Nonholonomic Vehicle Routing and the Dubins TSP

RSS Workshop on Robotic Sensor Networks Atlanta, Georgia, June 2007

Francesco Bullo

Department of Mechanical Engineering Center for Control, Dynamical Sys. and Comp. University of California, Santa Barbara

Acknowledgements: Ketan Savla, Emilio Frazzoli (MIT)

Cases studies in algorithmic coordination

Emergent Unmanned Aerial Vehicle (UAV) technology

Advantages

surveillance

Francesco Bullo (UCSB)

- data acquisition
- communication relays
- disaster and emergency management

Key requirement for stability

Suppose n = # outstanding targets:

- scalability in performance and robustness
- · sensor models and dynamics

target growth rate

 how to integrate control, sensing, communication

Francesco Bullo (UCSB) Vehicle Routing

Service dynamically arriving targets via target assignment $+\ path$ planning

June 30, 2007

1 / 13

vehicle routing by Frazzoli and Bullo, 2004

Problem setup: Dynamic Traveling Repairperson Problem (DTRP)

- *m* vehicles with unit speed
 - single integrator or Dubins nonholonomic
- $\bullet\,$ random targets with time intensity: $\lambda>0$ $\,$ $\,$ spatial density: uniform

Objective: a stabilizing policy with minimum system time

becomes negative

TSPlength(n)

If TSPlength(n) depends on n strictly sub-linearly, then growth rate

June 30, 2007 2 / 13

Euclidean TSP and Dubins TSP

Euclidean TSP (ETSP)

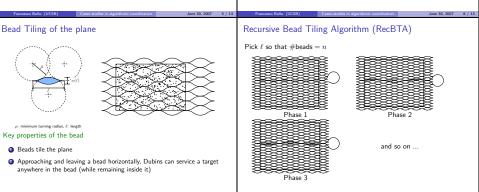
- NP-hard
- · effective heuristics available
- length(ETSP) ∈ O(√n) (Supowit et. al. '83)

Dubins TSP (DTSP)

Given a set of points find the shortest tour with bounded curvature

- not a finite dimensional problem
 - no prior algorithms or results
 - length(DTSP) sub-linear in n ?

Stochastic DTSP

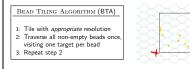

Problem Statement

Given a set of n independently and uniformly distributed points, design algorithms with smallest expected DTSP tour length

Lower bound

For n iid uniformly distributed points:

$$E[DTSP] \in \Omega(n^{2/3})$$



Analysis of RecBTA

- path length to execute all phases of RecBTA ∈ O(n^{2/3})
- **④** # targets remaining after all phases $\in O(\log n)$ with high probability (occupancy problem, stochastic analysis)
- Hence, RecBTA is an asymptotic constant factor approximation whp

DTRP algorithms

Single vehicle case

Multiple vehicle case

Francesco Bullo (UCSB)

- STRIP TILING ALGORITHM (STA)
- 1: Divide the plane into m equal strips along the height
- 2: Each vehicle executes BEAD TILING ALGORITHM in its strip

Francesco Bullo (UCSB)

Summary of prior and novel results

	Simple	Double	Dubins
	vehicle	integrator	vehicle
Length of	$\Theta(n^{\frac{1}{2}})$	$\Omega(n^{\frac{1}{2}})$	$\Theta(n)$
TSP tour		$O(n^{\frac{3}{4}})$	
(worst-case)			
Exp. Length of	$\Theta(n^{\frac{1}{2}})$	$\Theta(n^{\frac{2}{3}})$	$\Theta(n^{\frac{2}{3}})$
TSP tour		w.h.p.	w.h.p.
(stochastic)			
System time	$\Theta(\frac{\lambda}{m^2})$	$\Theta(\frac{\lambda^2}{m^3})$	$\Theta(\frac{\lambda^2}{m^3})$
for DTRP			

The upper bounds are constructive

References

- Is Savia, E. Frazzoli, and F. Bullo. On the point-to-point and traveling salesperson problems for Dubins' vehicle. In *American Control Conference*, pages 786–791, Portland, OR, June 2005
- K. Savla, E. Frazzoli, and F. Bullo. Asymptotic constant-factor approximation algorithms for the traveling salesperson problem for Dubins' vehicle, March 2006. Available electronically at http://arxiv.org/abs/cs/0603010
- K. Savla, E. Frazzoli, and F. Bullo. Traveling Salesperson Problems for the Dubins vehicle. *IEEE Transactions on Automatic Control*, 53(6):1378–1391, 2008
- K. Savla. Multi UAV Systems with Motion and Communication Constraints. PhD thesis, Electrical and Computer Engineering Department, University of California at Santa Barbara, Santa Barbara, August 2007. Available electronically at http://ccdc.mee.ucsb.edu

June 30, 2007 9 / 13

June 30, 2007 10 / 13

Emerging discipline: motion-enabled networks

network modeling

network, ctrl+comm algorithm, task, complexity

coordination algorithm

deployment, task allocation, boundary estimation

Papers available at http://motion.mee.ucsb.edu

Francesco Bullo (UCSB)

Cases studies in algorithmic coordination

June 30, 2007 13 / 13