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1 Geometric Control of Lagrangian Systems

1.1 Scientific Interests

(i) success in linear control theory is unlikely to be repeated for nonlinear

systems. In particular, nonlinear system design. no hope for general

theory

mechanical systems as examples of control systems

(ii) control relevance of tools from geometric mechanics

(iii) geometric control past feedback linearization

1.2 Industrial Trends

autonomous vehicles new concepts in design

reconfigurable, reactive implementation on-line

sensing & computation cheap focus on actuators and algorithms
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1.3 Motion planning

Example systems

(i) dexterous manipulation via minimalist robots

(ii) real-time trajectory/path planning for autonomous vehicles

(iii) locomotion systems (walking, swimming, diving, etc)

Application contexts

(i) guidance and control of physical systems

(ii) prototyping and verification

(iii) graphical animation and movie generation

(iv) analysis of animal and human locomotion and prosthesis design in

biomechanics

exploit differential geometric structure

fb-jul02-p7

Research work reflected in these notes

[1] A. D. Lewis, “Simple mechanical control systems with constraints,” IEEE TAC, 45(8):1420–1436, 2000.

[2] A. D. Lewis, “When is a mechanical control system kinematic?,” in Proc CDC, (Phoenix, AZ),

pp. 1162–1167, Dec. 1999.
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Lecture #1: From Linear Algebra to

Mechanical Control Systems
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2 Linear algebra

2.1 Notation

• Linear space V , vectors v ∈ V

• dual space V ∗ is the space of co-vectors w:

〈w , v〉 ∈ R

• in Rn, think of v as columns (V is space of column vectors), and w as rows (V ∗

is space of row vectors)

• construction is possible on any vector space!
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2.2 Vector versus indicial notation

• 〈· , ·〉 is natural pairing between dual spaces

• v ∈ V = {column vectors}, w ∈ V ∗ = {row vectors}:

w · v = 〈w , v〉 ∈ R

• other example, f(x1, . . . , xn) and v = (v1, . . . , vn) ∈ Rn (column):

〈∂f
∂x

, v〉 =
n∑

i=1

∂f

∂xi
vi

that is, we mean
∂f

∂x
=
[
∂f
∂x1

. . . ∂f
∂xn

]
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2.3 Addendum on linear algebra and multi-variable calculus

(i) vectors: v = viei

(ii) covectors, dual elements

(iii) on Rn, use variables (q1, . . . , qn) – notation useful for “summation convention”

(iv) given a function f : Rn → R, recall its directional derivative

(v) the differential df is a covector field with components ∂f
∂q1 , . . .

∂f
∂qn so that

df = (
∂f

∂q1
, . . . ,

∂f

∂qn
)

(vi) X is a vector field, and we can define LXf = 〈df , X〉

(vii) planar body example: Vx, Vy are example vector fields

(viii) infinitesimal work in mechanical system is a pairing (not an inner product)
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(ix) a curve γ : I → Rn has a velocity γ : I → Rn, which is a vector field along the

curve

(x) a vector field X is an ODE and an ODE is a vector field

(xi) vector fields are written in terms of the canonical basis { ∂

∂q1
, . . . ,

∂

∂qn
}, and

co-vector fields in terms of {dq1, . . . , dqn}

X(q) = Xi(q)
∂

∂qi
ω = ωi(q)dq

i df =
∑

i

∂f

∂qi
dqi =

∂f

∂qi
dqi
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“a matrix is a matrix is not a matrix”

(xii) maps between linear space: A : V → V has components Aji

v = viei 7→ Av = Ajiv
iej

(xiii) bilinear maps: B : V × V → R has components Bij

(v, w) = (viei, w
jej) 7→ B(v, w) = Bijv

iwj

(xiv) associate linear map: B : V → V ∗ has components Bij

v = viei 7→ Bijv
iej

(xv) an inner product 〈〈· , ·〉〉 is a bilinear map, need a symbol G : V × V → R

(xvi) since G : V → V ∗ is non-singular, we can invert it, G−1 : V ∗ → V is now an

inner product on V ∗
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(xvii) Lie derivatives do not commute

(a)
∂

∂qi
∂

∂qj
f =

∂

∂qj
∂

∂qi
f

(b) however

LX1
LX2

f 6= LX2
LX1

f

(c) correct formula is:

LX1
LX2

f −LX2
LX1

f = L[X1,X2]f

where Lie bracket (in indicial notation)

[X,Y ]i =
∂Y i

∂qj
Xj − ∂Xi

∂qj
Y j

in vector notation (where now ∂X/∂q is an n× n matrix):

[X,Y ] =
∂Y

∂q
·X − ∂X

∂q
· Y
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Consider the controlled ODE ẋ = g1(x)u1 + g2(x)u2

define Lie bracket: [g1(x), g2(x)] =
∂g2
∂x

g1 −
∂g1
∂x

g2

[g1, g2]

g2+u1

+u2

−u1

−u2

g1

Properties of Lie brackets:

(a) skew symmetry: [X,Y ] = −[Y,X]

(b) linearity: [X,Y + Z] = [X,Y ] + [X,Z]

(c) derivation: [X, fY ] = f [X,Y ] + (LXf)Y

(d) Jacoby identity: [X, [Y, Z]] + [Z, [X,Y ]] + [Y, [Z,X]] = 0
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3 A primer in Riemannian geometry

3.1 Notation

(i) assume every object is real analytic

(ii) Q is a manifold, that is, a locally Euclidean space

�
� �

� �

� �

��

� �
��

� � �
(iii) q ∈ Q is point on manifold, in coordinates q = (q1, . . . , qn)
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(iv) q 7→ f(q) ∈ R is scalar function

(v) As on Rn, vector fields and covector fields attached to each point on Q:

• the differential df is a covector field with components
∂f

∂q1
, . . .

∂f

∂qn
so that

df =
∑

i

∂f

∂qi
dqi =

∂f

∂qi
dqi

• X is a vector field with components X1, . . . Xn so that

X =
∑

i

Xi ∂

∂qi
= Xi ∂

∂qi

• Lie derivative of a function (X, f are both functions of q):

LXf :=
∑

i

∂f

∂qi
Xi = 〈df , X〉

(vi) Last equality is the natural pairing between tangent TQ and cotangent bundle

T∗Q
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(vii) γ : I → Q is a curve on Q. Its velocity is a vector field along γ with

components

γ′(t) =
dγi(t)

dt

∂

∂qi
= γ̇i(t)

∂

∂qi

γ(t)

γ̇(t)
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3.2 Affine Connections

• An affine connection ∇ on maps two vector fields X,Y into a third vector field

∇XY , satisfying the following properties:

(i) ∇fXY = f∇XY
(ii) ∇XfY = (LXf)Y + f∇XY

• Given the basis { ∂
∂q1 , . . . ,

∂
∂qn }, ∇ determines and is uniquely determined by the

Christoffel symbols:

∇ ∂

∂qi

∂

∂qj
= Γijk

∂

∂qk

• In coordinates

∇XY =
(
LXY

k + ΓkijX
iY j
) ∂

∂qk

=

(
∂Y k

∂qi
Xi + ΓkijX

iY j
)

∂

∂qk



fb-jul02-p21

3.3 Covariant derivatives of vector fields along curves

• Given a curve γ : I → Q, and its velocity γ ′ : I → TQ is a curve on TQ.

• γ′ : I → TQ is an example of a vector field along a curve on Q

• Given a vector field η : I → TQ along γ, define its covariant derivative along γ as

∇γ′η = ∇γ′Y

where Y is a smooth extensions of η to Q

• In coordinates:

γ(t) = (γ1(t), . . . , γn(t)) γ′(t) = (γ̇1(t), . . . , γ̇n(t))

η(t) = (η1(t), . . . , ηn(t))
(
∇γ′η

)i
= η̈i + Γijk(γ)γ̇

jηk
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3.4 Property of covariant derivatives along curves

Recall: An affine connection ∇ on maps two vector fields X,Y into a third vector

field ∇XY , satisfying the following properties:

(i) ∇fXY = f∇XY

(ii) ∇XfY = (LXf)Y + f∇XY

Given a function of time f , and a vector field η along γ:

∇γ′f(t)η(t) =
(

d

dt
f(t)

)
η(t) + f(t)

(
∇γ′η(t)

)

fb-jul02-p23

3.5 Geometric acceleration and geodesic curves

• given a curve γ, the second time derivative γ̈i is not a vector

• Given a curve γ, define the geometric acceleration of γ as the vector field

along γ

∇γ′(t)γ
′(t)

• in coordinates (with respect to the respective bases):

γ(t) = (γ1(t), . . . , γn(t)) γ′(t) = (γ̇1(t), . . . , γ̇n(t))

∇γ′(t)γ
′(t) = (γ̈1 + Γ1ij γ̇

iγ̇j , . . . , γ̈n + Γnij γ̇
iγ̇j)

• A curve with zero geometric acceleration is a geodesic

• geodesic curves enjoy various properties: constant point-wise energy,

homogeneity, existence and uniqueness.
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3.6 Collection of vector fields, distributions, and operations between

vector fields

(i) X = {X1, . . . , X`} a the collection or family of vfs

(ii) X = spanC(Q){X1, . . . , X`} is called the distribution, i.e., the point-wise

sub-space of TqQ. In other words, Xq = spanR{X1(q), . . . , X`(q)}
(iii) the Lie bracket between Xi and Xj is [Xi, Xj ]

(iv) The distribution X is said to be involutive if it is closed under operation of

Lie bracket, i.e., if for all vector fields X and Y taking values in X , the vector

field [X,Y ] also takes value in X . The involutive closure of the

distribution X is the smallest involutive distribution containing X , and is

denoted Lie{X }.
(v) the symmetric product between Xi and Xj is the vector field

〈Xi : Xj〉 = ∇Xi
Xj +∇Xj

Xi

One then can define the notion of symmetric closure and geodesic

invariance.
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3.7 Riemannian metric

• Metric is inner product on tangent space

〈〈· , ·〉〉 : TQ× TQ→ R

• inner product is positive definite, symmetric, bilinear form G.

• In coordinates Gij

〈〈X , Y 〉〉 =
∑

ij

Gij(q)X
i(q)Y j(q)

• G as a matrix (in vector notation): 〈〈X , Y 〉〉 = XT [G]Y .

• Summary:

(i) there is a pairing between functions and vector fields (i.e., LXf), and

similarly between vector fields and co-vector fields (i.e., 〈df , X〉)
(ii) G is a pairing between two vector fields

where in vector notation “a pairing := combine two vectors to obtain a scalar”

NB: in mechanical systems, metric is usually denoted M . In Riemannian geometry g.

fb-jul02-p26

3.8 Associated linear maps between TQ and T∗Q

(i) G : TQ→ T∗Q:

Given a vector field X, ([G]X)T is the co-vector field such that

([G]X)T · Y︸ ︷︷ ︸
〈GX , Y 〉

= XT [G]Y︸ ︷︷ ︸
〈〈X , Y 〉〉

(ii) G−1 : T∗Q→ TQ:

Given a co-vector field F , G−1FT is the vector field such that

〈〈M−1F , Y 〉〉 = (G−1FT )T [G]Y = 〈F , Y 〉
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3.9 Gradient of a function

• Given a function f , its gradient is the vector field

grad f = G−1df

or alternatively

〈〈grad f , X〉〉 ≡ 〈df , X〉
In indicial notation:

(grad f)i =

n∑

j=1

(G−1)ij
∂f

∂qj
= Gij ∂f

∂qj
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3.10 Levi-Civita (or metric) connection

Theorem 1 (Levi Civita). A metric 〈〈· , ·〉〉 induces a unique G∇
such that

(i) LX〈〈Y , Z〉〉 = 〈〈G∇XY , Z〉〉+ 〈〈Y , G∇XZ〉〉
(ii) G∇XY − G∇YX = [X,Y ]

(i) Its symbols are:

Γkij =
1

2
Gmk

(
∂Gmj

∂qi
+
∂Gmi

∂qj
− ∂Gij

∂qm

)

where Gmk is m, k component of G−1

(ii) Proof based on equality:

2〈〈Z , G∇XY 〉〉 = X〈〈Y , Z〉〉+ Y 〈〈X , Z〉〉 − Z〈〈Y , X〉〉
− 〈〈[X,Z] , Y 〉〉 − 〈〈[Y, Z] , X〉〉 − 〈〈[X,Y ] , Z〉〉
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4 Models of Mechanical Systems

Simple mechanical control system is composed of:

(i) the configuration space Q (manifold)

(ii) the kinetic energy G (metric)

(iii) the potential energy V (function on Q)

(iv) the input forces F 1, . . . , Fm (co-vectors)

Total energy (Hamiltonian, sum of kinetic and potential) is:

E(q, vq) =
1

2
‖vq‖2 + V (q)
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4.1 Planar body example

� � �� �� � � �

�	
�


�



�

q = (θ, x, y)

V (q) = mgy [G] =




J 0 0

0 m 0

0 0 m




We shall discuss F i in a few slides

fb-jul02-p31

4.2 Planar two links manipulator example

� �

� �

�� � �� � �

�� � �� � �

�

E = E1 + E2

K1(θ1, x1, y1) =
1

2
I1θ̇

2
1 +

1

2
m(ẋ21 + ẏ21)

V1(θ1, x1, y1) = m1g y1

Therefore easy to write E as function of all variables
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4.3 Kinematics

Only necessary variables to describe system are configuration variables, e.g.

q = (θ1, θ2)

Write (θi, xi, yi) in terms of q by means of kinematic analysis.

E(q, q̇) := E(θi, xi, yi, θ̇i, ẋi, ẏi) /. (θi, xi, yi)→ (θi, xi, yi)(q)

After simplification:

[G] =


I1 + (l21(m1 + 4m2))/4 (l1l2m2 cos[θ1 − θ2])/2
(l1l2m2 cos[θ1 − θ2])/2 I2 + (l22m2)/4




General study of single and multi-body kinematics.
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4.4 Forces as co-vectors

� �

� �

� �

� �

Why are forces co-vectors? Assume curve γ : I → Q is solution to controlled

equations, then

Infinitesimal Work = 〈F , γ′〉
where γ′ ∈ TγQ and hence F ∈ T∗γQ.

• forces as generalized forces, i.e.,

both pure forces and pure torques are ok
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• in this example only pure torques: Joint motor T1 acts on angle θ1. Joint motor

T2 acts on angle θ2 − θ1:

T1 = dθ1 =
[
1 0

]

T2 = d(θ1 − θ2) = dθ1 − dθ2 =
[
1 −1

]

• Note: force is a co-vector, for example, F = df for some function f . But not

always F is the differential of a function (Poincaré lemma)
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4.5 Generalized force = pure force + pure torque

If force is pure torque on angle α, then F = dα. If force is pure force on distance

x, then F = dx. Write a generalized force as linear combination of pure force and

pure torque.

� �

��� �

� 	




F 1 = cos θdx+ sin θdy =
[
0 cos θ sin θ

]

F 2 = −hdθ − sin θdx+ cos θdy =
[
−h − sin θ cos θ

]
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4.6 Lagrange-D’Alembert principle

The solution γ : I → Q to the simple mechanical control system satisfies the

variational principle

δ

∫

I

(
1

2
‖γ′‖2 − V (γ)

)
dt+

∫

I

〈F (γ, t) , δq〉 = 0

where the variation δq is an arbitrary vector field along γ

• Systems subject to no force follow geodesic flow:

δ

∫

I

‖γ′‖2 dt = 0 ∇γ′γ′ = 0

• Systems subject to force follow forced geodesic flow:

∇γ′γ′ = G−1F
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5 Simple Mechanical Control Systems (SMCS)

A simple mechanical control system:

(i) An n-dimensional configuration manifold Q, coordinates (q1, . . . , qn)

(ii) An inertia tensor G describing the kinetic energy

G defines an inner product 〈〈· , ·〉〉 between vector fields on Q

(iii) the potential energy V (function on Q)

(iv) m one-forms F 1, . . . , Fm, describing m external control forces
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Given this data, we derive

(i) G∇ is the Levi-Civita connection associated to G

(ii) we define the input vector fields Ya = G−1F a, for a ∈ {1, . . . ,m}

(iii) Coordinate-free formulation of the equations of motion:

G∇γ′γ′ =
m∑

a=1

Ya(γ)ua

the input functions ua are assumed Lebesgue measurable

(iv) In coordinates (q1, . . . , qn), Christoffel symbols:

Γkij =
1

2
G`k

(
∂G`j

∂qi
+
∂G`i

∂qj
− ∂Gij

∂q`

)

(v) Equations of motion in coordinates for trajectory γ : I → Q:

γ̈k + Γkij γ̇
iγ̇j =

m∑

a=1

Gkj(F a)jua
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5.1 Conservative and dissipative forces

(i) potential energy V due to gravity gives rise to a force F = −dV and a vector

field − gradV . More generally, we shall assume an arbitrary vector field Y0(q)

in the equations of motion

(ii) damping or dissipation force is of the form F = R(vq). R stands for Rayleigh

dissipation function (i.e., a linear dissipation function.

The tensor R : TQ→ TQ is dissipative if

〈〈R(vq) , vq〉〉 ≤ 0

Strict inequality for strictly dissipative forces

In summary, a simple mechanical control system with dissipation and potential

energy satisfied

G∇γ′γ
′ = Y0(γ) +R(γ′) + Y (γ)u(t)
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6 Satellites and vehicles - systems on groups

(i) configuration is rotation matrix R

R ∈ SO(3) = {R ∈ R3×3|RTR = I, detR = +1}

(ii) define ·̂ operator as: ω × y = ω̂y

(iii) kinematic equation Ṙ = Rω̂

follows from differentiating identity: RTR = I3

ω body velocity in body-frame

(iv) Kinetic energy: K = 1
2ω

T Jω
remarkable because R is not present!

(v) no potential, and torques τ expressed body frame

(vi) Euler Poincarè equations of motion:

Ṙ = Rω̂

ω̇ = J−1(Jω × ω) + J−1τ
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(vii) if, for example, J = diag{J1, J2, J3}

ω̇1 = ((J2 − J3)/J1)ω2ω3 + τ1/J1

ω̇2 = ((J3 − J1)/J2)ω1ω3 + τ2/J2

ω̇3 = ((J1 − J2)/J3)ω1ω2 + τ3/J3

these are also called the Euler equations

(viii) (ω1, ω2, ω3) are pseudo-velocities, not the time derivative of any quantity on

SO(3)
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6.1 Mechanical control systems on matrix groups

(i) g ∈ G is configuration on n-dimensional matrix group

local coordinates via x = log(g)

(ii) kinetic energy KE = 1
2v
T Iv with I > 0

v ∈ Rn velocity in body frame

(iii) body-fixed forces f1, . . . , fm ∈ (Rn)∗.

Example: log(R) = φ

2 sinφ
(R−RT ), 2 cosφ = tr(R)− 1
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6.2 Equations of motion, I

Kinematic eqns:

ġ = g v̂

where v ←→ v̂ is isomorphism Rn ←→ Rn×n.

Lie bracket is matrix commutator: [̂v, w] = (v̂ŵ − ŵv̂)

Example:
Ṙ = Rω̂

[ω, y] = ω × y
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6.3 Equations of motion, II

γ̈i + Γiab(γ)γ̇
aγ̇b = (G−1F k)iuk

Euler-Poincaré eqns:

ġ = gv̂

v̇i + Γijkv
jvk =

∑

a

(I−1fa)iua(t)

where the Γijk are constants determined by G and I.

Symmetric product: 〈v : w〉i = −Γiab(vawb + vbwa)

Example:

Ω̇ + J−1 (Ω× JΩ) = 0

〈Ω : Ξ〉 = J−1 (Ω× JΞ + Ξ× JΩ)
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6.4 Satellite with Thrusters

f1

f2

• configuration is rotation matrix R

• kinematic equation:

Ṙ = RΩ̂

where

Ω ∈ R3 7→




0 −Ω3 Ω2

Ω3 0 −Ω1
−Ω2 Ω1 0




• kinetic energy:

KE = 1
2Ω

T JΩ

• two torques: f1 = e1, f2 = e2

• Equations of Motion:

Ṙ = RΩ̂

JΩ̇ = JΩ× Ω + e1u1(t) + e2u2(t).
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6.5 Hovercraft
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(i) Configuration:

P =




cos θ sin θ x

− sin θ cos θ y

0 0 1




(ii) KE = 1
2 (Jω

2 +mv2x +mv2y)

(iii) f1 = e2, f2 = −he1 + e3

Equations of Motion:

Ṗ = P




0 −ω vx

ω 0 vy

0 0 0


 ,





Jω̇ = −hu2
mv̇x = mωvy + u1

mv̇y = −mωvx + u2
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6.6 Planar underwater vehicle
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Same kinematic description as hovercraft. However, effects of fluid.
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6.7 Planar underwater vehicle, cont’d

(i) to model ideal fluid, include added masses into kinetic energy:

K =
1

2
(mxv

2
x +myv

2
y) +

1

2
Jω2

Notice θ, x, y are not present in energy

(ii) generalized forces in body coordinates F = [fθ fx fy]

(iii) Euler Poincarè equation for planar underwater vehicle:

Ṗ = P




0 −ω vx

ω 0 vy

0 0 0




Jω̇ = (mx −my)vxvy + fθ

mxv̇x = myvyω + fx

my v̇y = −mxvxω + fy
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6.8 Underwater Vehicle in Ideal Fluid

3D rigid body with three forces:

(i) (R, p) ∈ SE(3), (Ω, V ) ∈ R6

(ii) KE = 1
2Ω

T JΩ+ 1
2V

TMV ,

M = diag{m1,m2,m3},
J = diag{J1, J2, J3}

(iii) f1 = e4, f2 = −he3 + e5, f3 = he2 + e6

Equations of Motion:

Ṙ = RΩ̂

ṗ = RV
,

JΩ̇ = JΩ× Ω+ MV × V
MV̇ = MV × Ω.
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6.9 Proof of Euler Poincarè equation for satellite, page 1/3

Let us consider geodesic equation without forces:

G∇γ′γ′ = 0

The geodesic equation is written on a generic manifold. To write it with respect to

coordinates ( ∂
∂q1 , . . . ,

∂
∂qn ) on TQ, follow the steps:

γ′ = γ̇i
∂

∂qi

G∇γ′
(
γ̇i

∂

∂qi

)
= γ̈i

∂

∂qi
+ γ̇k

G∇γ′
∂

∂qk
= γ̈i

∂

∂qi
+ γ̇kγ̇j

(
G∇ ∂

∂qj

∂

∂qk

)

where the last two steps exploit the properties of affine connections.

At this point, the Christoffel symbols are computed by using:

2〈〈Z , G∇XY 〉〉 = X〈〈Y , Z〉〉+ Y 〈〈X , Z〉〉 − Z〈〈Y , X〉〉
− 〈〈[X,Z] , Y 〉〉 − 〈〈[Y, Z] , X〉〉 − 〈〈[X,Y ] , Z〉〉 (1)

where X,Y, Z take values in { ∂
∂qi }, and hence all Lie brackets [ ∂∂qi ,

∂
∂qj ] vanish.

fb-jul02-p51

6.10 Proof of Euler Poincarè equation for satellite, page 2/3

We here perform the same procedure, but with respect a basis of invariant vector

fields (i.e., all vector fields are expressed in the body-fixed frame)

Think of γ as a curve on group of matrices, and write

γ′(t) = ωi(t)Ei(γ(t)),

Ei(R) = Rêi,

where R ∈ SO(3) and e1 = [1, 0, 0] and accordingly e2 and e3. We can do this

because of

TR(SO(3)) = span{Rê1, Rê2, Rê3}

According to the same steps as above, the geodesic equation is:

0 = ω̇iEi(γ) + ωkωj
(G∇Ej(γ)Ek(γ)

)
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6.11 Proof of Euler Poincarè equation for satellite, page 3/3

Assume X,Y, Z take values in the basis {Ei}, and prove that

G∇RêjRêk = R

(
ej × ek +

1

2
J−1(ej × Jek) +

1

2
J−1(ek × Jej)

)
.

This is a consequence of equation (1) and of the fact that the Lie brackets

[Ei(R), Ej(R)] = R ̂(ei × ej) and that the metric is invariant.

Therefore, the geodesic equation becomes:

0 = γ

(
ω̇iei + ωkωj

(
ej × ek +

1

2
J−1(ej × Jek) +

1

2
J−1(ek × Jej)

))

and, using the fact that γ is an invertible matrix and a few simplification, we get

the right equation:

0 = ω̇ +
1

2
J−1(ω × Jω)
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7 Essential review

7.1 Coordinate-free modelling: I

• manifold Q, metric G

• vector fields are written in terms of the canonical basis { ∂
∂q1 , . . . ,

∂
∂qn }, and

co-vector fields in terms of {dq1, . . . , dqn}

• given a function ϕ:

dϕ =
∂ϕ

∂qi
dqi

gradϕ =

(
Gij ∂ϕ

∂qj

)
∂

∂qi

q̇ = − gradϕ(q) . . . (negative) gradient flow

• metric gives rise to connection with certain properties
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7.2 Coordinate-free modelling: II

(i) given functions
{
Γijk

}
, and curve γ : I → R

(∇γ′γ′)i = γ̈i + Γijkγ̇
j γ̇k = 0 . . . geodesic flow

(ii) Given two vector fields X,Y , the covariant derivative of Y with respect to X

is the third vector field ∇XY defined via

(∇XY )i =
∂Y i

∂qj
Xj + ΓijkX

jY k.

(iii) symmetric product

〈Ya : Yb〉 = ∇YaYb +∇YbYa

〈Ya : Yb〉i =
∂Y ia
∂qj

Y jb +
∂Y ib
∂qj

Y ja + Γijk
(
Y ja Y

k
b + Y ka Y

j
b

)
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7.3 Coordinate-free modelling: III

affine connection control system

∇γ′γ
′ = Y0(γ) +R(γ′) +

m∑

a=1

Ya(γ)ua(t)

Ex #1: robotic manipulators with kinetic energy and forces at joints

simple systems with conservative forces

Ex #2: aerospace and underwater vehicles

invariant systems on Lie groups

Ex #3: systems subject to nonholonomic constraints

locomotion devices with drift, e.g., bicycle, snake-like robots
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8 Introduction to systems subject to constraints
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Constraints can be of two types:

(i) constraints on q are called integrable

(ii) constraints on vq are sometimes called non-integrable

from the greek roots:

integrable = holonomic

nonintegrable = nonholonomic
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8.1 Integrable constraints

��

��

��

• constraint on the configuration, such as clamping. It is given by

ϕ(q) = 0

where ϕ : Q→ R

• easy case, analyse on smaller space
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• Sometimes, an integrable constraints appears as:

〈w , γ′〉 = 0,

where, if w = dϕ, one writes

〈dϕ , γ′〉 = d

dt
ϕ(γ(t)) ϕ(γ(t)) = constant

• Problem: given an arbitrary co-vector w, when is it w = dϕ ?

Locally, construct annihilator distribution D . If D is involutive, then

w is a holonomic constraint.
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8.2 Nonintegrable constraints I: kinematic systems

L2

L1

x

y

(x1, y1, θ1)

(x0, y0, θ0)

(x2, y2, θ2)

[Car with trailer can be parked anywhere.]

• nonintegrable constraints are constraints on velocity, that cannot be

written as constraints on configurations

• classic example is rolling without sliding

• If system has full control over all feasible velocities,

then kinematic analysis suffices

Test: set all control inputs to zero, does the mechanical systems still move?

driftless systems
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Examples of kinematic systems
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ẋ = v cosφ

ẏ = v sinφ

φ̇ = ω

(wheeled robot dynamics)

�� � 	 
 � �

�






ẋr

ẏr

θ̇

φ̇



=




cos θ

sin θ

1
` tanφ

0



v +




0

0

0

1



ω
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8.3 Nonintegrable constraint II: dynamic systems
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• general case is a dynamic case, i.e., system can move with input at zero

• basic example: bicycle
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9 Simple Mechanical Control Systems with

constraints

Nonholonomic constraint described by constraint one-form ω

〈ω , γ′〉 = 0

A simple mechanical control system subject to constraints

(i) A simple mechanical control system (Q,G, V = 0,F = {F 1, . . . , Fm})

(ii) A collection of constraint one-forms {ω1, . . . , ωp}.

The annihilator of span{ω1, . . . , ωp} is the constraint distribution D

i.e., the distribution of feasible velocities

Orthogonal projections:

P : TQ→ D ⊂ TQ and P⊥ : TQ→ D
⊥ ⊂ TQ
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9.1 Equations of motion

The solution to the mechanical control system subject to the constraint distri-

bution D is the curve γ : I → Q solution to

G∇γ′(t)γ
′(t) = λ(t) +

m∑

a=1

(G−1F a)ua

P⊥(γ′) = 0

where t 7→ λ(t) ∈ D⊥ is the Lagrange multiplier, and γ ′(0) ∈ D .

Theorem: Constrained equations of motion (Synge 1928)

D∇γ′γ′ =
m∑

a=1

(PG−1F a)ua

with respect to the constrained affine connection (Lewis 2000)

D∇XY = G∇XY +
(G∇XP⊥

)
(Y )
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9.2 Expressions in coordinates

(i) design X = {X1, . . . , Xn−p} an orthogonal basis for feasible velocities D

(ii) compute (XΓ)kij =
1

‖Xk‖2
〈〈G∇Xi

Xj , Xk〉〉

(iii) compute Y ka =
1

‖Xk‖2
〈F a , Xk〉

Then the constrained equations of motion are

γ′(t) = vi(t)Xi(γ(t))

v̇k(t) + (XΓ)kijv
i(t)vj(t) =

m∑

a=1

Y ka (γ)ua(t)

kinematic + dynamic equations
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9.3 Comments

Constrained equations of motion

γ′ = viXi(γ)

v̇k + (XΓ)kijv
ivj =

m∑

a=1

Y ka ua

(i) vi components of γ′ are pseudo-velocity

(ii) (XΓ)kij are generalized Christoffel symbols for D∇ with respect to

{X1, . . . , Xn}
D∇Xi

Xj = (XΓ)kijXk

however, no need to compute the projection P , nor its covariant

derivative G∇P⊥

(iii) Y ka is the projection of the control vector fields onto Xk. If conservative forces,

i.e., F a = dϕa, then Y
k
a = 1

‖Xk‖2 LXk
ϕa
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Invariance under group action If a system is invariant under a group action and

the basis for D consists of invariant vectors, the generalized Christoffel symbols

(XΓ)kij and the coefficients of the control vector fields Y ka are invariant.

Key examples easily handled see next pages.

Missing work Still to work out: bicycle, plate-and-ball systems, omni-directional,

redundant, variable-geometry vehicles
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10 The snakeboard example
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Configuration manifold: SE(2)× S2

Coordinates: q = (x, y, θ, ψ, φ)

Input forces: dψ, dφ
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Inertia tensor:

[G] =




m 0 0 0 0

0 m 0 0 0

0 0 `2m Jr 0

0 0 Jr Jr 0

0 0 0 0 Jw




Constraints:

ẋfront sin(θ − φ)− ẏfront cos(θ − φ) = 0

ẋback sin(θ + ψ)− ẏback cos(θ + ψ) = 0

Constraint forms:

ω1 = sin(φ− θ)dx+ cos(φ− θ)dy + ` cosφdθ

ω2 = − sin(φ+ θ)dx+ cos(φ+ θ)dy − ` cosφdθ
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10.1 Application of the method

Step (i): Choice of basis for D :

X1 = ` cosφ cos θ
∂

∂x
+ ` cosφ sin θ

∂

∂y
− sinφ

∂

∂θ
,

X ′2 =
∂

∂ψ
, X ′3 =

∂

∂φ
.

Using the Gramm-Schmitt procedure we can construct the orthogonal basis:

X2 =
Jr
m`

cosφ sinφVx −
Jr
m`2

sin2 φ
∂

∂θ
+

∂

∂ψ
, X3 = X ′3

Step (ii): compute generalized Christoffel symbols

(XΓ)132 =
Jr
m`2

cosφ , (XΓ)231 = −
m`2 cosφ

m`2 + Jr sin
2 φ

, (XΓ)232 = −
Jr cosφ sinφ

m`2 + Jr sin
2 φ

Step (iii): input coefficients: LX2
ψ = 1, LX3

φ = 1
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10.2 Kinematic and dynamic equations




ẋ

ẏ

θ̇

ψ̇

φ̇




=




` cosφ cos θ

` cosφ sin θ

− sinφ

0

0




v1 +




Jr
m` cosφ sinφ cos θ

Jr
m` cosφ sinφ sin θ

− Jr
m`2 (sinφ)

2

1

0




v2 +




0

0

0

0

1




v3

v̇1 +
Jr
m`2

(cosφ)v2v3 = 0

v̇2 − m`2 cosφ

m`2 + Jr(sinφ)2
v1v3 − Jr cosφ sinφ

m`2 + Jr(sinφ)2
v2v3 =

m`2

m`2Jr + J2r (sinφ)
2
uψ

v̇3 =
1

Jw
uφ .
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10.3 Kinematic and dynamic equations

the kinematic equations are




ẋ

ẏ

θ̇


 =




` cosφ cos θ

` cosφ sin θ

− sinφ


 v +




Jr
m` cosφ sinφ cos θ

Jr
m` cosφ sinφ sin θ

− Jr
m`2 (sinφ)

2


 ψ̇

and the dynamic equations are

v̇ +
Jr
m`2

(cosφ)φ̇ψ̇ = 0

ψ̈ − m`2 cosφ

m`2 + Jr(sinφ)2
vφ̇− Jr cosφ sinφ

m`2 + Jr(sinφ)2
φ̇ψ̇

=
m`2

m`2Jr + J2r (sinφ)
2
uψ

φ̈ =
1

Jw
uφ .
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10.4 Software implementation

Mathematica implementation; FullSimplify commands erased for readability

(* CONNECTIONS AND OTHER OPERATIONS *)

LieDer[X_,h_,x_] := Sum[D[h,x[[i]]]X[[i]],{i,Length[x]}];

LieBracket[X_,Y_,x_]:=Module[{i,j,N=Length[x]},

Table[Sum[D[Y[[i]],x[[j]]]X[[j]]-D[X[[i]],x[[j]]]Y[[j]],{j,N}],{i,N}]];

LeviCivita[\metric_,x_]:=Module[{Minv=Inverse[M],i,j,k,h,

N=Length[x]},Table[Sum[Minv[[h,k]](D[M[[h,j]],x[[i]]]+

D[M[[i,h]],x[[j]]] - D[M[[i,j]],x[[h]]])/2,{h,N}],{k,N},{j,N},{i,N}]];

CovariantDer[X_,Y_,Nabla_,x_]:=Module[{i,j,k,N=Length[x]},

Table[Sum[D[Y[[i]],x[[j]]]X[[j]]+

Sum[Nabla[[i,j,k]]X[[j]]Y[[k]],{k,N}],{j,N}],{i,N}]];
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(* SNAKEBOARD EXAMPLE *)

q = {x,y,th,psi,phi}; M ={{m,0,0,0,0},{0,m,0,0,0},

{0,0,m ell^2,Jr,0},{0,0,Jr,Jr,0},{0,0,0,0,Jw}};

nabla = LeviCivita[M, q];

(* FEASIBLE VELOCITIES *)

Vx = {Cos[th],Sin[th],0,0,0}; Vth = {0,0,1,0,0};

X1 = ell Cos[phi] Vx - Sin[phi] Vth;

X2p = {0,0,0,1,0}; X3 = {0,0,0,0,1};

(* ORTHOGONALIZE VECTORS VIA GRAMM-SCHMITT *)

X1X1 = X1.M.X1; X2pX2p = X2p.M.X2p; X3X3 = X3.M.X3;

X1X3 = X1.M.X3; X1X2p = X1.M.X2p; X2pX3 = X2p.M.X3;

X2 = X2p-X1(X1X2p/X1X1); X2X2 = X2.M.X2;
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(* CHRISTOFFEL SYMBOLS *)

X = {X1, X2, X3}; norms = {X1X1, X2X2, X3X3};

Tnabla = Table[ CovariantDer [X[[i]],X[[j]],nabla,q].M.X[[k]]/norms[[k]]

,{k,1,3} ,{i,1,3}, {j,1,3}];

(* INPUTS *)

F = Table[ LieDer[X[[k]],psi,q]/norms[[k]]u1

+ LieDer[X[[k]],phi,q]/norms[[k]]u2 ,{k,3}];

(* EQUATIONS OF MOTION *)

v={vel[t], psi’[t], phi’[t]}; EqMotion = Table[

D[v[[k]],t]+Sum[Tnabla[[k,i,j]] v[[i]] v[[j]],{i,3},{j,3}]==F[[k]], {k,3}];

(* CONTROLLABILITY ANALYSIS *)

X13 = LieBracket[X1,X3,q]; X113 = LieBracket[X1,X13,q];

Det[AppendColumns[{X1},{X2},{X3},{X13},{X113}]];
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11 The roller racer example
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Configuration manifold: SE(2)× S

Coordinates: q = (x, y, θ, ψ)

Input force: dψ
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Inertia tensor:

[G] =




m 0 0 0

0 m 0 0

0 0 I1 + I2 I2

0 0 I2 I2



.

Constraint one-forms:

ω1 = sin θdx− cos θdy

ω2 = sin(θ + ψ)dx− cos(θ + ψ)dy

− (`2 + `1 cosψ)dθ − `2dψ .
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11.1 Application of the method

Step (i): Choice of basis for D :

X1 = cos θ
∂

∂x
+ sin θ

∂

∂y
+

(
sinψ

`2 + `1 cosψ

)
∂

∂θ

X ′2 = −
(

`2
`2 + `1 cosψ

)
∂

∂θ
+

∂

∂ψ

Using the Gramm-Schmitt procedure we can construct the orthogonal basis:

X2 =
(`2I1 − `1I2 cosψ) sinψ

f1(ψ)
Vx −

m`2(`2 + `1 cosψ) + I2 sin
2 ψ

f1(ψ)

∂

∂θ
+

∂

∂ψ
.

where Vx = cos θ
∂

∂x
+ sin θ

∂

∂y

f1(ψ) = m(`2 + `1 cosψ)
2 + (I1 + I2) sin

2 ψ

f2(ψ) = m`22I1 + `21I2m(cosψ)2 + I1I2 sin
2 ψ .
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Step (ii): compute generalized Christoffel symbols

(XΓ)121 =

(
`1 + `2 cosψ

`2 + `1 cosψ

)
(I1 + I2) sinψ

f1(ψ)

(XΓ)122 =
m(`1 + `2 cosψ)(`2 + `1 cosψ)(`1I2 cosψ − `2I1)

f1(ψ)2

(XΓ)221 =

(
`1 + `2 cosψ

`2 + `1 cosψ

)
m(`1I2 cosψ − `2I1)

f2(ψ)

(XΓ)222 =
−m(`1I2 cosψ − `2I1)(sinψ)f3(ψ)

f1(ψ)f2(ψ)

where f3(ψ) = (`1I2 − `2I1 cosψ) +m`1`2(`2 + `1 cosψ).

Step (iii): input coefficients: LX1
ψ = 0,

1

‖X2‖2
LX2

ψ =
f1(ψ)

f2(ψ)
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11.2 Kinematic and dynamic equations

the kinematic equations are




ẋ

ẏ

θ̇


 =




cos θ

sin θ

sinψ
`2+`1 cosψ


 v +




(`2I1−`1I2 cosψ) sinψ
f1(ψ)

cos θ
(`2I1−`1I2 cosψ) sinψ

f1(ψ)
sin θ

m`2(`2+`1 cosψ)+I2(sinψ)
2

−f1(ψ)


 ψ̇

and the dynamic equations are

v̇ + (XΓ)121(ψ)ψ̇v + (XΓ)122(ψ)ψ̇
2 = 0

ψ̈ + (XΓ)221(ψ)ψ̇v + (XΓ)222(ψ)ψ̇
2 =

f1(ψ)

f2(ψ)
uψ .

fb-jul02-p82

12 Proofs

12.1 Constrained affine connection

Consider

G∇γ′γ′ = λ(t) + G−1F (2)

P⊥(γ′) = 0. (3)

Project equation (2) onto D⊥, and covariantly differentiate equation (3):

P⊥(G∇γ′γ′) = λ(t) + P⊥(G−1F )
G∇γ′

(
P⊥(γ′)

)
= 0 P⊥(G∇γ′γ′) = −

(G∇γ′P⊥
)
(γ′).

Hence:

λ(t) = −
(G∇γ′P⊥

)
(γ′)− P⊥(G−1F )

and
G∇γ′γ′ +

(G∇γ′P⊥
)
(γ′) = P (G−1F ),
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Define:
D∇XY = G∇XY +

(G∇XP⊥
)
(Y )

Summarizing:
G∇γ′γ′ +

(G∇γ′P⊥
)
(γ′) = P (G−1F ),

can be written as
D∇γ′γ′ = P (G−1F )

where D∇ is the constrained connection.

The Christoffel symbols of the constrained connection with respect to the basis

{ ∂
∂q1 , . . . ,

∂
∂qn } are

(DΓ)kij = Γkij +
Pkj
∂qi

+ ΓkimPmj − ΓmijPkm
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12.2 Constrained equations in coordinates

Definition 1
(G∇XP⊥

)
(Y ) = G∇X

(
P⊥(Y )

)
− P⊥(G∇XY ).

Lemma 2 For Y ∈ D , D∇XY = P (G∇XY )

Lemma 3 Expression for D∇γ′γ′, where {Xi} orthogonal family spanning D :

D∇γ′γ′ = D∇γ′(viXi) = v̇iXi + vi
(
D∇γ′Xi

)

= v̇iXi + vivjD∇Xj
Xi

Inner product with Xk:

〈〈Xk ,
D∇γ′γ′〉〉 = v̇i〈〈Xk , Xi〉〉+ vivj〈〈Xk ,

D∇Xj
Xi〉〉

= v̇k‖Xk‖2 + vivj〈〈Xk ,
D∇Xj

Xi〉〉

Final simplification:

〈〈D∇Xi
Xj , Xk〉〉 = 〈〈PG∇Xi

Xj , Xk〉〉 = 〈〈G∇Xi
Xj , Xk〉〉



fb-jul02-p85

13 Ideal impact models

• here only ideal case: no friction, plastic/elastic, holonomic/nonholonomic impact

• impact entails

(i) impulsive force that causes a jump in γ ′

(ii) switch in equations of motions

Reference on impact models

[1] B. Brogliato. Nonsmooth Impact Mechanics: Models, Dynamics, and Control, volume 220 of Lecture Notes

in Control and Information Sciences. Springer Verlag, New York, NY, 1996.
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13.1 Definition of impact

• (Q,G,F = span{F 1, . . . , Fm}) is a simple mechanical system

• D− and D+ are two set of feasible velocities (right before, right after impact)

• (∇−, P−F) and (∇+, P+F) give eqns of motion,

(P is orthogonal projection onto feasible velocities)

The system undergoes an impact at time t if

(i) the dynamics switch from (∇−, P−F) to (∇+, P+F),

(ii) there exists a tensor field Jq : TqQ→ TqQ such that

q(t+) = q(t−)

γ′(t+) = Jq
(
γ′(t−)

)
.

fb-jul02-p87

13.2 Classic impacts

Plastic impact from large to smaller space: The two sets of feasible velocities

D− and D+ are distinct (for example D− = TQ and D+ = TR is the tangent

space of a submanifold R ⊂ Q). The operator

Jq = PD+

is the orthogonal projection onto D+.

Elastic impact against surface: The equations of motion do not change, as

connection and input forces do not change. There exist a submanifold R such

that

Jq = PTR + (−e)P⊥TR
where PTR is the orthogonal projection onto the tangent space to R and where

0 < e < 1 is the coefficient of restitution.
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13.3 Hybrid mechanical control systems

given a mechanical control system (Q,G,F) with a given set of constraint

distributions Di, where i belongs to an index set I.

For each constraint Di, we consider the constrained mechanical control system

Σi = [Q,G,F ,Di, U ], with associated ∇i and Yi.
We define the hybrid mechanical control system as

HMCS = [I,Q,ΣQ,V,∆] (4)

where I index set, Q, ΣQ collection of constrained mech. sys., V = {vij}i,j∈I
discrete controls and ∆ jump transition maps (linear operators in γ ′ parametrized

by vij).
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Summary of Modeling Methods

(lectures #1 and #2)

Simple mechanical control systems with constraints

A simple mechanical control system with constraints is a quintuple

(Q,G, V,D ,F ) comprised of the following objects:

(i) an n-dimensional configuration manifold Q,

(ii) a Riemannian metric G on Q describing the kinetic energy,

(iii) a function V on Q describing the potential energy,

(iv) a distribution D of feasible velocities describing the linear velocity constraints,

and

(v) a collection of m covector fields F = {F 1, . . . , Fm}, linearly independent at

each q ∈ Q, defining the control forces.
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Given the metric G and the distribution D , we define the following objects. We let

P : TQ→ TQ be the orthogonal projection onto the distribution D with respect to

the metric G. We let G∇ be the Levi-Civita connection on Q induced by the metric

G. We let ∇ be the constrained affine connection defined by the metric G and

the constraint distribution D according to

∇XY = G∇XY −
(G∇XP

)
(Y ),

for any vector fields X and Y . When the vector field Y takes value in D , we have

∇XY = P (G∇XY ),
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Given the Riemannian metric G, we let G : TQ→ T ∗Q and G−1 : T ∗Q→ TQ

denote the musical isomorphisms associated with G. For a ∈ {1, . . . ,m}, we define

the input vector fields Ya = P (G−1(F a)), the family of input vector fields

Y = {Y1, . . . , Ym}, and the input distribution Y with

Yq = spanR{Y1(q), . . . , Ym(q)}. Let LXf be the Lie derivative of a scalar function

f with respect to the vector field X. The gradient of the function V is the vector

field gradV defined implicitly by

G(gradV,X) = LXV.
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A controlled trajectory for the mechanical control system with constraints

(Q,G, V,D ,F ) is a pair (γ, u) with γ : [0, T ]→ Q and

u = (u1, . . . , um) : [0, T ]→ Rm satisfying the controlled geodesic equations

∇γ̇(t)γ̇(t) = −P (gradV (γ(t))) +

m∑

a=1

Ya(γ(t))ua(t). (5)

Here we assume that γ̇(0) ∈ Dγ(0) and comment that this implies that

γ̇(t) ∈ Dγ(t) for all t ∈ [0, T ]. Furthermore, we assume the input functions

u = (u1, . . . , um) : [0, T ]→ Rm to be Lebesgue measurable functions, and we write

u ∈ U m
dyn.
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Coordinate representation #1

On an open subset U ⊂ Q let X = {X1, . . . , Xn} be a basis of vector fields, and

set

∇Xi
Xj = (XΓ)kijXk, (6)

where the n3 functions {(XΓ)kij | i, j, k ∈ {1, . . . , n}} are called the generalized

Christoffel symbols with respect to X . Given vector fields Y and Z on U , we can

write Y = Y iXi and Z = ZiXi. Accordingly,

∇Y Z =
((

LXi
Zk
)
Y i + (XΓ)kijZ

iY j
)
Xk.

Let the velocity curve γ̇ : I → TU have components (v1, . . . , vn) with respect to

X , i.e.,
γ̇(t) = vi(t)Xi(γ(t)).

The pair (γ, u) is a controlled trajectory for the controlled geodesic equations (5) if

and only if it solves the controlled Poincaré equations

v̇k + (XΓ)kij(γ)v
ivj = − (P gradV )

k
(γ) +

m∑

a=1

Y ka (γ)ua. (7)
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Coordinate representation #2

Let (q1, . . . , qn) be a coordinate system for the open subset U ⊂ Q. The curve

γ : I → U has therefore components (γ1, . . . , γn). The coordinate system on U

induces the natural coordinate basis { ∂
∂q1 , . . . ,

∂
∂qn } for the tangent bundle TU .

With respect to this basis, we write the velocity curve γ̇ : I → TU as

γ̇(t) = γ̇i(t)
∂

∂qi
(γ).

In the coordinate system (q1, . . . , qn), we write γ = (γ1, . . . , γn),

γ̇ = (γ̇1, . . . , γ̇n), and the equations of motion read

γ̈k + Γkij γ̇
iγ̇j = − (P gradV )

k
(γ) +

m∑

a=1

Y ka ua. (8)

Here, the Christoffel symbols {Γkij | i, j, k ∈ {1, . . . , n}} and the terms in the

right-hand side are computed with respect to the natural coordinate basis. We

refer to these equations as the controlled Euler-Lagrange equations.
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Remarks

(i) If the distribution D has rank p < n, it is useful to construct a local basis for

TQ by selecting the first p vector fields to generate D , and the remaining

n− p to generate D⊥. In this case, one can see that vk(t) = 0 for all time t

and all k ∈ {p+ 1, . . . , n}.

(ii) Assume a Lie group G acts on the manifold Q, and assume the metric G, and

the distribution D are invariant. Then the constrained connection ∇ is

invariant, and, selecting invariant vector fields {X1, . . . , Xn}, the generalized

Christoffel symbols are invariant functions.

(iii) simple mechanical control systems can be modeled under the general

framework of affine connection control systems

∇γ′γ′ = Y0(γ) +R(γ′) +
m∑

a=1

Ya(γ)ua(t)
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Lecture #3: Perturbation Analyses of

Affine Connection Control Systems

Francesco Bullo
Coordinated Science Lab, General Engineering Dept, ECE, AAE

University of Illinois at Urbana-Champaign

1308 W. Main St, Urbana, IL 61801, USA

bullo@uiuc.edu, http://motion.csl.uiuc.edu

This lecture based on the following references

[1] F. Bullo, “Series expansions for mechanical control systems,” SIAM JCO, 40(1):166–190, 2001.

[2] F. Bullo, “Averaging and vibrational control of mechanical systems,” SIAM JCO, Submitted 1999. To

appear 2002.

[3] F. Bullo, “Series expansions for analytic systems linear in controls,” Automatica, 38(9):1425-1432, 2002.
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13.4 Intro: Perturbation methods for mechanical control systems

Before design, analyse forced response of Lagrangian system from rest

I) High magnitude high frequency

“oscillatory control &

vibrational stabilization”

H = H(q, p) +
1

ε
ϕ

(
q, p, u

(
t

ε

))

p(0) = p0

II) Small input from rest

“small-time local controllability”
H = H(q, p) + εϕ(q, p, u(t))

p(0) = 0

III) Classical formulation

integrable Hamiltonian systems
H = H(q, p) + εϕ(q, p)

p(0) = p0
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13.5 Intro: oscillatory control

Known: Oscillatory controls generate motion in Lie bracket directions

ẋ = f(x) + g1(x)

(
1√
ε
sin

t

ε

)
+ g2(x)

(
1√
ε
cos

t

ε

)

ẋ = f(x) +
1

2
[g1, g2](x)

Today’s objective: oscillatory controls in mechanical systems

∇γ′γ′ = Y (q, t)

γ′(0) = 0,

∫ T

0

Y (q, t)dt = 0
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Incomplete List of References on Series Expansion and Averaging related to

Mechanical Systems

[1] A. A. Agračhev and R. V. Gamkrelidze, The exponential representation of flows and the

chronological calculus, Math. USSR Sbornik, 35 (1978), pp. 727–785.

[2] J. Baillieul, Stable average motions of mechanical systems subject to periodic forcing, in Dynamics and

Control of Mechanical Systems: The Falling Cat and Related Problems, M. J. Enos, ed., vol. 1, Field

Institute Communications, 1993, pp. 1–23.

[3] R. E. Bellman, J. Bentsman, and S. M. Meerkov, Vibrational control of nonlinear systems:

Vibrational controllability and transient behavior, IEEE TAC, 31 (1986), pp. 717–724.

[4] P. E. Crouch, Geometric structures in systems theory, IEE Proceedings, 128 (1981), pp. 242–252.

[5] M. Kawski. Geometric homogeneity and applications to stabilization. In Nonlinear Control Systems Design

Symposium (NOLCOS), pages 251–256, Tahoe City, CA, July 1995.

[6] M. Kawski and H. J. Sussmann, Noncommutative power series and formal Lie-algebraic techniques in

nonlinear control theory, in Operators, Systems, and Linear Algebra, U. Helmke, D. Pratzel-Wolters, and

E. Zerz, eds., Teubner, Stuttgart, Germany, 1997, pp. 111–128.

[7] M. Levi, “Geometry of Kapitsa’s potentials,” Nonlinearity, vol. 11, no. 5, pp. 1365–8, 1998.

[8] W. Liu and H. J. Sussmann, “Continuous dependence with respect to the input of trajectories of

control-affine systems,” SIAM Journal on Control and Optimization, vol. 37, no. 3, pp. 777–803, 1999.

[9] J. P. Ostrowski and J. W. Burdick, “The geometric mechanics of undulatory robotic locomotion,”

International Journal of Robotics Research, vol. 17, no. 7, pp. 683–701, 1998.

[10] J. A. Sanders and F. Verhulst, Averaging Methods in Nonlinear Dynamical Systems, Springer Verlag,

New York, NY, 1985.
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13.6 Coordinate-free modelling: I

• manifold Q, metric G

• vector fields are written in terms of the canonical basis { ∂
∂q1 , . . . ,

∂
∂qn }, and

co-vector fields in terms of {dq1, . . . , dqn}

• given a function ϕ:

dϕ =
∂ϕ

∂qi
dqi

gradϕ =

(
Gij ∂ϕ

∂qj

)
∂

∂qi

q̇ = − gradϕ(q) . . . (negative) gradient flow
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13.7 Coordinate-free modelling: II

(i) given functions
{
Γijk

}
, and curve γ : I → R

(∇γ′γ′)i = γ̈i + Γijkγ̇
j γ̇k = 0 . . . geodesic flow

(ii) Given two vector fields X,Y , the covariant derivative of Y with respect to X

is the third vector field ∇XY defined via

(∇XY )i =
∂Y i

∂qj
Xj + ΓijkX

jY k.

(iii) symmetric product

〈Ya : Yb〉 = ∇YaYb +∇YbYa

〈Ya : Yb〉i =
∂Y ia
∂qj

Y jb +
∂Y ib
∂qj

Y ja + Γijk
(
Y ja Y

k
b + Y ka Y

j
b

)
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13.8 Coordinate-free modelling: III

affine connection control system

∇γ′γ
′ = Y0(γ) +R(γ′) +

m∑

a=1

Ya(γ)ua(t)

Ex #1: robotic manipulators with kinetic energy and forces at joints

simple systems with conservative forces

Ex #2: aerospace and underwater vehicles

invariant systems on Lie groups

Ex #3: systems subject to nonholonomic constraints

locomotion devices with drift, e.g., bicycle, snake-like robots
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14 Perturbation Analysis I:
the “oscillatory control & vibrational stabilization” setting

(Bentsman et al, ’86 – present) vibrational stabilization

(Baillieul ’93 – present) discovery, study, apps of averaged potential

∇γ′γ
′ = Y0(γ) +R(γ′) + Y (γ)u(t)

u(t) =
1

ε
v

(
t

ε

)

where forcing v is T -periodic
∫ T

0

v(s1)ds1 =

∫ T

0

∫ s1

0

v(s2)ds1ds2 = 0

and let

λ =
1

2T

∫ T

0

(∫ s1

0

v(s2)ds2

)2
ds1
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14.1 Averaging for general mechanical systems

∇γ′γ
′ = Y0(γ) +R(γ′) +

1

ε
v

(
t

ε

)
Y (γ)

∇γ′γ
′ = Y0(γ) +R(γ′) + λ 〈Y : Y 〉(γ)

(i) approximation valid as ε→ 0 on the time scale t ∈ [0, 1]

(ii) approximation valid as ε→ 0 on the time scale t ∈ [0,∞),

if (γ, γ′) = (0, 0) is an hyperbolically stable critical point
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14.2 Ex #1: a 2-link manipulator

� �

�

� �

PSfrag replacements

π/2

0

20

40

60

time (sec)

θ1, θ2 (rad)

PSfrag replacements

π/2

0

20 40

60

time (sec)

θ 1
,θ
2
(r
ad
)

u = −θ1 +
1

ε
cos

(
t

ε

)

Two-link damped manipulator with oscillatory control at first joint. The averaging

analysis predicts the behavior. (the gray line is θ1, the black line is θ2). See later

explanation for stability of (0, π/2).

fb-jul02-p106

14.3 Ex #2: the roller racer

�

�

� �

� �

	




(i) recall X1, X2 two vector fields describing feasible velocities of racer

(ii) racer has single input Y = X2

(iii) symmetric product 〈Y : Y 〉 has component along X1

(iv) hence, racer moves forward (or backward?) using zero mean input
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14.4 Extension: Two-time scales result

∇γ′γ
′ = Gravity+ Damping +

1

ε
v

(
t

ε

)
Y (t, γ)

v(t) is T -periodic and cyclic

∇γ′γ
′ = Gravity+ Damping + λ 〈Y : Y 〉(t, γ)

λ =
1

2T

∫ T

0

(∫ s1

0

v(s2)ds2

)2
ds1

as ε→ 0 on appropriate time scale
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(
t

ε

)

why stable?
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15 Simplified averaging analyses for SMCS with

conservative forces

integrable forces in the sense of conservative forces:

Y (q, t) = gradϕ(q, t), (gradϕ)i = Gij ∂ϕ

∂qj

Symmetric product restricts

〈gradϕa : gradϕb〉 ≡ grad 〈ϕa : ϕb〉

where Beltrami bracket (Crouch ’81):

〈ϕi : ϕj〉 = 〈〈dϕi , dϕj〉〉 = Gab ∂ϕi
∂qa

∂ϕj
∂qb

Relationship between: (i) certain Lie brackets between vector fields on TQ, (ii)

symmetric products of vector fields on Q, Beltrami bracket of functions (and,

averaged potential)
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15.1 Analysis I: averaging energy

In the open loop,

E(q, vq) =
1

2
‖vq‖2 + V (q)

but for controlled geodesic equations with input vector field

m∑

a=1

1

ε
va
(
t

ε

)
gradϕa(q)

Averaged potential and energy

Eaveraged(q, p) =
1

2
‖vq‖2 + Vaveraged(q)

Vaveraged(q) = V (q) + Λab〈ϕa : ϕb〉(q)

Λab =
1

2T

∫ T

0

(∫ s1

0

va(s2)ds2

)(∫ s1

0

vb(s2)ds2

)
ds1
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Two-link damped manipulator with oscillatory control at first joint. (the gray line is

θ1, the black line is θ2).

Despite the superimposed oscillatory behavior the variables (θ1, θ2) converge to the

global minimum of the averaged controlled potential energy.
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16 Proofs

16.1 Theorem statement

Consider a control system described by an affine connection

∇γ′γ′ = Y0(q) +R(γ′) + Ya(γ)
1

ε
va(t/ε) (9)

where γ′(0) = v0, and where {v1, . . . , vm} are T -periodic functions st:

∫ T

0

va(s1)ds1 = 0 =

∫ T

0

∫ s2

0

va(s1)ds1ds2 = 0

Define the matrix Λ according to:

Λab =
1

2T

∫ T

0

(∫ s1

0

va(s2)ds2

)(∫ s1

0

vb(s2)ds2

)
ds1.

Define the time-varying vector field

Ξ(t, q) =

(∫ t

0

va(s)ds

)
Ya(q),
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Theorem 2 (Averaging under oscillatory control). Let γ : I → Q be the

solution to the initial value problem in equation (9) and let r : I → Q be the

solution to

∇r′r′ = Y0(r) +R(r)ṙ − Λab〈Ya : Yb〉(r)
r(0) = q0, ṙ(0) = v0.

There exist a positive ε0, such that for all 0 < ε ≤ ε0
γ(t) = r(t) +O(ε)

γ′(t) = r′(t) + Ξ(t/ε, γ(t)) +O(ε)

as ε→ 0 on the time scale 1.

• F. Bullo, “Averaging and vibrational control of mechanical systems,” SIAM JCO,

Submitted November 1999. Appeared, Jul 2002.
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16.2 Fact #1: Coordinate-free Averaging

Let x, y, x0 ∈ Rn, let ε ∈ (0, ε0] with ε0 ¿ 1. Let f, g : R+ × Rn → Rn be smooth

time-varying vector fields. Consider the initial value problem in standard form:

dx

dt
= εf(t, x), x(0) = x0.

Assume f(t, x) is a T -periodic function in t, and define the averaged system:

dy

dt
= εf0(y), y(0) = x0,

f0(y) =
1

T

∫ T

0

f(t, y)dt.

Theorem 3 (First order averaging). There exists ε0, such that for 0 < ε ≤ ε0,

x(t)− y(t) = O(ε)

as ε→ 0 on the time scale 1/ε.

Recall: an estimate is on the time scale δ(ε), if it holds for all t such that

0 < δ−1(ε)t < L with L independent of ε.
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Fact #1: Coordinate-free Averaging – continued

dx

dt
= f(x) +

1

ε
g

(
t

ε
, x

)
, x(0) = x0,

where g(t, x) is a T -periodic function in t. Define

F (t, x) =
(
(Φg0,t)

∗f
)
(x) F 0(x) =

1

T

∫ T

0

F (τ, x)dτ.

Finally, let z and y be solutions to the initial value problems

ż = F (t/ε, z), z(0) = x0,

ẏ = F 0(y), y(0) = x0.

Theorem 4 (First order averaging for oscillatory controls). Let F be a

T -periodic function in t. For t ∈ R+, we have

x(t) = Φg0,t/ε(z(t)).

As ε→ 0 on the time scale 1, we have

x(t) = Φg0,t/ε(y(t)) +O(ε)
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Fact #1: Coordinate-free averaging – the variation of constants formula

dx

dt
= f(x) + g(x) g is nominal, f is perturbation

q0 δq0

flow along X + Y

flow along Y

ΦX+Y0,T (q0) = ΦY0,T (δq0)

Φf+g0,t (q0) = Φg0,t(δq0), δq0 = Φ∆0,t(q0), ∆ =
(
(Φg0,t)

∗f
)

∆ =

∞∑

k=0

tk

k!
adkg f = f +

∞∑

n=1

t∫

0

. . .

sn−1∫

0

(
adgsn . . . adgs1 f

)
dsn . . . ds1



fb-jul02-p117

16.3 Fact #3: Homogeneity properties and Lie algebraic structure of

affine connection control systems

Given γ = (γ1, . . . , γn), write second order ODE on Q as first order ODE on TQ:


γ̇

i

γ̈i


 =


 γ̇i

−Γijk(γ)γ̇j γ̇k




︸ ︷︷ ︸
Z

+


 0

Y it (γ)




︸ ︷︷ ︸
Y lift

Lie algebraic & homogeneous structure

Pi =
{[

homogeneous polynomial of degree i in γ̇1, . . . , γ̇n

homogeneous polynomial of degree (i+ 1) in γ̇1, . . . , γ̇n

]}

Z ∈ P1 . . . Y lift ∈ P−1
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Lie algebraic & homogeneous structure: cont’d

The sets Pj enjoy various interesting properties.

(i) [Pi,Pj ] ⊂ Pi+j , that is, the Lie bracket between a vector field in Pi and a

vector field in Pj belongs to Pi+j .

(ii) Pk = {0} for all k ≤ −2,

(iii) for all X ∈ Pk with k ≥ 1, X(0q) = 0,

(iv) every X ∈ P−1 is the lift of a vector field on Q, i.e.,

X = Y lift =


 0

Y




where X is vector field on TQ and Y is vector field on Q
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Lie bracket diagram

(1, 1)

#g

2

1

3 4

#f

2

(2, 1)

(i, j)

1

P1 P0 P−1

{0} {0}

{0}

[Y lift
1 , [Z, Y lift

2 ]] ∈ P−1

[Y lift
1 , [Z, Y lift

2 ]] =


 0

〈Y1 : Y2〉


 = 〈Y1 : Y2〉lift
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Coordinated independent treatment

(i) Geometric homogeneity, Kawski ’95:

given a Euler v.f. XE , Y is homogeneous of degree ν if [XE , Y ] = νY

(ii) Liouville vector field XE(q, v) = vi ∂
∂vi ; key identities on TQ:

[XE , Z] = (+1)Z

[XE , Y
lift] = (−1)Y lift.

Hence, degree of Z is +1, degree of Y lift is −1
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16.4 Fact #4: putting it all together

Write second order equation (9) as first order —let x = (q, q̇) and

f(x) = Z(x) + Y lift
0 (x) +Rlift(x),

g(t, x) =

m∑

a=1

Y lift
a (x)va(t).

Define the vector field F

F (t, y) =
(
(Φg0,t)

∗f
)
(y) =

(
Φ

∑
Y lift
a (y)v

a(t)
0,t

)∗
(Z(y) + Y lift

0 (y) +Rlift(y)).

and compute it according to the series expansion

(Φg0,t)
∗f = f +

∞∑

k=1

∫ t

0

. . .

∫ sk−1

0

(
adg(sk) . . . adg(s1) f

)
dsk . . . ds1.

The Lie algebraic structure implies

adkY lift
a
(Z(y) + Y lift

0 (y) +Rlift(y)) = 0, ∀k ≥ 3,

adY lift
b

adY lift
a
(Z(y) + Y lift

0 (y) +Rlift(y)) = −〈Ya : Yb〉lift.
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Some bookkeeping:

(
Φ

∑
Y lift
a (y)v

a(t)
0,t

)∗ (
Z(y) + Y lift

0 (y) +Rlift(y)
)

=
(
Z + Y lift

0 +Rlift
)
+

(∫ t

0

va(s1)ds1

)
[Y lift
a ,
(
Z + Y lift

0 +Rlift
)
]

+

(∫ t

0

∫ sb

0

vb(sb)v
a(sa)dsadsb

)
[Y lift
b , [Y lift

a ,
(
Z + Y lift

0 +Rlift
)
]]

=
(
Z + Y lift

0 +Rlift
)
+

(∫ t

0

va(s1)ds1

)
[Y lift
a ,
(
Z +Rlift

)
]

−
(∫ t

0

∫ sb

0

vb(sb)v
a(sa)dsadsb

)
〈Ya : Yb〉lift.
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An integration by parts and the symmetry of the symmetric product:

(∫ t

0

∫ sb

0

vb(sb)v
a(sa)dsadsb

)
〈Ya : Yb〉

=
1

2

(∫ t

0

vb(sb)dsb

∫ t

0

va(sa)dsa

)
〈Ya : Yb〉,

In summary

F (t, y) =
(
Z + Y lift

0 +Rlift
)
+

(∫ t

0

va(s1)ds1

)
[Y lift
a ,
(
Z +Rlift

)
]

− 1

2

(∫ t

0

vb(sb)dsb

∫ t

0

va(sa)dsa

)
〈Ya : Yb〉lift.

F is T -periodic —compute its average F 0 as

F 0(y) =
(
Z + Y lift

0 +Rlift
)
− Λab〈Ya : Yb〉lift.

This is what we wished to show.

fb-jul02-p124

17 Perturbation Analysis II:
the “small-time local controllability” setting

Small input from rest H = H(q, p) + εϕ(q, u(t))

p(0) = 0

∇γ′γ
′ =

m∑

a=1

Ya(γ)ua(t)

Objective: characterize forced flow via series expansion
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17.1 Series expansions for polynomial systems

ẋ = P (x, x) +Ax+Bu(t)

x(0) = 0

x =

+∞∑

k=1

xk

x1(t) =

∫ t

0

eA(t−τ)Bu(τ)dτ

xk(t) =

k−1∑

j=1

∫ t

0

eA(t−τ)P (xj(τ), xk−j(τ))dτ, k ≥ 2.

convergence radius: β2 ‖u‖L∞ < 1, where β = 2
∥∥eAt

∥∥
L1
‖P‖∞
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17.2 Series expansion for affine connection control systems

∇γ′γ
′ = −kγ′ + Y (γ, t)

γ′(0) = 0

γ′ =
+∞∑

k=1

Vk(γ, t) absolute, uniform convergence

V1(q, t) =

∫ t

0

ek(s−t)Y (q, s)ds

Vk(q, t) = −
1

2

k−1∑

j=1

∫ t

0

ek(s−t)〈Vj(q, s) : Vk−j(q, s)〉ds
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17.3 Series: comments

γ′ =
+∞∑

k=1

Vk(γ, t)





V1(q, t) =
∫ t
0
ek(s−t)Y (q, s)ds,

Vk+1(q, t) = − 12
∑∫ t

0
ek(s−t)〈Va : Vk−a〉ds

Error bounds:

‖Vk(q, t)‖ = O(‖Y ‖kt2k−1).

In abbreviated notation

V1 = Y V2 = −
1

2
〈Y : Y 〉

V3 =
1

2
〈〈Y : Y 〉 : Y 〉

so that

γ′(t) = Y (q, t)− 1

2
〈Y : Y 〉(q, t) + 1

2
〈〈Y : Y 〉 : Y 〉(q, t) +O(‖Y ‖4t7).
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17.4 Analysis II: a forces geodesic flow written as gradient flow

∇γ′γ
′ = gradϕ(γ, t)

γ′(0) = 0q0

γ′(t) = grad
+∞∑

k=1

ϕk(γ(t), t) γ(0) = q0

ϕ1(q, t) =

∫ t

0

ϕ(q, s)ds

ϕk(q, t) = −
1

2

k−1∑

j=1

∫ t

0

〈ϕj(q, s) : ϕk−j(q, s)〉ds
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17.5 Example of open-loop response: planar body

simple example: body with one force

through center of mass and one torque.

q(0) = (0, 0, 0), T = 2π

u1 = .5(sin t− 2 sin 2t), u2 = .5 cos t

PSfrag replacements

exact solution

PSfrag replacements PSfrag replacements PSfrag replacements
first order second order third order
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17.6 Conjecture

∇γ′γ
′ = R(γ′) + Y (γ, t)

γ′(0) = 0

γ′ =
+∞∑

k=1

Vk(γ, t)

V1(q, t) =

∫ t

0

eR(q)(t−s)Y (q, s)ds

Vk(q, t) = −
1

2

k−1∑

j=1

∫ t

0

eR(q)(t−s)〈Vj(q, s) : Vk−j(q, s)〉ds

Positive answer for isotropic damping: R = kIn.
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18 Summary

(i) innovative approach towards control of mechanical systems

(homogeneity vs passivity)

(perturbation methods vs energy and Lyapunov functions)

(ii) challenges: convergence & complexity

(iii) applications to controllability, vibrational stabilization, analysis of

locomotion gaits, motion planning, optimal control, normal forms, etc
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18.1 Preliminaries: Kinematic modeling

�

�
�

��

�

ẋ = v cosφ

ẏ = v sinφ

φ̇ = ω

(wheeled robot dynamics)

�� � 	 
 � �

�






ẋr

ẏr

θ̇

φ̇



=




cos θ

sin θ

1
` tanφ

0



v +




0

0

0

1



ω
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18.2 Preliminaries: Controllability theory

Given a driftless system ẋ = g1(x)u1 + g2(x)u2

define Lie bracket: [g1(x), g2(x)] =
∂g2
∂x

g1 −
∂g1
∂x

g2

[g1, g2]

g2+u1

+u2

−u1

−u2

g1

system is controllable iff LARC

not full rank full rank

Example: car parking problem
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19 Kinematic reductions for simple mechanical

control systems with constraints

(i) Objective: relationships between the given mechanical control system and an

appropriate low-complexity kinematic representation

(ii) treatment for simple mechanical control systems subject to no potential energy

(iii) we relate controlled trajectories for the (second-order) controlled geodesic

equation

∇γ̇(t)γ̇(t) =
m∑

a=1

Ya(γ(t))ua(t).

to controlled trajectories for driftless control systems on Q.

when can a second order system follow the solution of a first order?
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19.1 Motivating example

�

�

simple example: body with

one force through center of mass and one torque

(i) Can follow any straight

line and can turn (2 preferred velocity fields)

(ii) Controllable via these two motions

(hence, interesting for planning problems)

�

�

� �
��� �

� 	



� �

�  � �

�� � � �

�� �

�� �� � �

�

��

�

Ok ? ? ?

search for decoupling vector fields describing 1st order ODEs

whose time-scaled flow is solutions to (forced) 2nd order ODEs
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Nomenclature:

(i) The controlled geodesic equation is a dynamic models of mechanical systems:

∇γ̇(t)γ̇(t) =
m∑

a=1

Ya(γ(t))ua(t).

In dynamic models the control inputs u are accelerations, and assumed

Lebesgue measurable functions: u ∈ U m
dyn.

(ii) In contrast to this, we refer to first-order differential equations on Q as

kinematic models of mechanical systems. Let V = {V1, . . . , V`} be a family

of vector fields. For curves γ : [0, T ]→ Q and w : [0, T ]→ R`, consider the

kinematic model induced by V

γ̇(t) =
∑̀

b=1

Vb(γ(t))wb(t).

In kinematic models, the control inputs are velocity variables, and are assumed

absolutely continuous: w ∈ U `
kin.
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19.2 Kinematic reductions and decoupling vector fields

In short, V is a kinematic reduction if any curve γ : I → Q solving the

(controlled) kinematic model can be lifted to a solution to a solution of the

(controlled) dynamic model.

More accurately, the kinematic model induced by V = {V1, . . . , V`} is a kinematic

reduction of the dynamic model, if, for any control input w ∈ U `
kin and

corresponding controlled trajectory (γ,w) for the kinematic model, there exists a

control input u ∈ U m
dyn such that (γ, u) is a controlled trajectory for the dynamic

model.

• The rank of a kinematic reduction is the rank of the distribution generated by

the vector fields V.

• Rank-one kinematic reductions are particularly interesting. We shall call a vector

field V decoupling if the rank-one kinematic system induced by V = {V } is a
kinematic reduction. Hence, the second-order control system can be steered

along any time-scaled integral curve of a decoupling vector field.

fb-jul02-p140

19.3 Kinematic reductions and decoupling vector fields: cont’d

The kinematic model induced by {V1, . . . , V`} is a kinematic reduc-

tion of the mechanical control system (Q,G, V = 0,F)
if and only if

the distribution span{Vi, 〈Vj : Vk〉| i, j, k ∈ {1, . . . , `}} is a sub-

distribution of the input distribution Y .

The vector field V is decoupling

if and only if

V ∈ Y and 〈V : V 〉 ∈ Y .
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19.4 Mechanical systems fully reducible to kinematic systems

when is a mechanical system kinematic?

That is, when will the largest possible kinematic reduction, i.e., Y will be

attained?

The dynamic model for the system (Q,G, V = 0,F) is fully reducible to the

kinematic system induced by V if, V is a kinematic reduction of

(Q,G, V = 0,F) and if, for any control input u ∈ U m
dyn, initial condition

γ̇(0) ∈ span(V), and corresponding controlled trajectory (γ, u) for the dynamic

model, there exists a control input w ∈ U `
kin such that (γ,w) is a controlled

trajectory for the kinematic model induced by V.

A dynamic system is fully reducible to a kinematic system is there exists one

such collection of vector fields V.
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19.5 Mechanical systems fully reducible to kinematic systems: cont’d

A distribution X is said to be geodesically invariant if it is closed under

operation of symmetric product, i.e., if for all vector fields X and Y taking values

in X , the vector field 〈X : Y 〉 also takes value in X . The symmetric closure of

the distribution X is the smallest geodesically invariant distribution containing X .

Theorem 5. A mechanical control system is fully reducible to a kinematic system

if and only if

(i) the kinematic system is induced by the input distribution Y and

(ii) the input distribution Y is geodesically invariant.
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20 Accessibility and controllability notions

20.1 Controllable kinematic systems

Here we consider the family V = {V1, . . . , V`} giving rise to the driftless /

kinematic control system. For q0 ∈ Q we denote

RV(q0, T ) = {γ(T ) | (γ, u) is a controlled trajectory

for kinematic model defined on [0, T ] with γ(0) = q0},

and RV(q0,≤ T ) =
⋃
t∈[0,T ]RV(q0, t).

��

�� �� � � �� �

��
�	� �� � � �� �

��
�	� �� � � �� �
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Definition 6. The kinematic system induced by V is

(i) locally accessible from q0 if there exists T > 0 so that int(RV(q0,≤ t)) 6= ∅
for t ∈ (0, T ], is

(ii) small-time locally controllable (STLC) from q0 if there exists T > 0 so that

q0 ∈ int(RV(q0,≤ t)) for t ∈ (0, T ], and is

(iii) controllable if for every q1, q2 ∈ Q there exists a controlled trajectory (γ, u)

defined on [0, T ] for some T > 0 with the property that γ(0) = q1 and

γ(T ) = q2.

Theorem 7. The kinematic system is STLC (and therefore accessible) from q0 if

and only if Lie{span(V)}q0 = Tq0Q. Furthermore, if Q is connected and if

Lie{span(V)}q = TqQ for each q ∈ Q, then the kinematic mode is controllable.



fb-jul02-p145

20.2 Kinematically controllable dynamic systems

(i) A dynamic mechanical system described by (Q,G, V,D ,F ) is kinematically

controllable if there exists a sequence of kinematic reductions

{Vi| i ∈ {1, . . . , k}, rankVi = `i} so that for every q1, q2 ∈ Q there are

corresponding controlled trajectories

{(γi, wi)| γi : [Ti−1, Ti]→ Q, wi : [Ti−1, Ti]→ R`i , i ∈ {1, . . . , k}} such that

γ1(T0) = q1, γk(Tk) = q2, and γi(Ti) = γi+1(Ti) for all i ∈ {1, . . . , k − 1}.

(ii) In other words, any q2 ∈ Q is reachable from any q1 ∈ Q by concatenating

motions on Q corresponding to kinematic reductions of the dynamic system

(iii) The dynamic system is locally kinematically controllable from q0 if, for any

neighborhood of q0 on Q, the set of reachable configurations by trajectories

remaining in the neighborhood and following motions of its kinematic

reductions contains q0 in its interior.
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Theorem 8. Consider a dynamic mechanical system. The system is locally

kinematically controllable if and only if it possesses a collection of decoupling

vector fields (i.e., rank-one kinematic reductions) whose involutive closure has

maximal rank everywhere in Q.

fb-jul02-p147

20.3 Controllable dynamic systems

Consider a dynamic mechanical system (Q,G, V,D ,F ). For q0 ∈ Q, denote

RTQ(q0, T ) = {γ̇(T ) | (γ, u) is a controlled trajectory

of the dynamic model defined on [0, T ] and satisfying γ̇(0) = 0q0}.

Here 0q0 ∈ Tq0Q is the zero vector. Also, RTQ(q0,≤ T ) =
⋃
t∈[0,T ]RTQ(q0, t).

Definition 9. Consider a dynamic mechanical system (Q,G, V,D ,F ) and let

q0 ∈ Q. Suppose that the controls for the dynamic system are restricted to take

their values in a compact set of Rm which contains 0 in the interior of its convex

hull. The dynamic system is

(i) locally accessible from q0 if there exists T > 0 so that int(RTQ(q0,≤ t)) 6= ∅
for t ∈ (0, T ], and is

(ii) small-time locally controllable (STLC) from q0 if there exists T > 0 so that

0q0 ∈ int(RTQ(q0,≤ t)) for all t ∈ (0, T ].
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Notation: Consider iterated symmetric products in the vector fields {Y1, . . . , Ym}.

(i) A symmetric product is bad if it contains an even number of each of the

vector fields Y1, . . . , Ym, and otherwise is good. Thus, for example,

〈〈Ya : Yb〉 : 〈Ya : Yb〉〉 is bad for all a, b ∈ {1, . . . ,m} and 〈Ya : 〈Yb : Yc〉〉 is
good for any a, b, c ∈ {1, . . . ,m}.

(ii) The degree of a symmetric product is the total number of input vector fields

comprising the symmetric product. For example, our given bad symmetric

product has degree 4 and the given good symmetric product has degree 3.

(iii) If P is a symmetric product in the vector fields {Y1, . . . , Ym} and if σ ∈ Sm is

an element of the permutation group on {1, . . . ,m}, σ(P ) denotes the
symmetric product obtained by replacing each occurrence of Ya with Yσ(a).
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Theorem 10. Consider a dynamic mechanical system described by

(Q,G, V,D ,F ) and let q0 ∈ Q. The dynamic mechanical system is

(i) locally accessible from q0 if and only if Sym{Y }q0 = Tq0Q, and is

(ii) STLC from q0 if Sym{Y }q0 = Tq0Q and if for every bad symmetric product

P we have ∑

σ∈Sm
σ(P )(q0) ∈ spanR{P1(q0), . . . , Pk(q0)},

where P1, . . . , Pk are good symmetric products of degree less than P .

The condition stated for STLC is derived from a result of Sussmann ’87.
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20.4 Configuration controllable dynamic systems

The preceding discussion concerned the set of reachable states for a dynamic

mechanical system. Let us now restrict to descriptions of the set of reachable

configurations. We define

RQ(q0, T ) = τ(RTQ(q0, T )), RQ(q0,≤ T ) =
⋃

t∈[0,T ]
RQ(q0, t).

This gives the following notions of controllability relative to configurations.

Definition 11. Consider a dynamic mechanical system described by

(Q,G, V,D ,F ) and let q0 ∈ Q. The dynamic mechanical system is

(i) locally configuration accessible from q0 if there exists T > 0 so that

int(RQ(q0,≤ t)) 6= ∅ for all t ∈ (0, T ], and is

(ii) small-time locally configuration controllable (STLCC) from q0 if there

exists T > 0 so that q0 ∈ int(RQ(q0,≤ t)) for all t ∈ (0, T ] with the controls

restricted to take their values in a compact subset of Rm that contains the

origin in its convex hull.
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Theorem 12. Consider an analytic dynamic mechanical system described by

(Q,G, V,D ,F ) and let q0 ∈ Q. The dynamic mechanical system is

(i) locally configuration accessible from q0 if and only if

Lie{Sym{Y }}q0 = Tq0Q, and is

(ii) STLCC from q0 if Lie{Sym{Y }}q0 = Tq0Q and if for every bad symmetric

product P we have
∑

σ∈Sm
σ(P )(q0) ∈ spanR{P1(q0), . . . , Pk(q0)},

where P1, . . . , Pk are good symmetric products of degree less than P .
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20.5 Controllability inferences

STLC = small-time locally controllable

STLCC = small-time locally configuration controllable

LKC = locally kinematically controllable

FR-LKC = fully reducible, locally kinematically controllable

STLCC

STLC LKC FR-LKC

There exist counter-examples for each missing implication sign.
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20.6 Controllability and Configuration Controllability





rank(Sym{Y }q0) = n
bad symmetric products are

linear combination of lower

order good products

Locally controllable

(q0, 0)
u−→ (af, vf)

can reach open set

of velocities




rank(Lie{Sym{Y }}q0) = n

good/bad as above

Configuration controllable

(q0, 0)
u−→ (qf, 0)

can reach open set

of configurations

Simplifications:

(i) for systems on group: algebraic tests on the Lie algebra

(ii) for systems with integrable forces: Beltrami brackets between functions
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20.7 Graphical illustration

∇γ′γ
′ = −kγ′ +

m∑

a=1

Ya(q)ua

γ′(0) = 0

given forces {F a}

accessible accelerations {Ya = G−1F a}

accessible velocities {Ya, 〈Yb : Yc〉, . . .}

accessible configurations {Ya, 〈Yb : Yc〉, [Yb, Yc], [〈Ya : Yb〉, Yc], . . .}M
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20.8 An example controllability analysis: the snakeboard

Symmetric products:

〈X2 : X2〉 = 0 , 〈X3 : X3〉 = 0 ,

〈X2 : X3〉 =
Jr
m`2

(cosφ)X1 −
Jr(cosφ sinφ)

m`2 + Jr(sinφ)2
X2 ,

span{X2, X3, 〈X2 : X3〉} = D if cosφ 6= 0.

Lie brackets:

[X1, X3] = `(sinφ)Vx + (cosφ)
∂

∂θ
[X1, [X1, X3]] = −`(sinφ)Vy ,

span{X1, X2, X3, [X1, X3], [X1, [X1, X3]]} = TQ System is STLCC
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20.9 An example controllability analysis: the roller racer

Symmetric products:

〈X2 : X2〉 = 2(XΓ)122(ψ)X1 + 2(XΓ)222(ψ)X2

span{X2, 〈X2 : X2〉} = D if (XΓ)122(ψ) 6= 0

Lie brackets:

[X1, X2] =
`2

`2 + `1 cosψ
Vy −

`1 + `2 cosψ

(`2 + `1 cosψ)2
∂

∂θ

[X1, [X1, X2]] =
−`2 sinψ

(`2 + `1 cosψ)2
Vx +

`1 + `2 cosψ

(`2 + `1 cosψ)2
Vy ,

span{X1, X2, [X1, X2], [X1, [X1, X2]]} = TQ everywhere `2I1 cosψ 6= `1I2.

System is locally configuration accessible
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20.10 A catalog of affine connection control systems

System Picture Reducibility & Controllability

planar 2R robot

single torque at either joint:

(1, 0), (0, 1)

n = 2,m = 1

(1, 0): no reductions, accessible

(0, 1): decoupling v.f., fully reducible,

not accessible or STLCC

roller racer

single torque at joint

n = 4,m = 1

no kinematic reductions, accessible,

not STLCC

planar body with single force

or torque

n = 3,m = 1

decoupling v.f., reducible, not accessi-

ble

planar body with single gen-

eralized force

n = 3,m = 1

no kinematic reductions, accessible,

not STLCC

planar body with two forces

n = 3,m = 2
two decoupling v.f., LKC, STLC
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robotic leg

n = 3,m = 2

two decoupling v.f., fully reducible and

LKC

planar 3R robot, two torques:

(0, 1, 1), (1, 0, 1), (1, 1, 0)

n = 3,m = 2

(1, 0, 1) and (1, 1, 0): two decoupling

v.f., LKC and STLC

(0, 1, 1): two decoupling v.f., fully re-

ducible and LKC

rolling penny

n = 4,m = 2
fully reducible and LKC

snakeboard

n = 5,m = 2
two decoupling v.f., LKC, STLCC

3D vehicle with 3 generalized

forces

n = 6,m = 3

three decoupling v.f., LKC, STLC
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Summary of Analysis Methods

(lectures #3 and #4)

Comprehensive, coherent body of work encompassing results on

(i) perturbation methods

(ii) kinematic reductions

(iii) controllability properties

Open directions

Averaging higher order, 2-time scales, gait analysis

Controllability gravity or generic dissipation
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Lecture #5: Stabilization and Tracking for

fully actuated systems

Francesco Bullo
Coordinated Science Lab, General Engineering Dept, ECE, AAE

University of Illinois at Urbana-Champaign

1308 W. Main St, Urbana, IL 61801, USA

bullo@uiuc.edu, http://motion.csl.uiuc.edu

This lecture based on the following references

[1] F. Bullo and R. M. Murray, “Tracking for fully actuated mechanical systems: A geometric framework,”

Automatica, vol. 35, no. 1, pp. 17–34, 1999.
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Incomplete List of References on Lyapunov and passivity methods for stabilization

and tracking

[1] S. Arimoto. Control Theory of Non-linear Mechanical Systems: A Passivity-Based and Circuit-Theoretic

Approach, volume 49 of OESS. Oxford University Press, Oxford, UK, 1996.

[2] A. M. Bloch, N. E. Leonard, and J. E. Marsden, “Controlled Lagrangians and the stabilization of

mechanical systems. I. the first matching theorem,” IEEE TAC, vol. 45, no. 12, pp. 2253–2270, 2000.

[3] D. E. Koditschek, “The application of total energy as a Lyapunov function for mechanical control

systems,” in Dynamics and Control of Multibody Systems (J. E. Marsden, P. S. Krishnaprasad, and J. C.

Simo, eds.), vol. 97, pp. 131–157, AMS, 1989.

[4] H. Nijmeijer and A. J. van der Schaft. Nonlinear Dynamical Control Systems. Springer Verlag, New York,

NY, 1990.

[5] R. Ortega, A. Loria, P. J. Nicklasson, and H. Sira-Ramirez. Passivity-Based Control of Euler-Lagrange

Systems: Mechanical, Electrical and Electromechanical Applications. Communications and Control

Engineering. Springer Verlag, New York, NY, 1998.

[6] R. Ortega, A. J. van der Schaft, I. Mareels, and B. Maschke, “Putting energy back in control,” IEEE

Control Systems Magazine, vol. 21, no. 2, pp. 18–33, 2001.

[7] S. Stramigioli, Modeling and IPC Control of Interactive Mechanical Systems- A Coordinate - Free

Approach, vol. 266 of Lecture Notes in Control and Information Sciences. Springer Verlag, 2001.

[8] A. J. van der Schaft, “Stabilization of Hamiltonian systems,” Nonl. Analysis, Theory, Methods & App.s,

vol. 10, no. 10, pp. 1021–1035, 1986.

[9] A. J. van der Schaft, L2-Gain and Passivity Techniques in Nonlinear Control, vol. 218 of Lecture Notes in

Control and Information Sciences. New York, NY: Springer Verlag, 1996.
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20.11 Stabilization via the total energy as Lyapunov function

Consider a simple mechanical control system (Q,G, V = 0,F) with
equations

∇γ′γ′ = G−1F

Goal: Stabilize q0 ∈ Q

(i) fully actuated system: span(F) = T∗Q

(ii) ϕ : Q→ R with critical zero and positive definite Hessian

ϕ(q0) = 0, dϕ(q0) = 0, Hessϕ(q0) > 0

(iii) Rayleigh dissipation function Kd : TQ→ T∗Q
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Classic PD control: FPD(vq) = −dϕ(q)−Kdvq

Stability, local exponential stability, global convergence to critical points of ϕ

(assuming existence compact and invariant set)

(i) Lyapunov function is

d

dt
(ϕ+

1

2
‖γ′‖2) = ∇γ′ϕ+

1

2
∇γ′‖γ′‖2

= 〈dϕ , γ′〉+ 〈〈∇γ′γ′ , γ′〉〉
= 〈dϕ , γ′〉+ 〈−dϕ(q)−Kdγ

′ , γ′〉 = −〈Kdγ
′ , γ′〉.

(ii) Proof of exponential convergence rates: modify Lyapunov function with εϕ̇

term, or perform linearized analysis
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21 Tracking for Fully Actuated Systems

Objective: track reference trajectory γref

Configuration and velocity errors:

(i) “distance” between q and r . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . error function

• positive definite, symmetric, quadratic Ψ: Q× Q→ R

(ii) “distance” between γ′ and γ′ref . . . . . . . . . . . . . . . . . . . . . . . . . . . . transport map

• linear map T(q,r) : TrQ→ TqQ

• velocity error is ė = γ′ − T(γ,γref)γ′ref
⇒ Ψ̇ = 〈d1Ψ , ė〉

• “compatibility:” d2Ψ(q, r) = −T ∗(q,r)d1Ψ(q, r)

Examples: joint or Euler angle rates, body-fixed angular velocities
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21.1 Tracking on Manifolds

Goal: Track a reference γref : I → Q for ∇γ′γ′ = G−1F

PD + Feedforward: Let F = FPD + FFF with

FPD(γ
′, t) = −d1Ψ(γ, γref)−Kd ė

FFF(γ
′, t) = G

(
(∇γ′T(γ,r)wr)

∣∣∣
wr=γ′ref

+
d

dt

(
T(q,γref)γ′ref

)∣∣∣
q=γ(t)

)

(i) Lyapunov stability with exponential convergence rates.

(ii) time-varying Lyapunov function

t 7→ Ψ(γ(t), γref(t)) +
1
2‖γ′(t)− T(γ(t),γref(t))γ′ref(t)‖2

(iii) FFF has two terms: “curvature” and acceleration of γref
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21.2 Table of Examples

Device configuration error function transport map/

space velocity error

Rob. manipulator Rn ‖q − r‖2 In

Pointing device S2 ⊂ R3 1− qT r (qT r)I3 + (r × q)̂

Satellite SO(3) tr
(
K(I3 −RRTd )

)
Ω− Ωd

tr
(
K(I3 −RTdR)

)
Ω−RTRdΩd

Submersible SE(3) [combination of R3 [change of reference

and SO(3)] frame]

Riemannian mfld Q geodesic distance parallel transport
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21.3 Effects of Different Choices of Error Computations

Closed-loop trajectory on SO(3) with different feedforward

Left transport map: trajectory

0

2.5

5

7.5

10

time

0

2.5

5

7.5

10

time

Right transport map: trajectory

0

2.5

5

7.5

10

time

0

2.5

5

7.5

10

time

Closed-loop trajectory on SE(2) with different feedback
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Lecture #6: Trajectory Planning via

Motion Primitives

Francesco Bullo
Coordinated Science Lab, General Engineering Dept, ECE, AAE

University of Illinois at Urbana-Champaign

1308 W. Main St, Urbana, IL 61801, USA

bullo@uiuc.edu, http://motion.csl.uiuc.edu

This lecture based on the following references

[1] F. Bullo and K. M. Lynch, “Kinematic controllability for decoupled trajectory planning in underactuated

mechanical systems,” IEEE TRA, 17(4)L402–412, 2001.

[2] F. Bullo and A. D. Lewis, “Kinematic controllability and motion planning for the snakeboard,” IEEE TRA,

Jan. 2002. Submitted.

[3] F. Bullo, N. E. Leonard, and A. D. Lewis, “Controllability and motion algorithms for underactuated

Lagrangian systems on Lie groups,” IEEE TAC, 45(8):1437–1454, 2000.

[4] W. T. Cerven and F. Bullo, “Constructive controllability algorithms for motion planning and

optimization,” IEEE TAC, Nov. 2001. Submitted.
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22 Motion planning for underactuated vehicles

SCAMP project Cassini probe blimp
SSL, U. Maryland

hovercraft tail-less aircraft helicopter Honda biped

(i) vehicles, robotic manipulators, locomotion devices

(ii) nonlinearities (kinetic energy, forces, configurations/velocities)

(iii) limited actuation (under-actuation, mag. & rate limits, ...)
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22.1 Limited actuation provides for challenges

Real time motion planning

– feedforward and 2 degree-of-freedom design for aggressive tracking

– can compute feasible trajectory only via 2 pt. boundary value

optimal control: iterative, off-line algorithms, convergence

– loss of controllability along minimum-time trajectories

Stabilization

– accurate hovering/station keeping ( exponential stab.)

– reconfiguration after actuator failure

(not linearly controllable)

Locomotion

– analysis of gaits and of novel propulsion mechanisms

– system design
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22.2 Motion Planning Scenarios

S is submanifold of trim conditions, helices, rel. equilibria, hover

S

S

(i) Classic Point-to-Point Setting: on manifold

and linearly controllable

(ii) Point-to-Point remaining on manifold and sys-

tem is not linearly controllable (low velocity

regime, internal actuation, actuator failure, ill

conditioned linearization)

(iii) Fast Point-to-Point via minimum-time trajec-

tory and system is not linearly controllable

(iv) Harder: Point-to-Point away from S
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22.3 Preliminaries: Numerical Optimal Control

Optimal Control

min

∫ T

0

‖u(t)‖2dt

subj x(0) = 0, x(T ) = xdesired

ẋ = f(x, u)

|u| ≤ 1, |u̇| ≤ 1

Transcription

u(t) =

Nu∑

i=1

diψi(t)

x(t)Ã xj = x(tj)

j = 1, . . . , Nx

Numerical

implementation

Your favorite solver:

Sequence of QP

Feasible SQP

Dimension: Nx +Nu

Finite dimensional NLP

min ‖d‖2

subj x1 = 0, xNx
= xdesired

xj+1 = f(xj , d)

|g(d)| ≤ 1
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22.4 Motion planning via primitives

Goal: reduce complexity & abstract dynamics

(i) quantize system dynamics into finite set of primitives {P1, . . . , Pn}
system can evolve on primitive for arbitrary time

(ii) characterize switches/transitions between primitives

transition requires a fix duration and displacement

Wheeled robot example

restrict search / abstract dynamics to straight lines and circles

Translate Rotate

switch / transition
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Incomplete List of References on Motion planning via low complexity models and via

series expansions

[1] E. G. Al’brekht, “On the optimal stabilization of nonlinear systems,” PMM - Journal of Applied

Mathematics and Mechanics, vol. 25, pp. 1254–1266, 1961.

[2] E. Frazzoli, M. A. Daleh, and E. Feron, “Real-time motion planning for agile autonomous vehicles,” AIAA

Journal of Guidance, Control, and Dynamics, vol. 25, no. 1, pp. 116–129, 2002.

[3] A. Halme and J. Orava, “Generalized polynomial operators for nonlinear systems analysis,” IEEE

Transactions on Automatic Control, vol. 17, no. 2, pp. 226–8, 1972.

[4] W. Magnus. On the exponential solution of differential equations for a linear operator. Communications

on Pure and Applied Mathematics, VII: 649–673, 1954.

[5] G. Lafferriere and H. J. Sussmann. A differential geometric approach to motion planning. In Z. Li and

J. F. Canny, editors, Nonholonomic Motion Planning, pages 235–270. Kluwer Academic Publishers,

Boston, MA, 1993.

[6] N. E. Leonard and P. S. Krishnaprasad, Motion control of drift-free, left-invariant systems on Lie

groups, IEEE Transactions on Automatic Control, 40 (1995), pp. 1539–1554.

[7] V. Manikonda, P. S. Krishnaprasad, and J. Hendler, “Languages, behaviors, hybrid architectures and

motion control,” in Mathematical Control Theory (J. Baillieul and J. C. Willems, eds.), New York, NY:

Springer Verlag, 1998.

[8] R. M. Murray and S. S. Sastry, Nonholonomic motion planning: Steering using sinusoids, IEEE

Transactions on Automatic Control, 5 (1993), pp. 700–726.

[9] H. J. Sussmann, “New differential geometric methods in nonholonomic path finding,” in Systems, Models,

and Feedback: Theory and Applications (A. Isidori and T. J. Tarn, eds.), pp. 365–384, Boston, MA:

Birkhäuser, 1992.
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23 Decoupled motion planning via kinematic

controllability

Motion planning for underactuated robot system

(i) actuator failure

(ii) lighter design with no actuators

�

�

controllable kinematic reduction:

(i) Can follow any straight line

and can turn (2 preferred velocity fields)

(ii) Controllable via these two motions

(iii) Planning via inverse kinematic
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23.1 Decoupling vector fields and kinematic controllability

Data structure

(i) given inertia tensor G, Christoffel symbols Γijk

and covariant derivative (∇XY )i =
∂Y i

∂qj
Xj + ΓijkX

jY k

(ii) given force co-vectors {F 1, . . . , Fm},

and input distribution Y = span{Ya = G−1F a, a = 1, . . . ,m}

Theorems

The vector field V is decoupling if and only if V ∈ Y and ∇V V ∈ Y .

System is kinematically controllable if LARC on decoupling v. fields
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23.2 Ex #1: A three-dimensional aerospace vehicle with three forces

u1

zb

yb

xb
u3

u2

d

F

Fb
kinematically controllable via

body-fixed constant velocity fields

since invariant vector fields

decoupled trajectory planning

via inverse kinematic

xg

zg

yg

x0

z0
y0

0

1

2

3

4

5

6
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23.3 Ex #2: Three link planar manipulator with passive link

� �

� � � �

�� � � �

Actuator Decoupling Kinematically

configuration vector fields controllable

(0,1,1) 2 yes

(1,0,1) 2 yes

(1,1,0) 2 yes

Lynch, Shiroma, Arai, Tanie. “Collision-free trajectory planning for a 3-DOF robot with a passive joint” IJRR, 19(12):1171-1184, 2000

fb-jul02-p179

23.4 Ex #3: The snakeboard and the roller racer

	 
 �

	 
 �

� 
 �

�

�

� �

�

� �

� �

�

�

(i) snakeboard is kinematically controllable

(ii) roller racer is not:

(a) single input Y such that ∇Y Y 6∈ span{Y }
(b) moves forward using zero mean (cyclic) input
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24 Motion planning via series expansions

Linear Control Systems

ẋ = Ax+ bu(t)

where x ∈ Rn, u ∈ Rm.

1) Solution from x(0) = 0 is

x(t) =

∫ t

0

eA(t−s)bu(s)ds.

2) Iff the system is controllable

WT =

∫ T

0

eA(T−s)bb′eA
′(T−s)ds.

3) Open-loop control to reach xd

u(t) = b′eA
′(T−t)W−1

T xd.

Nonlinear Mechanical

Systems

ẋ = f0(x) +
∑

fi(x)ui(t)

1) Evolution is a series expansion,

with iterated integrals of u and iter-

ated Lie brackets between fj .

2) Controllability: sufficient tests in-

clude a full rank question.

3) Local constructive planning pro-

cedure: truncate the series, find an

inverse (local motion primitives),

combine in iterative fashion.
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24.1 Mechanical control systems on matrix groups

(i) g ∈ G is configuration on n-dimensional matrix group

local coordinates via x = log(g)

(ii) kinetic energy KE = 1
2v
T Iv with I > 0

v ∈ Rn velocity in body frame

(iii) body-fixed forces f1, . . . , fm ∈ (Rn)∗.

Generalized Christoffel symbols written with respect to a basis of left invariant

vector fields are constant.
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24.2 Reviewing various concepts

• rewrite:

v̇i + Γijkv
jvk = v̇i +

1

2
〈v : v〉

∑
(I−1fk)uk(t) =

∑
bkuk(t) =: β(t)

• Given the family of input vectors {b1, . . . , bm}, define
Sym{b1, . . . , bm}

• a symmetric product in Sym{b1, . . . , bm} is bad if it contains even number of

each bi. Otherwise good.

bad: 〈b1 : b1〉, 〈b1 : 〈b2 : 〈b2 : b1〉〉〉
good: b1, 〈b1 : b2〉

• definite time integral: β(t) =
∫ t
0
β(τ)dτ
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24.3 Computing the “Force to Displacement” Map

ġ = g · v̂

v̇ + 1
2
〈v : v〉 = β(t)

With ε¿ 1, let

β(t, ε) = ε β1(t) + ε2 β2(t) =

m∑

k=1

bk
(
εu1k(t) + ε2u2k(t)

)

If x(0) = 0, v(0) = 0, then over finite interval

v(t) = εβ1(t) + ε2
(
β2 − 1

2 〈β1 : β1〉
)
(t) +O(ε3)

x(t) = εβ1(t) + ε2
(
β2(t)− 1

2 〈β1 : β1〉(t) + 1
2 [β

1, β1](t)

)
+O(ε3)
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24.4 Example 1: single input systems

• planar rigid body with only

b2 = I−1f2

• set (β1(t), β2(t)) = (±εψ(t)b2, 0)

��

� �� �

� �

� � � �� � � 	

• provided ψ(2π) = 0, we have:

v(2π) ≈ − ε22 〈β1 : β1〉(2π) = 1
2ε
2
( ∫ 2π
0

ψ
2
dt
)(
− 〈b2 : b2〉

)

• independent of sign of ψ(t) (“energy integral” always positive)

• x(2π) behaves similarly
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24.5 Simulation with “uni-directional” motion

��

red is force green is center of mass
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24.6 Example 2: systems with two inputs

• With β2 = 0, and with β1(2π) = β1(2π) = 0

v(2π) ≈ − ε
2

2
〈β1 : β1〉(2π)

• Satellite with two thrusters

– {b1, b2} torques about first two axes

〈bk : bk〉 = 0, 〈b1 : b2〉 torque about third axis

– If β1(t) = ψ(t)(b1 + b2) then

〈β1 : β1〉(2π) = 2〈b1 : b2〉
(∫ 2π
0

ψ
2
dt
)

energy integral in-phase

(classic area integral out-of-phase)
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24.7 Interpretation

given accelerations {bi = I−1fi}

“reachable” velocities {bi, 〈bj : bk〉, . . .}

“reachable” configurations {bi, 〈bj : bk〉, [bj , bk], . . .}

24.8 Examples of systems with “fully reachable” velocities

����

��

�

f1

f2
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24.9 Inverting the Approximate Map

�	

�


• recall v(2π) ≈ ε2
(
β2 − 1

2 〈β1 : β1〉
)
(2π)

βi =
∑
uik(t)bk

• assume “controllable”

rank{bi, 〈bj : bk〉} = n,

〈bi : bi〉 ∈ span{b1, . . . , bm}

• Inverse(vdesired) : can design (β1(t), β2(t))
(
β2 − 1

2 〈β1 : β1〉
)
(2π) = vdesired

(i) in-phase inputs generate motion along good symmetric product

(ii) uni-directional contribution due to bad symmetric products can be

compensated for by lower order, good products

(iii) uik sinusoids (cyclic, in-phase or orthogonal)
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24.10 Primitives of Motion

use Inverse as building block for motion planning

Change-Vel (ε, vfinal) . . . . . . . . . . . . . . steer velocity v(t) to εvfinal

Initial state: v(0) = εv0

Final state: v(2π) ≈ εvfinal

Maintain-Vel (ε, vnom) . . . . . . . . . . . . . keeps velocity v(t) at εvref

Initial state: v(0) = εvref

Final state: v(2π) ≈ εvref

(i) can compute change in g

(ii) expansions with low initial speed: v(0) = εv10 + ε2v20

(iii) “sum” contributions over finite and O(1/ε) intervals
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24.11 Point to point problem via constant velocity algorithm

Goal drive system from (Id, 0) to (g1, 0)

Arguments (g1, σ)

Require log(g1) well defined

1: N ⇐ Floor(‖ log(g1)‖/(2πσ))
2: vnom ⇐ log(g1)/(2πσN)

3: Change-Vel(σ, vnom) {start maneuver}
4: for k = 1 to (N − 1) do

5: Maintain-Vel(σ, vnom) {keep nominal velocity}
6: end for

7: Change-Vel(σ, 0) {stop maneuver}

N intervals × σvnom = total displacement
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24.12 Stabilization problem via iterative steering

Goal drive system to the state (Id, 0) exponentially as t→∞
Arguments σ

Require ‖(log(g(0)), v(0))‖ ≤ σ.

1: for k = 1 to +∞ do

2: tk ⇐ 4kπ {tk is the current time}
3: σk ⇐ ‖(log(g(tk), v(tk)))‖
4: Change-Vel

(
σk,−

(
log(g(tk)) + πv(tk)

)
/(2πσk)

)

5: Change-Vel(σk, 0)

6: end for

two primitives force final configuration and velocity to vanish
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24.13 Simulation of Point-to-Point Problem
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Properties of algorithms

• closed form, negligible computational load

• asymptotic behavior: time O(ε−1), final error (ε3/2)

• series expansion approach leads to complete algorithms
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24.14 Simulations for 3D vehicle

motion primitive

based on local inversion

global planning
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25 Motion planning for polynomial systems

Linear Control Systems

ẋ = Ax+Bu(t)

1) Solution from x(0) = 0 is

x(t) =

∫ t

0

eA(t−s)Bu(s)ds

2) Iff the system is controllable

W =

∫ T

0

eA(T−s)BB′eA
′(T−s)ds > 0

3) Open-loop control to reach xd

u(t) = B′eA
′(T−t)W−1xd

Nonlinear Mechanical

Systems

ẋ = f0(x) +
∑

fi(x)ui(t)

1) Characterize flow map

x(T ) = Φ(u)

2) Controllability: range Φ

3) Local planning:

u = Φ†(xd)
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25.1 Series for polynomial systems

For low-dimensional models of aerospace and underwater vehicles, trigonometric

dependencies can be turned into polynomial:

ẋ = Ax+ f [2](x, x) +Bu, x(0) = x0,

f [2] : Rn × Rn → Rn is a symmetric tensor

evolution via (Volterra) series x(t) = Φ(u) =

+∞∑

k=1

xk(t)

x1(t) = eAtx0 +

∫ t

0

eA(t−τ)Bu(τ)dτ

xk(t) =

∫ t

0

eA(t−τ)
(
k−1∑

a=1

f [2](xa(τ), xk−a(τ))

)
dτ
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25.2 Constructive controllability

Let x(0) = 0, choose base functions:

u(t) =

n∑

i=1

ψi(t)ci c ∈ Rn

then x(T ) = Φ(u) = Φ(c)

xk(T ) = Φk(c, . . . , c)

‖xk‖ = O(‖c‖k)

To have x(T ) = xd, solve

xd = Φ1c+

+∞∑

k=2

Φk(c, . . . , c)

25.3 Minimum energy control

Set up Hamilton’s equations:

ẋ = Ax+ f [2](x, x)−BB′λ
λ̇ = −A′λ− 2f [2](x)′λ

This time no input, λ(0) = λ0 ∈ Rn

xk = Φk(λ0, . . . , λ0)

For boundaries conditions, solve

xd = Φ1λ0 +

+∞∑

k=2

Φk(λ0, . . . , λ0)
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25.4 Expression for Φ tensors

In constructive controllability

Φi1(t) =

∫ t

0

eA(t−τ)Bψi(τ)dτ

Φi1i22 (t) =

∫ t

0

eA(t−τ)f [2]
(
Φi11 (τ),Φ

i2
1 (τ)

)
dτ,

Φi1i2i33 (t) =

∫ t

0

eA(t−τ)
(
f [2](Φi11 (τ),Φ

i2i3
2 (τ)) + f [2](Φi1i22 (τ),Φi31 (τ))

)
dτ

...

Φi1...ikk (t) =

∫ t

0

eA(t−τ)
(
k−1∑

a=1

f [2](Φi1...iaa (τ),Φ
i1...ik−1

k−a (τ))

)
dτ.

To evaluate at t = T
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25.5 Inversion for linearly controllable systems

To solve

xd = Φ1c+
∞∑

k=2

Φk(c, . . . , c)

Φ1 is full rank iff system is linearly controllable, and appropriate {ψi(t)}

1: iterative numerical scheme lim
k→∞

ck → cgoal

c1 = Φ−11 xd, ck+1 = Φ−11 xd −
∞∑

k=2

Φ−11 Φk(ck, . . . , ck)

2: inverse Taylor expansion cgoal =

∞∑

k=1

ck

c1 = Φ−11 xd, ck = −Φ−11
∑

i1+···+im=k
i1,··· ,im<k

Φm

(
ci1 , · · · , cim

)
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25.6 Simulations for linearly controllable systems
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planar vertical takeoff and landing aircraft model (PVTOL)

Desired motion is horizontal translation from left to right without any vertical or

rotational displacement.
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25.7 Inversion for nonlinearly controllable systems

Solve

xd = Φ2(c, c) +

∞∑

k=3

Φk(c, . . . , c)

for not linearly controllable system such as

ẋ = f [2](x, x) +Bu, x(0) = 0

Assume A = 0, rank{Bi, f [2](Bj , Bk)} = n

f [2](Bi, Bi) ∈ span{B1, . . . , Bm}, ∀i

Can invert xd = Φ2(c, c) via “quadratic inversion”

u : [0, 2π]→ Rm = Inverse(xd)
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25.8 Quadratic inversion (compare with linear case)

(i) Let N = m(m− 1)/2, P = {(j, k) | 1 ≤ j < k ≤ m}, 1 ≤ α ≤ N , and

ψα(t) =
1√
2π

(
α sin(αt)− (α+N) sin

(
(α+N)t

))
.

(ii) Compute (m+N) real numbers zi and zjk such that

xd =
∑

1≤i≤m
ziBi +

∑

1≤j<k≤m
zjkf

[2](Bj , Bk).

(iii) Let a : P 7→ {1, . . . , N} be an enumeration of P , and set

b1(t) =
∑

1≤j<k≤m

√
|zjk|

(
Bj − sign (zjk)Bk

)
ψa(j,k)(t)

b2(t) =
1

2π

∑

1≤i≤m
zibi +

1

4π

∑

1≤j<k≤m
|zjk|

(
f [2](Bj , Bj) + f [2](Bk, Bk)

)

Bu(t) = b1(t) + b2(t) = Inverse(xd)
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25.9 Simulations for nonlinearly controllable systems

motion primitive

based on local inversion

global planning
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Summary of Design Methods

(lectures #5 and #6)

Body of work encompassing results on

(i) stabilization via energy methods for fully actuated systems

(ii) motion planning via kinematic reductions

(iii) motion planning via low amplitude oscillations

(iv) talk by Jorge Cortés on motion planning via high amplitude oscillations

Open directions

Motion control via low amplitude oscillations general manifold case

Motion control via kinematic reductions numerical methods for inverse

kinematics, time-varying feedback stabilizers


