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Introduction

Some sample systems
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Sample problems (vaguely)

e Modeling: Is it possible to model the four systems in a unified way, that allows
for the development of effective analysis and design techniques?

e Analysis: Some of the usual things in control theory: stability, controllability,

perturbation methods.

e Design: Again, some of the usual things: motion planning, stabilization,

trajectory tracking.

Sample problems (concretely)

Start from rest.
(i) Describe the set of reachable states.

(a) Does it have a nonempty interior?

(b) If so, is the original state contained in the interior?
(i) Describe the set of reachable positions.

(iii) Provide an algorithm to steer from one position at rest

to another position at rest.

(iv) Provide a closed-loop algorithm for stabilizing a speci-

fied configuration at rest.

(v) Repeat with thrust direction fixed.
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1 Broad motivations

1.1 Scientific Interests

(1) success in linear control theory is unlikely to be repeated for nonlinear systems.

In particular, nonlinear system design. no hope for general theory
=)  mechanical systems as examples of control systems

(ii) control relevance of tools from geometric mechanics

(i) geometric control past feedback linearization

1.2 Industrial Trends

autonomous vehicles new concepts in design

reconfigurable, reactive implementation on-line

22

sensing & computation cheap

focus on actuators and algorithms

Geom.Ctrl.Mech.Sys-ME225FB-W06-p6

1.3 Motion planning

Example systems

() dextrous manipulation via minimalist robots

(ii) real-time trajectory/path planning for autonomous vehicles

(i) locomotion systems (walking, swimming, diving, etc)

Application contexts

(i
(ii
(iii

guidance and control of physical systems

graphical animation and movie generation

)
) prototyping and verification
)
)

(iv) analysis of animal and human locomotion and prosthesis design in

biomechanics
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The literature, historically

Godbillon [1969], Abraham and Marsden [1978], Arnol’d [1978]:
Geometrization of mechanics in the 1960's.

Nijmeijer and van der Schaft [1990], Jurdjevic [1997], Agrachev and
Sachkov [2004]: Geometrization of control theory in the 1970's, 80's, and 90's
by Agrachev, Brockett, Hermes, Krener, Sussmann, and many others.

Brockett [1977]: Lagrangian and Hamiltonian formalisms, controllability,
passivity, some good examples.

Crouch [1981]: Geometric structures in control systems.

van der Schaft [1981/82, 1982, 1983, 1985, 1986]: A fully-developed
Hamiltonian foray: modeling, controllability, stabilization.

Takegaki and Arimoto [1981]: Potential-shaping for stabilization.

Bonnard [1984]: Lie groups and controllability.
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The literature, historically (cont’d)

Bloch and Crouch [1992]: Affine connections in control theory, controllability.

Koiller [1992], Bloch et al. [1996], Bates and Sniatycki [1993], van der
Schaft and Maschke [1994]: Geometrization of systems with constraints.

Bloch et al. [1992]: Controllability for systems with constraints.
Baillieul [1993]: Vibrational stabilization.

Ortega et al. [1998], Arimoto [1996]: Texts on stabilization using passivity
methods.

Bloch et al. [2000, 2001], Ortega et al. [2002]: Energy shaping.

Bloch [2003]: Text on mechanics and control.
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What we will try to do this today

e Present a unified methodology for modeling, analysis, and design for mechanical
control systems.

e The methodology is differential geometric, generally speaking, and affine
differential geometric, more specifically speaking. Follows:
Geometric Control of Mechanical Systems: Modeling, Analysis, and
Design for Simple Mechanical Control Systems
Francesco Bullo and Andrew D. Lewis
Springer—Verlag, 2004, ISBN 0-387-22195-6,
http: //penelope.mast.queensu.ca/smcs

e Warning! This lecture series will be much less precise than the book.

e We do not claim that the methodology presented is better than alternative
approaches.
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Outline
Today's topics:

Lecture #1: Geometric Modeling

Lecture #2: Controllabilty
Lewis and Murray [1997]

Lecture #3: Kinematic Reduction and Motion Planning
Bullo and Lynch [2001], Bullo and Lewis [2003]

Additional Lecture: Perturbation methods and oscillatory stabilization
Bullo [2002, 2001], Martinez et al. [2003]
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Geometric modeling of mechanical systems

Differential geometry essential:

Advantages Disadvantages
(i) Prevents artificial reliance on spe- (i) Need to know differential geome-
cific coordinate systems. try.

(i1) ldentifies key elements of system
model.

(iii) Suggests methods of analysis and
design.
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Manifolds

M Pa
e Manifold M, covered with charts - el @
{(Ua, Pa)}aca satisfying overlap condition. % “
Up by
S

e Around any point x € M a chart (U, ¢)

provides coordinates (z?,...,2").
e Continuity and differentiability are checked in @
coordinates as usual. R
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Manifolds (cont’d)

Manifolds we will use this week:
(i
(ii

) Euclidean space: R™.

)
(iii) m X n matrices: R™*".
)

)

n-dimensional sphere: §* = {x € R"*! | ||z|gn+1 = 1}.

(iv) General linear group: GL(n;R) = {A € R™*™ | det A # 0}.

(v) Special orthogonal group:
SO(n) ={ReGL(m;R) | RR" =1,, det R =1}.
(vi) Special Euclidean group: SE(n) = SO(n) x R™.
The manifolds S™, GL(n;R), and SO(n) are examples of submanifolds, meaning

(roughly) that they are manifolds contained in another manifold, and acquiring
their manifold structure from the larger manifold (think surface).
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Tangent bundles

(il

ié ; =[]z = [12]z @

\?/

e Formalize the idea of 2 R™
“velocity.”

e Given a curve ¢ — ~y(t) represented in coordinates
by t +— (z1(t),...,2"(t)), its “velocity” is t — (&1(t),..., 3" (t)).

e Tangent vectors are equivalence classes of curves.
e The tangent space at z € M: T,M = {tangent vector at z}.
e The tangent bundle of M: TM = U,em T, M.

e The tangent bundle is a manifold with natural coordinates denoted by

((zt,...,2"), (vt ... 0")).
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Vector fields

e Assign to each point x € M
an element of T,M.

o Coordinates (z',...,z") ™= yector fields {8%1, ce 8%} on chart domain.

o =) Any vector field X is given in coordinates by X = X'-2; (note use of

summation convention).
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Flows
o Vector field X and chart (U, ¢) ™ od.e.:

() = X2 (t),...,2"(t))

() = X" (2 (t),. .., 2" (1))

e Solution of o.d.e. == curve ¢ — (t) satisfying 7/(t) = X (v(t)).
e Such curves are integral curves of X.

o Flow of X: (t,z) — ® () where t — ®;X(x) is the integral curve of X

through .
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Lie bracket
e Flows do not generally commute.
e ie, given X and Y, it is not generally true that ;X 0 ®Y = @Y 0 dX.

e The Lie bracket of X and Y:

d O Y od X od odV ().

[X,Y]( ) Et 0 Vit Vi NG

Measures the manner in which flows do not commute.

e Mechanical exhibition of the Lie bracket
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Vector fields as differential operators
e Vector field X and function f: M — R = |je derivative of f with respect to
X:

Lx[f(z) = F(@ ().

il

e In coordinates: Ly f = X! g{i (directional derivative).
e One can show that x 2Ly f — Ly Lxf = L x v f

oyt . 8X’ 0
P _ J
X, ¥] = (&rj X7 02 Y >8:L‘i'
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Configuration manifold

Ospatial
e Single rigid body:
positions (Obody — Ospatial) € R?
—
of body [ by | by | by | €50(3).

e Q =S0(3) x R3 for a single rigid body.
e For k rigid bodies,
Qfree = (SO(3) x R?) x -+ x (SO(3) x R?)

k copies

This is a free mechanical system.
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Configuration manifold (cont’d)

e Most systems are not free, but consist of bodies that are interconnected.
Definition 1. An interconnected mechanical system is a collection By, ..., By
of rigid bodies restricted to move on a submanifold Q of Qfee. The manifold Q is
the configuration manifold.

o Coordinates for Q are denoted by (¢, ...,q"). Often called “generalized
coordinates.”

o Forje{l,...,k}, II;: Q— SO(3) x R? gives configuration of jth body. This
is the forward kinematic map.
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Configuration manifold (cont’d)

Example 2. Planar rigid body:
e Q=50(2) x R? ~ S! x R2,

o Coordinates (6, x,vy). Ocpatial

cosff —sinf 0
o I11(0,z,y) = ( sinf cosf® 0f,(z,y,0)
——
0 0 1| =rieR3

=R,€50(3)
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Configuration manifold (cont’d) ba>

Example 3. Two-link manipulator:

e Q=5S0(2) x SO(2) ~ S x S™.

e Coordinates (61,02).

° H1(91,02) = (Rl,’l"l) and
Hg(el,eg) = (RQ,TQ), where
cosfy —sinf; O cos 6o
Ry = |sin#; cos#; 0|, Ra= |sinb,
0 0 1 0

r1=r1R181, 79 =F(1R181 +1r2Ros.
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Configuration manifold (cont’d)

Example 4. Rolling disk:
e Q=R2 x S! xSt

o Coordinates (x,y,0, ).

cos¢cosf singcosf  sinf
o Ii(x,y,0,0) = ( cos¢sinf singsinf —cos 7(xay7p)>'
—————

—sin ¢ cos ¢ 0 =r1€R3

=R,€50(3)
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Velocity
e Rigid body B undergoing motion ¢ — (R(t), r(t)):
(i) Translational velocity: ¢ — 7(t);
(ii) Spatial angular velocity: t — &(t) £ R(t)R™*(t);
(iii) Body angular velocity: ¢t — Q(t) 2 R™'(¢)R(t).

o Both &(t) and Q(t) lie in s0(3) ™ define w(t), 2(t) € R3 by the rule
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Inertia tensor

o Rigid body B with mass distribution p.
o Mass: pu(B) = [ dp.

e Centre of mass: x. = [, xdpu.

e Inertia tensor about x.: I.: R? — R3 defined by

L(v) = /B(az C ) x (v x (@ — x2)) dp.
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Kinetic energy
e Rigid body B undergoing motion ¢ — (R(t), r(t)).
e Assume Opoqy is at the center of mass (x. = 0).
e Kinetic energy:
KE() = 5 [ 1#(0) + R(tal dn
Proposition 5. KE(t) = KEirans(t) + KEot(t) where

KEtrans(t) = 2(B)[|7(t)||2s,  KEror = 5 (T(2(t)), () gs -
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Kinetic energy (cont’d)

e Interconnected mechanical system with configuration manifold Q.
o v, €TQ.

e t+— 7(t) € Q a motion for which +/(0) = v,.

e jth body undergoes motion t — IL; oy(t) = (R;(t), r;(t)).

o Define Q;(t) = R () R;(t).

o Define KE;(vq) = 5415 (B;)lI7 (£) [Rs + 5 (L1.c(2 (1)), 2;(6))ze

e This defines a function KE;: TQ — R which gives the kinetic energy of the jth
body.

t=0

e The kinetic energy is the function KE(v,) = Zk

j=1 KE; (vg).
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Symmetric bilinear maps

e Need a little algebra to describe KE.

o Let V be a R-vector space. Yo(V) is the set of maps B: V x V — R such that
(i) B is bilinear and
(i) B(vy,v2) = B(va,v1).

e Basis {e1,...,e,} for Vi B;; = B(e;,e;), i,j € {1,...,n}, are components of
B.

e [B] is the matrix representative of B.

e An inner product on V is an element G of X5(V) with the property that
G(v,v) > 0 and G(v,v) =0 if and only if v = 0.

Example 6. V = R", Gg~ the standard inner product, {ey,...,e,} the standard

basis: (Ggrn)i; = 0i;.
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Kinetic energy metric

Proposition 7. There exists an assignment q — G(q) of an inner product on T,Q
with the property that KE(vq) = 3G(q)(vg, vg).

e G is the kinetic energy metric and is an example of a Riemannian metric.

e (G is a crucial element in any geometric model of a mechanical system.
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Kinetic energy metric (cont’d)

Example 8. Planar rigid body:

* x 0
Lie=|*x x 0], Ql(t) = (Rfl(t)Rl)v = (070’9)7
0 J
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Kinetic energy metric (cont’d)

Example 9. Two-link manipulator:

* o+ 0 * x 0
Hl,c = |* * 01, ]IQ c— |* * 0f,
0 0 J1 0 0 J2

(1) = (R () R1) = (0,0,00),
(t) = (R ()Ra) = (0,0,6),
+%m2€1€2 COS(91 — 02)9192 + %Jlﬁf + %Jgég,
e [G] _ Ji1+ i(ml + 4m2)€% %m2€1€2 COS(01 — 92)

%ngleg COS(91 — 92) JQ + %mgﬁg
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Kinetic energy metric (cont’d)

Example 10. Rolling disk:

Jspin 0 0
I[1,c - 0 Jspin 0 5 Ql(t) - (Rl_l(t)Rl)v = (_9 sin (i),éCOS ¢7 _¢)7
0 0 Jroll

= KE = im(i® +52) + §Jepind? + §Jran 6,

m 0 0 0
0O m 0 0
= [G]=
0 0 Jgin O
0 0 0 Jai
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Kinetic energy metric (cont’d)
e This whole procedure can be automated in a symbolic manipulation language.

e Snakeboard example:

T

o Here Q = R? x S x S! x S! with coordinates (z,y, 0,1, ¢).
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Euler-Lagrange equations

e Free mechanical system with configuration manifold Q and kinetic energy metric

G.
e Question: What are the governing equations?
e Answer: The Euler-Lagrange equations.
o Define the Lagrangian L(vgy) = $G(vg, vg).

o Choose local coordinates ((¢',...,q"), (vi,...,v")) for TQ.

e The Euler-Lagrange equations are
d /0L oL
— - ) — — =0,
dt (80’) aq’

e The Euler-Lagrange equations are “first-order” necessary conditions for the

ie{l,...,n}.

solution of a certain variational problem.
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Euler-Lagrange equations

o Let us expand the Euler-Lagrange equations for L = 1G;;(q)¢"¢’:
d (8L) oL
dt \ ov? oq’

= Gy (fjj + ij(%(;il _ ;ag’;l]:%) y ~m)
= Gy (@ +17,44"),

where

8Glj 8le _ ank)

i _1 2l .o
'7k_§G (aq’“ ¢ aq! i,5, k€ {1,...,n}.

G
o Question: What are these functions F;-k?
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Affine connections

Definition 11. An affine connection on Q is an assignment to each pair of vector
fields X andY on Q of a vector field V xY ', where the assignment satisfies:

(i) (X,Y)— VxY is R-bilinear;
(i) VixY = fVxY for all vector fields X and Y, and all functions f;

(iil) Vx(fY) = fVxY + (ZLxf)Y for all vector fields X and Y, and all functions
f.

The vector field V xY is the covariant derivative of Y with respect to X.
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Affine connections (cont’d)

e Question: What really “characterizes” V7

o Coordinate answer: Let (¢',...,q") be coordinates. Define n® functions T,
i,7,k € {1,...,n}, on the chart domain by
o .0 _
Vﬁaiqk—rjkaiql, j,k‘E{l,,n}

o Iy, 4,5,k € {1,...,n}, are the Christoffel symbols for V in the given
coordinates.
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Affine connections (cont’d)

e A connection is “completely determined” by its Christoffel symbols:

R4 . . 0
J i Jyk
g0 X +ijX Y )qu'

Theorem 12. Let G be a Riemannian metric on a manifold Q. Then there exists

VXY:<

G
a unique affine connection V, called the Levi-Civita connection, such that
G G
(i) Zx(G(Y,2)) =G(VxY,Z)+ G(Y,VxZ) and

G G
(i) VxY —VyX = [X,Y].
G G .
Furthermore, the Christoffel symbols of V are I'};, i,j,k € {1,...,n}.
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Return to Euler-Lagrange equations

e Had shown that

&(am‘) Tog 0 T @I =0
o Interpretation of ¢’ 4 I}, ¢7¢".
(i) Covariant derivative of 7" with respect to itself:
Vo' () = (¢ +T67¢%) 5o
(i) Curves t — v(t) satisfying V,y/(t)'y’(t) = 0 are geodesics and can be thought

of as being “acceleration free.”

G
(iii) Mechanically, V.,/;7'(t) = _0 .

) force
accn mass

G
e "Bottom-line": V., 4)7/(t) can be computed, and gives access to significant

mathematical tools.

Geom.Ctrl.Mech.Sys-ME225FB-W06-p40

Forces

e Some linear algebra: If V is a R-vector space, V* is the set of linear maps from
V to R. This is the dual space of V.

o Denote a(v) = (a;v) for « € V¥ and v € V.

o If {e1,...,e,} is a basis for V, the dual basis for V* is denoted by {e!,...,e"}
and defined by €’ (e;) = 0%

e The dual space of T,Q is denoted by T;;Q, and called the cotangent space.

, 527 } is denoted by {d¢',...,dq"}.

. d
e The dual basis to {7, ...
e A covector field assigns to each point ¢ € Q an element of T;Q.
Example 13. The differential of a function is df(q) € T;Q defined by

(df(q); X(q)) = Zxf(q). In coordinates, df = g—[{idqi.
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Forces (cont’d)

e Newtonian forces on a rigid body: force f applied to the center of mass and a

pure torque T.
e Need to add these to the Euler—Lagrange equations in the right way.

e Use the idea of infinitesimal work done by a (say) force f in the direction w:
<<fa w>>]R3'

o For torques, the analogue is ((T,w))gs where @ is the spatial representation of
the angular velocity.

e Interconnected mechanical system with configuration manifold Q, ¢ € Q,
w, € T,Q. ™= Determine force as element of T,Q by its action on wj,.
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Forces (cont’d)

e Fix body j with Newtonian force f; and torque ;.

Let t — ~(t) satisfy 7/(0) = wy, and let t — (R;(t),7;(t)) = IL; oy(t).
Let @,(t) = Rj(t)Rj*l(t) be the spatial angular velocity.

Define Fy -, € T;Q by

(Fi,ry3wg) = (£5:75(0))gs + (75, w;(0) s -

* Sum over all bodies to get total external force '€ T;Q: F = Z§:1 Fy oz
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Forces (cont’d)

e Note that the forces may depend on time (e.g., control forces) and velocity
(e.g., dissipative forces).
mmp A force is a map F': R x TQ — T*Q satisfying F(t,v,) € T,Q.

e Thus can write F' = Fj(t, q,v)dq".
e Question: How do forces appear in the Euler—Lagrange equations?

e Answer: Like this:

d (8L) oL
dt \ ot ot "
Why? Because this agrees with Newton.
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Forces (cont’d)

e Given a force F: R x TQ — T*Q, define a vector force G*(F): Rx TQ — TQ
by
G(GH(F)(t,vq), wq) = (F(t,vq); w) -

e In coordinates, G#(F) = Giija%i'

e The Euler—Lagrange equations subject to force F' are then equivalent to

Vo (t) = GHF) (9 (1))

acc'n force
mass
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F! b2
Forces (cont’d)

Example 14. Planar rigid body:
F11 = F(cos(f + ¢),sin(0 + ¢),0),
711 = F(0,0, —hsin¢),
f21=1(0,0,0), 721 =7(0,0,1),
mp P! = F(cos(0 + ¢)dz + sin(f + ¢)dy — hsin ¢dh),
F? = 7df.

Equations of motion easily computed.
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Forces (cont’d)

Example 15. Two-link manipulator:

711 =7(0,0,1), 712 =(0,0,0),

To1 = —712(0,0,1), 722 =72(0,0,1),
mp 7l — o dh,,

F? = 75(dfy — dby).

Gravitational force and equations of motion easily computed.
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Forces (cont’d)

Example 16. Rolling disk:
Ti1,1 = 7-1(07 07 1)7
To,1 = To(—sinb, cos6,0),

mp l—rdh, F?=r1dé.

Equations of motion cannot be computed yet, because we have not dealt
with. . . nonholonomic constraints.
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Distributions and codistributions
e A distribution (smoothly) assigns to each point ¢ € Q a subspace D, of T,Q.
e A codistribution (smoothly) assigns to each point ¢ € Q a subspace A, of T;Q.

We shall always consider the case where the function ¢ — dim(D,)
(resp. ¢ — dim(A,)) is constant, although there are important cases where this
does not hold.

Given a distribution D, define a codistribution ann(D) by
ann(D), = { oy | ag(vg) =0 for all v, € Dy}

Given a codistribution A, define a distribution coann(A) by
coann(A), = {vg | aq4(vg) =0 for all ag € Ay}
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Nonholonomic constraints

e An interconnected mechanical system with configuration manifold Q, kinetic
energy metric G and external force F'.

e A nonholonomic constraint restricts the set of admissible velocities at each
point ¢ to lie in a subspace Dy, i.e., it is defined by a distribution D.

Example 17. At a configuration
q with coordinates (z,y, 0, ¢), the
admissible velocities satisfy
T = pgf) cos 6 T
Y= p(ﬁ sin 6. s1
Thus D, has {X1(q), X2(q)} as basis, where

0 . .0
X, = pcos@a—m +psm98—y + ((Tgb’
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Nonholonomic constraints (cont’d)

e Question: What are the equations of motion for a system with nonholonomic
constraints?

e Answer: Determined by the Lagrange—d’Alembert Principle.

o We will skip a lot of physics and metaphysics, and go right to the affine
connection formulation, originally due to Synge [1928].
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Nonholonomic constraints (cont’d)

o Let D' be the G-orthogonal complement to D, let Pp be the G-orthogonal
projection onto D, and let Pff)- be the G-orthogonal projection onto D-.

D
e Define an affine connection V by
D G G n
VxY =VxY + (VXpD)(Y)
Theorem 18. The following are equivalent:

(i) t — ~(t) is a trajectory for the system subject to the external force F;

(i) Vo (£) = Po(GHEF) (L7 (1))
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Affine connection control systems

e Control force assumption: Directions in which control forces are applied
depend only on position, and not on time or velocity.
=) There exists covector fields F!, ..., F™ such that the control force takes
the form Feon = Y 0t u®F.

o Control forces appear in equations of motion after application of G* and
(possibly) projection by Pp.
mmp Model effects of input forces by vector fields Y7,. .., Y,,.
=P \odel uncontrolled external forces by vector force Y.

e Nothing to be gained by assuming that affine connection comes from physics.
=) Use arbitrary affine connection V.

o =) Control equations:

m

VoY (1) =D u(t)Ya(2(8) + Y (8,7 (1)),

a=1
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Affine connection control systems (cont’d)

Definition 19. A forced affine connection control system is a 6-tuple
Y=(QV,D,Y,% ={Y1,...,Y,,},U) where

(i) Q is a manifold,

(ii) V is an affine connection such that V xY takes values in D if Y takes values
in D,

(i) D is a distribution,

(iv) Y is a vector force taking values in D,
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Affine connection control systems (cont’d)

Definition 20. A control-affine system is a triple
=M% ={fo, f1, -, fm},U) where

(i) M is a manifold,
(ii) fo, fi,-.., fm are vector fields on M, and
(iii) U C R™.

e Control equations:

m

(v) Y1,...,Y,, are D-valued vector fields, and A (t) = fo(y(t)) + Z u®(t) fa(v(t))

. M a=1 v |
(vi) and U C R™. i pr

field field
Take away “forced” if Y = 0.
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Affine connection control systems (cont’d)
o Affine connection control systems are control-affine systems.

(i) The state manifold is M = TQ. Representations of control equations

(i) The drift vector field is denoted by S and called the geodesic spray. .

. . e Global representation:
Coordinate expression:
; 8 8 / _ a /!
0=298= Uzafqi — F;kvjvk@ <Cf. gt + 1 quk = ) V'y’(t)'y (t) = ;u (t)Ya('Y(t)) +Y(t,y (t))
. . . . e Natural local representation:
(iii) The control vector fields are the vertical lifts vift(Y,) of the vector fields Y,
a €{1,...,m}. Coordinate expression: ) o Ui ) .
{ } P §' + T ¢ :Zuayg+yz, ie{l,...,m}.
.0 a=1
fo =VIft(Yy,) =Y, ek

e Can add external force to drift to accommodate forced affine connection control

systems.
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Representations of control equations (cont’d)

e Global first-order representation:

m

Y () = S(T(t) + VIF(Y) (T (1) + Y u(EvIFE(Yo) (T (1)),
a=1
e Natural first-order local representation:
q' =, ief{l,...,n},

m
b= _Fz,kvjvk_yi_;_zuayj, ie{l,...,n}
a=1
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Representations of control equations (cont’d)

o Let 2" ={Xy,...,X,} be vector fields defined on a chart domain I/ with the
property that, for each ¢ € U, {Xi(q),..., X, (q)} is a basis for T,Q.

e For g €U and w, € T,Q, write w, = v*X;(q); {v,...,v"} are
pseudo-velocities.

e The generalized Christoffel symbols are
x .
Vx, Xi = T} X, Jhke{l,...,n}.

e Poincaré local representation:

i =X, ic{l,...,n},

4 x. LI
0t = —F;kvjvk—YZ—i—Zu“YaZ, ie{l,...,n},
a=1

where © means components with respect to the basis 2 .
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Representations of control equations (cont’d)

e In the case when V =V, this simplifies when we choose {X7,..., X,,} such
that {X;(q), ..., Xx(q)} forms a G-orthogonal basis for D,,. ==
3 1 G

o = —— G(Vx.X3(q), Xs(q)),
ap(@) BACIE (Vx.Xs(q), Xs5(q))

Significant advantages in symbolic computation.

a,B.6€{1,... k)

e orthogonal Poincaré representation:
q' = Xlv*, i€{l,...,n},

((F;X(;) n iua (Fe, X5>), sell,... k.

a=1

.5 25 a8

00 = —T'% ;0%v” +
B 2

¢ 1X5lg
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Representations of control equations (cont’d)

e Seems unspeakably ugly, but is easily automated in symbolic manipulation

language.

e Snakeboard example.
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Controllability theory
(i
(ii
(iii

) Definitions of controllability and background for control-affine systems
)

)
(iv) Good/bad conditions
)

)

)

Accessibility theorem

Controllability definitions and theorems for ACCS

(v
(vi

(vii

Examples
Snakeboard using Mma

Series expansions
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Reachable sets for control-affine systems
e A control-affine system ¥ = (M, % = {fo, f1,---, fm},U)

e A controlled trajectory of ¥ is a pair (v, u), where u: I — U is locally
integrable, and v: I — M is the locally absolutely continuous

m

Y (1) = fo(r(8) + Y ut () fa(¥(2)

a=1
o Ctraj(3,T) is set of controlled trajectories (v, u) for ¥ defined on [0, 7]

o Define the various sets of points that can be reached by trajectories of a
control-affine system. For g € M, the reachable set fof ¥ from z is

Rs(zo,T) ={y(T) | (v,u) € Ctraj(%,T), 7(0) = o}
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Controllability notions for control-affine systems

=M% ={fo, f1,--, fm},U) is C>-control-affine system, x9 € M

e Y is accessible from z if there exists T' > 0 such that int(Rx(zo, <t)) # 0 for
t€]0,T]
e Y is controllable from x if, for each © € M, there exists a T' > 0 and

(v,u) € Ctraj(X, T) such that v(0) = xg and ¥(T) = =

e ¥ is small-time locally controllable (STLC) from z if there exists T' > 0 such
that 2 € int(Rx(xo, <t)) for each t €]0, T

Zo To
R (z0, <T)
R (0, <T') R (0, <T')
not accessible accessible controllable (STLC)
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Involutive closure
e D is a smooth distribution if it has smooth generators
e a distribution is involutive if it is closed under the operation of Lie bracket
o inductively define distributions Lie) (D), I € {0,1,2,...} by
Lie (D), = D,
Lie) (D), = Lie!"""(D), + span{[X,Y](z)|
X takes values in Lie") (D)

Y takes values in Lie!'?) (D), Lh+l=1-1}

o the involutive closure Lie>) (D) is the pointwise limit
Theorem 21. (Under smoothness and regularity assumptions) Lie(*) (D)
contains D and is contained in every involutive distribution containing D
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Examples of accessible control-affine systems

Accessibility results for control-affine systems
e ¥ = (M,%,U) is an analytic control-affine system
e we say X satisfies the Lie algebra rank condition (LARC) at z if

Lie®)(€) 2y = Te,M = rank Lie™)(%),, = n

0

e a control set U is proper if 0 € int(conv(U))

Theorem 22. If U is proper, then x pcos ¢ 0
Y is accessible from xq if and only if X satisfies LARC at xq 7 psin ¢ 0 Ty cos ) 0
= U U2 .

It is not known if there are useful necessary and sufficient conditions for STLC. ¢ 0 1 Yri _ sin 6 uy + 0 Uy
Available results include a sufficient condition given as the “neutralization of bad 0 1 0 0 %tanqﬁ 0

bracket by good brackets of lower order” ¢ 0 1

(unicycle dynamics, simplest wheeled
robot dynamics)
Geom.Ctrl.Mech.Sys-ME225FB-W06-p67 Geom.Ctrl.Mech.Sys-ME225FB-W06-p68

Trajectories and reachable sets of mechanical systems

e (time-independent) general simple mechanical control system
E = (Q7G"/Y7F7D7y = {F17“”Fm}’U)

e a controlled trajectory for ¥ is pair (y,u), with u: I — U and v: [ — Q,
satisfying v/ (tg) € Dy, for some ty € I and

Summar D
’ VoY (8) = ~Po(gradV (1(1))) + Po(GHF((1))))
e notions of accessibility and STLC m .
_ _ _ + > ut () Po(GHE(1(1)))).
e tool: Lie bracket and involutive closure a1
e necessary and sufficient conditions for configuration accessibility o Ctraj(X,T) is set of [0,T]-controlled trajectories for X on Q

e reachable sets from states with zero velocity:
RE,TQ(q07T) = {PYI(T) | (77'”’) € Ctraj(E7T)7 ,y/(o) = Oq0}7
Rsq(qo,T) = {v(T) | (v,u) € Ctraj(Z,T), 7'(0) = 0gy } ,

Re1e(e0, <T) = |J Reoraleo.t), Ruqla.<T)= |J Rsaqlat).
te0,T] t€[0,7]
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Controllability notions for mechanical systems

¥ =(Q,G,V,F,D,%#,U) is general simple mechanical control system with F
time-independent, U proper, and ¢y € Q

e Y is accessible from gq if there exists T' > 0 such that intp(Rx tq(go, <t)) # 0
for t €]0,7

e Y is configuration accessible from ¢ if there exists T' > 0 such that
int(Rs,q(qo0, <t)) # 0 for t €]0, 77

e ¥ is small-time locally controllable (STLC) from g if there exists T' > 0 such
that Oqo (S intD(RgTQ(qo, St)) for t € ]0, T]

e ¥ is small-time locally configuration controllable (STLCC) from g if there
exists T' > 0 such that ¢o € int(Rx q(go, <t)) for t €]0,T].
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Controllability for mechanical systems: linearization results

o Let ¥ = (R", M, K, F) be a linear mechanical control system, i.e.,
M and K are square n X n matrices and F' is n x m,

Mi(t) + Kxz(t) = Fu(t)
Theorem 23. The following two statements are equivalent:
(i) ¥ is STLC from 0 @& 0

(ii) the following matrix has maximal rank

| MU F | MUK (MOF) || (K (MU
e Corresponding linearization result where, in coordinates,
M = G(qp), K = HessV(qp), and no dissipation

Corollary 24. If ¥ = (Q,G,V =0,.%,U) is underactuated at qo, then its
linearization about Qg is not accessible from the origin.
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The symmetric product
o given manifold Q with affine connection V

e the symmetric product corresponding to V is the operation that assigns to
vector fields X and Y on Q the vector field

(X:Y)=VxY +VyX

e In coordinates
_ oYk

ok i, X!
(o)t = X

VI TH (XY 4+ XIY7)
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Symmetric product as a Lie bracket
e Given vector field Y on Q, its vertical lift vIft(Y") is vector field on TQ
y1
0 0

-~ | - ft(Y)=Y'— ~ =00Y
| wRm) =Y s | —0e

Y’ﬂ

e Recall: The drift vector field S and called the geodesic spray:
7] ik 0

R .
jk avz

S:'Uaiql

e remarkable Lie bracket identities:

[S,vift(Y)](0) = —Y(q) © 04
VIft(Y,), [S, VIft(Ys)]] (vg) = vIft((Yy : Y5))(vg)
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Symmetric closure
e take smooth input distribution Y

e a distribution is geodesically invariant if it is closed under the operation of
symmetric product

o inductively define distributions Sym® (), 1 € {0,1,2,...} by

Sym @ (¥)g = ¥y
Sym(¥)g = Sym=H )y +span{(X : V) (9)]
X takes values in Sym'*)(D)

Y takes values in Sym!2) (D), L+lb=1-1}

o the symmetric closure Sym(®) () is the pointwise limit
Theorem 25. (Under smoothness and regularity assumptions) Sym(® ()
contains Y and is contained in every geodesically invariant distribution containing

y
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Accessibility results for mechanical systems
e X =(Q,V,D,% ={Y1,...,Y,,},U) is an analytic ACCS
e U proper

e go point in Q
Theorem 26. (i) X is accessible from qq if and only if
Sym(w)(y)qo =Dy, and Lie(w)(D)qo =T4Q

(ii) X is configuration accessible from qq if and only if
Lie > (Sym'™) (), = Ty, Q

Key result in proof: If €5 = {S,vift(Y1),...,vIft(Y;,)}, then, for ¢o € Q,

Lie!™) (%5)o,, = Lie®™) (Sym™) (1)), @ Sym> (V)
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Notions for sufficient test

Consider iterated symmetric products in the vector fields {Y7,..., ¥, }:

(i) A symmetric product is bad if it contains an even number of each of the
vector fields Y7,...,Y,,, and otherwise is good.
Eg., (Ya: V) : (Y, :Yy)) is bad, (Y, : (Y} : Y,)) is good

(ii) The degree of a symmetric product is the total number of input vector fields
comprising the symmetric product.
E.g., ((Y,:Y,): (Y, :Yy)) has degree 4

(iii) If P is a symmetric product and if o is a permutation on {1,...,m},
define o(P) as symmetric product where each Y, is replaced with Y, )
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Controllability mechanisms

given control forces {F!, ..., F™}
accessible accelerations {Y3,...,Y,,}
Y, = Pp(G™'F%)

- 4 |

decoupling v.f.s {V4,...,V;}
Vi,(Vi: Vi) e {(%1,.... Y}

access. velocities Sym(""’)(Yl7 ey YY) D

¥ A

access. confs Lie™) (Sym™®) (v}, ... Y,)) D Lie®™)(V4,...,Vi): configurations
Vi (Y] £ Vi) [V Vil [0V £ Yi) Vil }

accessible via decoupling v.f.s
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Controllability for ACCS

e ACCS X =(Q,V,D,Y,U), qo € Q, U proper

e Y satisfies bad vs good condition if for every bad symmetric product P

> o(P)(q0) € spang {Pi(q0); - -, Pr(d0)}
0ESm
where Py,..., P, are good symmetric products of degree less than P
Theorem 27.
rank Sym(°°>(y)q0 is maximal —

bad vs good . . ..
& of configurations and velocities

STLCC= small-time locally configura-

rank Lie>) (Sym*) (), = n tion controllable
bad vs good (q0,0) == (qr,vs) can reach open set
of configurations

STLC= small-time locally controllable

(q0,0) == (qgr,vf) can reach open set

Summary for control-affine systems
e notions of accessibility and STLC
e tool: Lie bracket and involutive closure

e necessary and sufficient conditions for accessibility

Summary for ACCS
e notions of configuration accessibility and STLCC
e tool: symmetric product and symmetric closure

e necessary and sufficient conditions for accessibility
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Controllability examples

e Y is internal torque and
Y5 is extension force.

— Both inputs: not accessible, configura-
tion accessible, and STLCC (satisfies suf-
ficient condition).

— Y7 only: configuration accessible but not
STLCC.

— Y5 only: not configuration accessible.

e Yj is component of force along center axis,
and Y5 is component of force perpendicular
to center axis.

— Y7 and Y5: accessible and STLCC (sat-
isfies sufficient condition).

— Y7 and Y5: accessible and STLCC (sat-
isfies sufficient condition).

— Y7 only or Y3 only: not configuration
accessible.

— Y5 only: accessible but not STLCC.

— Y5 and Y5: configuration accessible and
STLCC (but fails sufficient condition).
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e Y is “rolling” input and Y5 is “spinning”
input.
— Y7 and Y5: configuration accessible and
STLCC (satisfies sufficient condition).
— Y7 only: not configuration accessible.

— Y5 only: not configuration accessible.
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e Y rotates wheels and
Y, rotates rotor.

— Y7 and Y5: configuration accessible and ¥
STLCC (satisfies sufficient condition).
— Y7 only: not configuration accessible. ’

— Y5 only: not configuration accessible.
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e Single input at joint.

e Configuration accessible, but not STLCC.
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Series expansion for affine connection control systems

Y =(Q,V,D,% = {Y1,...,Y,,},U) is an analytic ACCS

V,Y/(t)’}/l(t) = Y(taly(t))
7'(0) =0

absolute, uniform convergence
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Series: comments

Vi(t.q) = [y Y(s,q)ds

+oo
"(t) = Vi (t,~(t t
70 g k(6 7(2)) Verr(tq) = —33 [1(Va(s.0) : Vials,)) ds

Error bounds:

Vil = O(Iv 424

In abbreviated notation

Fov), = ((r:r):7)

T 7)) + 3 (7 7) 7 ) tr(0) + O Y 147)
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Kinematic reductions and motion planning

Motion planning problems for driftless systems and ACCS

How to reduce the MPP for ACCS to the MPP for a driftless system
Kinematic reductions: notion, theorems and examples

Kinematic controllability

Inverse kinematics and example solutions

Motion planning problems with animations
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Motion planning for driftless systems

o (M, {X;,...,X,,},U) is driftless system:

m
V(1) = Xaly()u(t)
a=1
where u are U-valued integrable inputs — let % be a set of inputs

e 7/-motion planning problem is:

Given zg,z1 € M, find u € %, defined on some interval [0, 7], so that the
controlled trajectory (v, u) with v(0) = z¢ satisfies v(T) = 1
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Motion planning for driftless systems: cont’d

e Examples of % -motion planning problem
(i) motion planning problem with continuous inputs
(i) motion planning problem using primitives:
U={e1,...,em,—€1,...,—€n}
% is collection of piecewise constant U-valued functions

Then, v is concatenation of integral curves, possibly running backwards in
time, of the vector fields X;,..., X,,. Each curves is a primitive

e Motion planning using primitives Consider (M, {X1,..., X, },R™).
If Lie(oo)(é‘c') = TM, then, for each xg,x1 € M, there exist k € N, t1,...,t; € R,
and aq,...,a; € {1,...,m} such that

X X
x1 =" o0 ®y " (20)

Technical conditions: smoothness, complete vector fields, M connected
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Motion planning for ACCS

e (QV,D,{Y1,...,Y,,},U) is affine connection control system (ACCS)

m

Vo (8) =D us(t)Ya(y(1))

a=1
o 7 is set of U-valued integrable inputs

e 7/-motion planning problem is:

Given qo,q1 € Q, find u € %, defined on some interval [0, 7], so that the
controlled trajectory (v, u) with 7/(0) = 04, has the property that

PYI (T) = OQ1
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How to reduce the MPP for ACCS to the MPP for a driftless system
Key idea: Kinematic Reductions
Goal: (low-complexity) kinematic representations for mechanical control systems
Consider an ACCS, i.e., systems with no potential energy, no dissipation

(i) ACCS model with accelerations as control inputs mechanical systems:

m

Vvl(t)’)//(t) = ZYa(V(t))ua(t)

a=1

Y =span{Yy,..., Y}

(ii) driftless = kinematic model with velocities as control inputs

~

(1) =S Vely()wn(t) Y =span {Vi....,Vi}

b=1

{ is the rank of the reduction
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When can a second order system follow the solution of a first order?

ex:

Can follow any straight line and can turn
T 2 preferred velocity fields

(plus, configuration controllability)

Ok ? ? ?
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Kinematic reductions

VY =span{Vq,...,V,} is a kinematic reduction if any curve ¢: I — Q solving the
(controlled) kinematic model can be lifted to a solution of the (controlled) dynamic

model.

rank 1 reductions are called decoupling vector fields

The kinematic model induced by {Vi,...,V;} is a kinematic reduc-
tion of (Q,V,D,{Y1,...,Y,,},U)
if and only if
(Hyvcy
i)y Yy:v)ycy




Geom.Ctrl.Mech.Sys-ME225FB-W06-p93 Geom.Ctrl.Mech.Sys-ME225F B-W06-p94

Examples of kinematic reductions

Three link planar manipulator with passive link

“ Actuator Decoupling  Kinematically
“ configuration  vector fields  controllable
[
[oJlollalo (- (0,1,1) 2 yes
(1,0,1) 2 yes
(1,1,0) 2 yes
Two rank 1 kinematic reductions (decoupling vector fields)
no rank 2 kinematic reductions
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Examples of maximally reducible systems

When is a mechanical system kinematic?

When are all dynamic trajectories executable by a single kinematic model?

A dynamic model is maximally reducible (MR) if all its controlled trajectory

(starting from rest) are controlled trajectory of a single kinematic reduction.

(Q,V,D,{Y1,...,Y.,},U) is maximally reducible
if and only if &z pcos ¢ 0
y psin ¢ 0 T, cos 0
(i) the kinematic reduction is the input distribution ) é = 0 v ) w J sind 0
. ) "= v+ w
(i) YY) cy 0 1 0 0 %tan(j) 0
¢ 0 1

(unicycle dynamics, simplest wheeled
robot dynamics)
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Kinematic controllability
Objective: controllability notions and tests for mechanical systems and reductions

Consider: (Q,V,D,{Y1,...,Y,,},U)

KC= locally kinematically controllable

(40,0) — (ar,0)
configurations by concatenating motions

Vi,..., Vs decoupling v.f.s
rank Lie®™)(Vy,...,Vy) = n

can reach open set of

-

along kinematic reductions

STLC= small-time locally controllable
rank Sym®) () = n,

uhad 4" =) ((),0) = (gr,v5) can reach open set
ad vs goo of configurations and velocities
STLCC= small-time locally configura-
rank Lie(oo)(sym(OO)(y)) =1y tion controllable

(g0,0) % (gr,vf) can reach open set

of configurations

“bad vs good”
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Controllability mechanisms

given control forces {F, ..., F™}
accessible accelerations {Y1,...,Y;,}

Y, = Pp(G~1F%)

" 4 |

decoupling v.f.s {V4,...,V;}

access. velocities Sym(“’)(Yl, LY D)
Vi, (Vi: Vi) e {Y1,....Yn}

{0 (Y £ Y2 (Y Vi) £ Vi) o)

¥ ¥

Lie®™)(V4, ..., Vi): configurations
accessible via decoupling v.f.s

access. confs Lie™) (Sym™)(v1, ... Y;)) D)

Y;~<}/JY1€>[Y/Y1€L[<Y/YI»>7Y;L]}
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Controllability inferences

STLC = small-time locally controllable
STLCC = small-time locally configuration controllable
KC = locally kinematically controllable
MR-KC = maximally reducible, locally kinematically controllable
STLC KC <:I MR-KC

N

STLCC

There exist counter-examples for each missing implication sign.
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Cataloging kinematic reductions and controllability of example systems

System \ Picture | Reducibility | Controllability

planar 2R robot

single torque at either joint:
(1,0),(0,1)

n=2m=1

e

(1,0): no reductions accessible

(0,1): maximally reducible not accessible or STLCC

S
roller racer /

single torque at joint no kinematic reductions accessible, not STLCC

n=4m=1

planar body with single force

or torque decoupling v.f. reducible, not accessible

n=3m=1

planar body with single gen-

eralized force no kinematic reductions accessible, not STLCC

n=3m=1

I body with two f
planar body with two torces two decoupling v.f. KC, STLC

n=3m=2
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robotic leg two decoupling v.f., maxi-

KC

n=3m=2 mally reducible

10,1 1,100 .
(1,0, 1) and {1, 1,0): two de (1,0,1) and (1,1,0): KC

n=6m=3

planar 3R robot, two torques: coupli f
pling v.f.
(0.1.1), (1.0.1), (1.1.0) M and STLC
n=3m=2 (0,1, 1):. two decouPllng v.f. (0,1,1): KC
and maximally reducible
Ili
rofiing penny fully reducible KC
n=4m=2
keboard
snakeboar )% two decoupling v.f. KC, STLCC
n=>5m=2
3D vehicle with 3 generalized
forces ! three decoupling v.f. KC, STLC
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Summary

o relationship between trajectories of dynamic and of kinematic models of
mechanical systems

e kinematic reductions (multiple, low rank), and maximally reducible systems

e controllability mechanisms, e.g., STLC vs kinematic controllability
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Trajectory design via inverse kinematics
Objective: find u such that (ginitial, 0) - (Gtarget, 0)

Assume:

(i) (Q,V,D,{Y1,...,Y,},U) is kinematically controllable

(i) Q = G and decoupling v.f.s {V7,..., V;} are left-invariant
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Left invariant vector fields on matrix Lie groups

e Matrix Lie groups are manifolds of matrices closed under the operations of
matrix multiplication and inversion

o Example: SO(3) = {R €R¥>3 | RR" = I5,det(R) = +1}

o left invariant vector fields have the following properties:

(i) R(t) =Xy (R(t)) = R(t) -V for some matrix V

(ii) flow of left invariant vector field is equal to left multiplication

(linear dependence)

XV (Ro) = Ry - exp(tV))

(iii) exp(tV) € SO(3), that is, V' € s0(3) set of skew symmetric matrices

(iv) For ey, eq, es the standard basis of R3,

00 0 0 0 -1 0 -1 0
ee=10 0 -1|, €&=10 0 0|, es=1]1 0 0
01 0 1 0 0 0 0 0
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Trajectory design via inverse kinematics
Objective: find u such that (giitial, 0) = (Gtarget, 0)

Assume:
() (Q,V,D,{Y1,...,Y,,},U) is kinematically controllable

(i) Q =G and decoupling v.f.s {Vi,...,V;} are left-invariant
= matrix exponential exp: g — G gives closed-form flow
—> composition of flows is matrix product

Objective: select a finite-length combination of k flows along {V7,...,V;} and
coasting times {t1,...,tx} such that

qi:i};iaﬂtarget = Gdesired = exp(tlval) e eXp(thak)-

No general methodology is available = catalog for relevant example systems
SO(3),SE(2),SE(3), etc
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Inverse-kinematic planner on SO(3)
Any underactuated controllable system on SO(3) is equivalent to

Vi=e.=(0,0,1) Vi=(a,b,c) witha?+b*>#0

Motion Algorithm: given R € SO(3), flow along (e,, V5, e,) for coasting times

; Rss — c?
=acos [ —————
2 1—¢2

t3 = atan2 (vy R31 + vaR32, vaR31 — v1 R32)

1 — costo w1 ac b V1
where z = , = 2z,
sin to wa cb —a V2

K FK
R == (t1,1t2,t3) — exp(tie,) exp(t2V2) exp(tse,)

t1 = atan2 (w1R13 4+ wo Ros, —wo R13 + ’U)1R23)

Local Identity Map =
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Inverse-kinematic planner on SO(3): simulation

The system can rotate about (0,0,1) and (a,b,c) = (0,1, 1)
Rotation from I5 onto target rotation exp(7/3,7/3,0)

As time progresses, the body is translated along the inertial x-axis
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Inverse-kinematic planner for ¥;-systems SE(2)
First class of underactuated controllable system on SE(2) is

Z1 = {(‘/17‘/2” ‘/1 = (17b1701)7v2 = (O7b2?02)7 bg + C% = 1}

Motion Algorithm: given (0, z,v), flow along (V1,Va, Vi) for coasting times

(t1,to,t3) = (atan2 (o, B) , p, 0 — atan2 (a, 3))

« ba  co T —c1 b 1 —cost
h — /a2 2 and _ _
e ’ + /8 " [/3:| [—62 b2:| ( [yj| [ bl 61] [ Sin 9 ] )

0, 2,y) EL (t1,t2,t3) EL exp(t1V1) exp(t2Va) exp(tsVh)

Identity Map =
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Inverse-kinematic planner for ¥,-systems SE(2)
Second and last class of underactuated controllable system on SE(2):

3o ={(Vi,V2)| Vi =(1,b1,¢1),Vo = (1,b2,¢2), by #baorcy # ca}

Motion Algorithm: given (0, z,y), flow along (V1,Va, V) for coasting times

t; = atan2 (p, 4 - p2> + atan2 (o, 3)

ts=0—1t1 —to

to = atan2 (2 —p% p/4— p2>

« c1—ca2 ba—b T —c1 b 1 —cost
where p=+/a? + (2, = —
|:/6] [bl o b2 G- 62] ( [y] [ bl Cl] |: Sin 9 ] )

Local Identity Map = (0, z,vy) ELN (t1,t2,t3) 7K exp(t1V1) exp(taVa) exp(tsVi)
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Inverse-kinematic planners on SE(2): simulation

Inverse-kinematics planners for sample systems in 31 and X5. The systems
parameters are (by,c1) = (0,.5), (b2, c2) = (1,0). The target location is (7/6,1,1).
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Inverse-kinematic planners on SE(2): snakeboard simulation

snakeboard as 3p-system
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Inverse-kinematic planners on SE(2) x R: simulation

4 dof system in R3, no pitch no roll

kinematically controllable via body-fixed constant velocity fields:
V1= rise and rotate about inertial point; Vo= translate forward and dive

The target location is (7/6,10,0,1)
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Inverse-kinematic planners on SE(3): simulation

kinematically controllable via
body-fixed constant velocity fields:

V1= translation along 1st axis

Vo= rotation about 2nd axis

V3= rotation about 3rd axis

V3 : 0 — 1: rotation about 3rd axis 4 <

V5 : 1 — 2: rotation about 2nd axis 6 ’
V1 : 2 — 3: translation along 1st axis “N
V3 : 3 — 4: rotation about 3rd axis P » 6
Vs 1 4 — 5: rotation about 2nd axis ‘ @

V3 : 5 — 6: rotation about 3rd axis | » )
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Summary

o relationship between trajectories of dynamic and of kinematic models of
mechanical systems

e kinematic reductions (multiple, low rank), and maximally reducible systems
e controllability mechanisms, e.g., STLC vs kinematic controllability
e systems on matrix Lie groups

e inverse-kinematics planners

Geom.Ctrl.Mech.Sys-ME225FB-W06-p115

Analysis and design of oscillatory controls for ACCS
(i
(i
(i
(iv
(v) Control design via Inversion Lemma

(vi

Introduction to Averaging
Survey of averaging results

Two-time scale averaging analysis for mechanical systems

Analysis via the Averaged Potential

)
)
)
)
)
)

Tracking results and examples
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Introduction to averaging
e Oscillations play key role in animal and robotic locomotion
e oscillations generate motion in Lie bracket directions useful for trajectory design

e objective is to study oscillatory controls in mechanical systems:

Voo (£) = Y (t.A(1), / Y (¢, 7()dt = 0

e oscillatory signals: periodic large-amplitude, high-frequency



Geom.Ctrl.Mech.Sys-ME225FB-W06-p117

Survey of results on averaging
e Early developments: Lagrange, Jacobi, Poincaré

e Oscillatory Theory:

— Dynamical Systems: Bogoliubov Mitropolsky, Guckenheimer Holmes,
Sanders Verhulst, ...

— Control Systems: Bloch, Khalil ...

e Related Work:

— General ODE’s: Kurzweil-Jarnik, Sussmann-Liu,

(Electro)Mechanical Systems: Hill, Mathieu, Bailleiul, Kapitsa, Levi ...

Time-dependent vector fields: Agrachev, Gramkrelidze, ...

Series Expansions: Magnus, Chen, Brockett, Gilbert, Sussmann, Kawski . ..

Small-amplitude averaging and high-order averaging: Sarychev, Vela, ...
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Averaging for systems in standard form

e for £ > 0, system in standard form
Y'(t) =eX(t,7(t), ~(0) =m0

e assume X is T-periodic, define the averaged vector field
_ 1 [T
X(2) = & / X(r, z)dr.
T Jo

o define the averaged trajectory t — n(t) € M by

() =X (), n(0) =

Theorem 28 (First-order Averaging Theorem).

t
for all t € [0, ;O]

If X has linearly asymptotically stable point, then estimate holds for all time
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Averaging for systems in standard oscillatory form

e for € > 0, system in standard oscillatory form
1 t
V() = X(6(0) + 2Y (2,690)), 2(0) =0

e Assumptions:
(1) Y is T-periodic and zero-mean in first argument

(i) the vector fields = — Y (7,t,x), at fixed (7,t), are commutative

e Useful constructions:

(i) given diffeomorphism ¢ and vector field X, the pull-back vector field
O X =Tp ' oXog

(ii) given extended state x = (¢, ), define X¢(ze) = (1, X(x¢)), and
Ye(,2e) = (0,Y (7, ze))

(iii) define F' as two-time scale vector field by

(L F(r,ae) = (93" Xe) (@)
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Averaging for systems in standard oscillatory form: cont’d
o define F as average with respect to 7
o for fixed )y, compute the trajectories
¢'(t) = F(t,&(1)
n'(t, Ao) = Y'(t, Ao, n(t))

with initial conditions: £(0) = xo and 7(0) = &(¢)
(note 7 +— n(7,t) equals £(¢) plus zero-mean oscillation)

Theorem 29 (Oscillatory Averaging Theorem).

v(t) —n(t/e,t) = O(e) for all t € [0, to]
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Two-time scale averaging for mechanical systems

o for e € Ry, consider the forced ACCS (Q,V,Y, D, % = {Y1,...,Y,,},R™):

u (£,0)Ya(r(9)

/ / - 1
V' () =Y (A () + ) R
a=1

where Y is an affine map of the velocities

e assume the two-time scale inputs v = (u',...,u™): Ry x R — R™ are
T-periodic and zero-mean in their first argument

o define the symmetric positive-definite curve A: R, — R™>™ by

Awr(t) = 5(Ua)Upy (1) = Uy U (1), a,be{1,...,m}

where

T o 1 T
Uta (1) = / uas, s, Tgy(t)= / Utay (7. £)dr
0 0
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o define the averaged ACCS
Vewé'(t) = Z

with initial condition

) (Ya 1 Y3) (£(2))

€(0) =7(0)+ > Tw)(0)Ya((0))

Theorem 30 (Oscillatory Averaging Theorem for ACCS). there exists €g,tg € Ry
such that, for all t € [0,to] and for all € € (0,¢9),

V() = &) +O0(e),

=0+ Y (Ui (Lt) = Tw(®)Yale(®) + O(e).

a=1

If oscillatory inputs depend only on fast time, and if the averaged ACCS has linearly
asymptotically stable equilibrium configuration, then estimate holds for all time
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Averaging analysis with potential control forces

e when is the averaged system again a simple mechanical system?

e consider simple mechanical control system (Q, G, V, Fyiss, %, R™)
(i) no constraints
(i) F ={d¢',...,d¢p™}, where ¢*: Q — R fora € {1,...,m}
(iil) Fyiss is linear in velocity
e define input vector fields
9"
07
Lemma 31. symmetric product between vector fields satisfies
(gradg® : grade®) = grad(¢" : ¢")
where symmetric product between functions (Beltrami bracket) is:

0p° aqﬁ
oq* 8qJ

Ya(q) = grad¢®(q), (gradp?®)’ = GY

(07 : ¢%) = ((do®,d¢")) = G¥
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Averaging via the averaged potential

G

Va7 (t) = —gradV (4(t)) + G (Fuiss (7' (1))

+Z (2)grad(é*) (2(0),
d

Ve o€ (t) = —gradVag(€(1) + G (Fuias (€'(1)))

‘/avg:V+ Z Aab<¢a:¢b>'

a,b=1
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Example: stabilizing a two-link manipulator via oscillations

SN
7,

3| /2

k o

<

< 0
< time (sec) 0

()
u=—07+ —cos | -
€ €

Two-link damped manipulator with oscillatory control at first joint. The averaging
analysis predicts the behavior. (the gray line is 07, the black line is 65).
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Example: locomotion in the roller racer

(i) X1, X, describe feasible velocities of racer: X; forward, X, shape change
(ii) racer has single input X5

(i) symmetric product (X5 : X2) has component along X3

hence, racer moves (+) forward when subject to zero mean input!
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Summary

e averaging theorem for standard form

e averaging theorem for standard oscillatory form

e averaging for mechanical systems with oscillatory controls

e analysis via the averaged potential
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Design of oscillatory controls via approximate inversion
e Objective: design oscillatory control laws for ACCS
e stabilization and tracking for systems that are not linearly controllable

e setup: consider ACCS (Q,V,Y, D, % = {Y1,...,Y;,},R™) where Y is an affine
map of the velocities

e define averaging product Ajg 1) as the map taking a pair of two-time scale
vector fields into a time-dependent vector field by

1 T T1
Ap,r(V,W)(t,q) = — o </0 V (72, t,q)dTs : / W (12, t, q)d7'2>d7'1

2T2 </ / (12,t,q)dTodTy : / / W(ra,t,q dng7'1>
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Basis-free restatement of averaging theorem

Corollary 32. For e € Ry, consider governing equations

1 t
Vo () = Y (67'0) + W (2. 85(0),
(i) W takes values in Y
i) g — W(r,t,q), for (1,t) € Ry x R, are commutative
(ii) W(r,t,q), for (1,t) € Ry x Ry

Then, the averaged forced affine connection system is

Ve (t) =Y (8, () + A, (W, W)(t,£(t))

Problem 33 (Inversion Objective). Given any time-dependent vector field X,

compute two vector fields taking values in Y
(i) Wx slow Is time-dependent
(ii) Wx osc s two-time scales, periodic and zero-mean in fast time scale

such that
WX,S|OW + A[O,T] (WX,OSC) WX,OSC) = X (1)
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Controllability assumption and constructions
e Controllability Assumption: for all a € {1,...,m}, (Y, :Y,) €Y

.,m}, such that, for all a € {1,...,m}

m
(Ya:Ya) =) obYy
b=1

(i) smooth functions o2, a,b € {1,.

(i) for T € R4 and i € N, define p;: R — R by

() = 47 27th
pi(t) = T cos T

(iii) define the lexicographic ordering as the bijective map
lo: {(a,b) €{1,..., }2‘ a<b}—{l,...,2m(m — 1)} given by
lo(a,b) = Y471 (n — j) + (b—a)
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Inversion algorithm

e For an ACCS with Controllability Assumption, assume
= n*(t,q)Ya(q)
a=1

e Then Inversion Objective (1) is solved by

+ Y () (YY) (q)

b,c=1,b<c

WXsIowtq Zqulowtq ()7 WXoscth ZuXoscth ()
where
- —~ (") .
U glow(t, ) = n°( ;(b—l‘f;l f)o—b(Q)

+Z(

b=a+1

Z Plo(i, a)

gY 7} ) ngnab)(taQ)y

m

Z ﬁai (t7 Q)Wlo(a,i) (T)

z:a+1

uXoscth
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Tracking via oscillatory controls

Consider ACCS (Qa V7 Y,D - TQ, @ = {Y]_, e ,Ym}7Rm) satisfying
Y| a,b,ce{l,...,m}} =TQ

Problem 34 (Vibrational Tracking). given reference e, find oscillatory controls

Controllability Assumption and span{Y,, (Y} :

such that closed-loop trajectory equals ~,.s up to an error of order €

Vibrational tracking is achieved by oscillatory state feedback

uX sIow(t UCI - uref + Z (b -1+ Z ref ) g(Q),

c=b+1
1
Z Plo(e, a) 5 Z ref 9010(11 c)( )

c=a+1
where the fictitious inputs are defined by

E uref 'Yref

uXosc T, t Uq

+Z ref

b,c=1
b<c

Vo ) Vref (1) =Y (¢, res(t Yo) (ref(t))
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Example: A second-order nonholonomic integrator
Consider
Z1=wu, Tz=wuz, I3=uirT2+u2x1,

Controllability assumption ok. Design controls to track (z{(t), z3(t), zd(t)):

. I a4 . . t
Uy = :Eil + e (a:g - :L“‘llxg - :chxil) cos | —
€ €

a V2 <t>
Uy = L5 — — cos | —

9 £

o ExS) B ETS) pre) 50

© ExS) B ETS) TS} so
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Example: A planar vertical takeoff and landing (PVTOL) aircraft

T = cos Qv — sin O,
%z = sin Qv + cos Ov,
0=w

U — Vw = —gsin @ + (—ki/m)ve + (1/m)us

& = (—ks/J)w + (h)J)uz

Q = SE(2) : Configuration and velocity space via (, 2,0, vz, v;,w).  and z are
horizontal and vertical displacement, 8 is roll angle. The angular velocity is w and
the linear velocities in the body-fixed x (respectively z) axis are v, (respectively v,).

uq is body vertical force minus gravity, us is force on the wingtips (with a net
horizontal component). k;-components are linear damping force, g is gravity
constant. The constant h is the distance from the center of mass to the wingtip,
m and J are mass and moment of inertia.

Geom.Ctrl.Mech.Sys-ME225FB-W06-p135

Oscillatory controls ex. #2: PVTOL model

Controllability assumption ok.  Design
controls to track (z?(t), z%(t), 0%(t)):

_J"d k3'd \/i t
Uy = h0 + h@ 5 cos E
JV2

h t
Uy = 7= f1sin 0% + fo cos 04 — “he (f1 cos 0% + fo Sined) COS (5) )

where we let ¢ = %éd + %éd and

in(26¢
fi =mit + (k1 cos® 0% + ko sin® Hd) i+ Sm(zi)(kl — k2)2* + mgsin0? — ccos 7,
. d
fa= ms® + s1n(2720)(k1 — k:g)a'ud + (k1 sin® 8% + ko cos? 9d) 3% 4 mg(1 — cos Hd) — ¢sing?.
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PVTOL simulations: trajectories and error

T T T T T T
1 —— Emorinx
Errorinz
8 o 1 12} |- - Enorine
gk ]
, . .

z
Lo e
é
L

Error
°
>
T

Trajectory design at ¢ = .01. Tracking errors at t = 10.

Uy + vpw = —g(cos O — 1) + (—ka2/m)v. + (1/m
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Summary

e averaging theorem for standard form

e averaging theorem for standard oscillatory form

e averaging for mechanical systems with oscillatory controls
e analysis via the averaged potential

e inversion based on controllability

e fairly complete solution to stabilization and tracking problems
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Summary

(i) Introduction
(ii
(iii
(iv

(v) Analysis and design of oscillatory controls

Modeling of simple mechanical systems
Controllability

Kinematic reductions and motion planning

Open problems

)
)
)
)
)
)

(vi

Geom.Ctrl.Mech.Sys-ME225FB-W06-p139

Open problems

Modeling

(i
(ii
(iii

) variable-rank distributions in nonholonomic mechanics
)
)
(iv) infinite-dimensional systems
)
)

affine nonholonomic constraints

Riemannian geometry of systems with symmetry

control forces that are not basic

(v
(vi

tractable symbolic models for systems with many degrees of freedom
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Controllability
(i
(ii

) linear controllability of systems with gyroscopic and/or dissipative forces

)
(iii) acccessibility from non-zero initial conditions

)

controllability along relative equilibria

(iv) weaker sufficient conditions for controllability
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Kinematic reductions and motion planning

) understanding when the kinematic reduction allows for low-complexity
calculation of motion plans for underactuated systems

motion planning with locality constraints

feedback control to stabilize trajectories of the kinematic reductions

design of stabilization algorithms based on kinematic reductions

)

ii) relationship with theory of consistent abstractions
)
)

Geom.Ctrl.Mech.Sys-ME225FB-W06-p142

Analysis and design of oscillatory controls
(i) series expansions from non-zero initial conditions
(i) motion planning algorithms based on small-amplitude controls

(iii) higher-order averaging and inversion + relationship with higher order
controllability

(iv) analysis of locomotion gaits
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