii) event-triggered jumps: impact, cross boundary

#### Passage and return times

• passage time:  $t_i^k = k$ th time when bead i passes by sweeping arc center



- return time:  $\delta_i(t) =$  duration between last two passage times
- if impact between beads (i, i + 1) at time t, then

$$\begin{bmatrix} \delta_i \\ \delta_{i+1} \end{bmatrix} (t^+) = \begin{bmatrix} \frac{1-f}{1+f} & \frac{2f}{1+f} \\ \frac{2f}{1+f} & \frac{1-f}{1+f} \end{bmatrix} \begin{bmatrix} \delta_i \\ \delta_{i+1} \end{bmatrix} (t^-)$$

stochastic (irr + aperd)

## Convergence results: balanced synchronization

Balanced Synchronization Theorem: For balanced initial directions, assume

- (i) exact average speed and desired sweeping arcs
- (ii) initial conditions lead to well-defined 1st passage times
- Then balanced synchronization is asymptotically stable

$$\lim_{t \to \infty} \delta(t) = \frac{2\pi}{Nv} \mathbf{1}_n, \qquad \lim_{k \to +\infty} \|T^k - \frac{\mathbf{1}_n \cdot T^k}{n} \mathbf{1}_n\| = 0$$

# Conjectures arising from simulation results

Only assumption required is balanced initial conditions.

 $(\mathsf{i})$  analysis of cascade consensus algorithms



 $(\ensuremath{\mathsf{ii}})$  global attractivity of synchronous behavior





#### (i) $f \in \left]\frac{1}{2}, \frac{n}{1+n}\right[$

(ii) 1-unbalanced sync: beads meet at arcs boundaries  $\pm \frac{2\pi}{n^2} \frac{f}{1-f}$ 

1-unbalanced Synchronization Theorem: For  $\sum_{i=1}^{n} d_i(0) = \pm 1$ , assume (i) exact average speed and desired sweeping arcs (ii) initial conditions lead to well-defined 1st passage times Then 1-unbalanced synchronization is asymptotically stable

$$\lim_{t \to \infty} \delta(t) = \frac{2\pi}{Nv} \mathbf{1}_n, \qquad \lim_{k \to +\infty} \left( T^{2k} - T^{2(k-1)} \right) = \frac{2}{v} \frac{2\pi}{n} \mathbf{1}_n$$

#### General unbalanced case

Conjecture global asy-synchronization in the balanced and unbalanced case

#### D-unbalanced period orbits Theorem:

Let  $\sum_{i}^{n} d_{i}(0) = \pm D$ . If there exists an orbit along which beads i and i + 1 meet at boundary  $\pm \frac{2\pi}{n^{2}} \frac{f}{1 - f}$ , then  $f < \frac{n/|D|}{1 + n/|D|}$ .

#### Emerging discipline: motion-enabled networks

#### network modeling

network, ctrl+comm algorithm, task, complexity

 coordination algorithm deployment, task allocation, boundary estimation

#### **Open problems**

- (i) algorithmic design for motion-enabled sensor networks scalable, adaptive, asynchronous, agent arrival/departure tasks: search, exploration, identify and track
- (ii) integration between motion coordination, communication, and estimation tasks
- (iii) Very few results available on:
  - (a) scalability analysis: time/energy/communication/control
  - (b) robotic networks over random geometric graphs
  - (c) complex sensing/actuation scenarios