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SUMMARY

Motivated by applications to feedback control over communication networks where the actuation and

feedback signals are transmitted over communication channels, we study the stability of Adaptive

Delta Modulators (ADM) when the coded signal is a constant. The importance of such a setting arises

because a common control task is to track a dc input. It is known that a standard accumulator-

based adaptive delta modulator (ADM) has the following highly undesirable characteristic: virtually

all combinations of the algorithm parameters result in 4-cycles, and the avoidance of 4-cycles requires

a nongeneric initialization. Further, the steady state oscillations that generically arise in the course
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ADAPTIVE DELTA MODULATION 1

of these cycles can have amplitudes that can be arbitrarily close to the initial error. Consequently,

we study the use of a forgetting factor in the ADM loop, and provide a detailed stability analysis

and design guidelines. Intuitively, adding a forgetting factor to the classical ADM algorithm prevents

4−periodic cycles from occurring by damping them. In particular we show that for suitably chosen

design parameters, the ADM with forgetting factor can track a constant signal arbitrarily closely under

mild assumptions. We provide simulations to demonstrate how much better the modified algorithm

performs relative to the original ADM algorithm in a remote control setting. Copyright c© 2010 John

Wiley & Sons, Ltd.

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2010; 00:0–0

Prepared using acsauth.cls



2 S. H. DANDACH ET. AL.

1. Introduction
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Figure 1. A Delta Modulator at the transmitter
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Figure 2. A Delta Modulator at the receiver

Adaptive Delta Modulators (ADM) are a popular device used in signal processing and
communications for signal quantization with variable step-size. They seek to increase the
dynamic range of the signals that can be tracked while using binary coding.

While several variations of this device exist [2]-[7], the simplest, [1], [2] is depicted in Fig. 1
and Fig 2. This algorithm has the attractive feature that the encoder, housed at a transmitter
need only transmit the sign of the decoding error. This alone, at least in principle is enough for
the decoder at a receiver to reconstruct the encoded signal, at least in principle. However, as
shown in [10] this algorithm generates 4-cycles for generic initializations. As shown by example
here these cycles may have oscillations that correspond to errors of magnitude comparable to
the initial encoding error. Several papers, e.g. [4, 7, 8, 9] incorporate additional information
on the magnitude of the coding error in the transmitted signal. Thus while Jayant’s algorithm
required only a one bit transmission, these others require a richer transmission protocol. In this
paper we show that the 4-cycles can be ameliorated even if one retains the one bit transmission
conceived by Jayant, by incorporating a forgetting factor in a predictor that features in Jayant’s
algorithm.

We now describe Jayant’s algorithm and our proposed modification. The structures in Fig. 1
and Fig. 2 are at the encoder and decoder, respectively. The signal X(k) is coded into the binary
sequence e(k), taking values from {−1, 1}. It is e(k) that is actually transmitted. The quantity
∆(k) represents the variable step size which is increased or decreased according to the sign
pattern in e(k). Consequently, if the signal at the receiver input is identical to the transmitted
value of e(k), and ∆(0) is known at the receiver, then for all k ≥ 0, ∆(k) is known to the
receiver. This also guarantees that the signal X̂(k) at the receiver is identical to x(k), the
output of H(z) at the transmitter, if x(0) = X̂(0). Thus should x(k) approach X(k), so also
would X̂(k).

A heuristic algorithm for updating ∆(k) with the goal of forcing X̂(k) to approach X(k), is
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ADAPTIVE DELTA MODULATION 3

described in [2]. In Jayant’s algorithm H(z) is an accumulator: i.e. with α = 1,

H(z) =
1

1 − αz−1
. (1.1)

Generally, the agreed upon values of ∆(0) and x(0) (this is generally chosen to be zero) between
the transmitter and receiver are part of the communication protocol.

Our goal is to analyze the behavior of X̂(k) and hence x(k) when the signal X(k) = x is
constant. The motivation for studying the ability of this ADM to track a constant signal stems
from issues connected to networked control systems that are acquiring increasing importance.
Specifically, in such a setting the plant and the controller must communicate the actuation
signal via a communication channel and must thus quantize it.

It has been noted in [11] that variable step quantization of the actuation signal suffices
to achieve acceptable closed loop performance. Thus, it behooves one to understand the
effectiveness of ADM’s in this setting, where the transmitter and receiver of the actuation
signals host the arrangements of Fig. 1 and Fig. 2 respectively.

A typical control problem involves forcing the plant output to track a constant signal. This
in turn requires that at steady state both the signals that the ADM’s should track should be
constants. Thus at the minimum, desirable performance will necessitate that the signal X̂(k)
track a constant X(k) in Figs 1 and 2 with reasonable fidelity.

When α = 1, X̂(k) either converges to x or enters into a 4-cycle. Further, 4-cycles are
avoided only with nongeneric initializations. In view of this conclusion this paper is dedicated
to the analysis when X(k) is a constant and when H(z) is as in (1.1) when a forgetting factor
is included i.e. when 0 < α < 1. Intuitively, adding a forgetting factor to the classical ADM
algorithm, prevents 4−periodic cycles from occurring by damping them. In accordance with
this intuition, we show that in such a case, one can choose the system parameters to make the
eventual coding error arbitrarily small provided x(0) = 0. The forgetting factor also allows the
requirement X̂(0) = x(0) to be relaxed by forcing the initial error to decay.

We note that this paper builds on our conference paper [14], by providing additional insights,
expanding on proofs that were terse because of space constraints, and demonstrating the
efficacy of the algorithm in a remote control setting through simulations.

2. The detailed algorithm and the motivation for the accumulator-based ADM

The detailed algorithm of [2] is given in (2.2) - (2.5) below with ∆(0) > 0 and K > 1.

x(k + 1) = αx(k) + ∆(k)e(k) (2.2)

e(k) = sgn(X(k) − x(k)) (2.3)

∆(k + 1) = ∆(k)Ke(k+1)e(k) (2.4)

with

sgn(a) =

{

1 if a ≥ 0
−1 if a < 0

(2.5)

We now motivate this algorithm in the form proposed in [2], i.e. when α = 1. Several features
of this algorithm are noteworthy. First observe that as the sequence ǫ(k) is available at the
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4 S. H. DANDACH ET. AL.

receiver, so is the sequence ∆(k), assuming perfect transmission and an agreed upon value for
∆(0). This is so as ∆(k) increases by a factor of K if two successive values of X(k)−x(k) have
the same sign (i.e. e(k + 1)e(k) = 1), and decreases by the factor K if two successive values
of X(k) − x(k) have opposite signs (i.e. e(k + 1)e(k) = −1). Thus, the reception of the ǫ(k)
sequence permits reproduction of ∆(k) at the receiver. Consequently if X̂(0) = x(0) then the
accumulation

X̂(k + 1) = αX̂(k) + ∆(k)e(k) (2.6)

ensures that X̂(k) = x(k).

Second, observe that (2.6) justifies the association of ∆(k) with variable step-size as at each
sample time X̂(k) increases or falls by ∆(k), depending on whether x(k) and hence X̂(k) is
below or above X(k).
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Figure 3. (a) Large ∆. (b) Small ∆.

Third, to understand the role of (2.3, 2.4) consider temporarily a constant ∆ replacing ∆(k),
and Fig. 3(a), which simultaneously depicts X(k) and X̂(k): X(k) is the signal that ramps
up to a constant value while X̂(k) is the signal that changes in steps. In the ramping stage it
is desirable to have a large ∆ so that X̂(k) tracks X(k) quicker. The converse applies when
X(k) is at a steady state, where a large ∆ results in a large granularity in the error between
X̂(k) and X(k). Contrast this to Fig. 3(b) where a smaller ∆ is used. The result is slower
tracking when X(k) is rising rapidly, but smaller steady state error once X(k) has stopped
changing. Thus when the signal to be tracked changes quickly, a large ∆ is desirable. On the
other hand when X(k) is not changing quickly and X̂(k) is close to it, a smaller ∆ is desirable.
The update laws (2.3, 2.4) judge the quality of tracking by whether or not successive values
of X(k) − X̂(k) have the same sign. Their doing so indicates that X̂(k) must approach X(k)
at a faster rate requiring a larger ∆. If on the other hand the sign of X(k) − X̂(k) alternates
then X̂(k) is likely to be close to X(k) and a decrease in ∆ is needed and implemented by the
algorithm.
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ADAPTIVE DELTA MODULATION 5

3. An example of 4-cycles when α = 1

We demonstrate now the occurrence of 4-cycles when α = 1 and the input is constant.
Throughout this paper we make the following standing assumption.

Assumption 3.1. The signal X(k) in Fig. 1 and (2.3) obeys, for some constant x̄, X(k) = x̄,

for all k. Further ∆(0) > 0 and K > 1.

Now consider the situation where x(0) = 0, and x > 0. Define L to be an integer such that

∆(0)
KL − 1

K − 1
< x̄ (3.7)

but

∆(0)
KL+1 − 1

K − 1
≥ x̄. (3.8)

Thus, because of (2.2-2.5), x(i) < x̄ ∀ i ≤ L, x(L + 1) ≥ x̄ and

∆(L) = ∆(0)KL. (3.9)

Thus as e(L + 1) = −1 and e(L) = 1, ∆(L + 1) = ∆(L)/K. Further now x(L + 2) =
x(L) + ∆(L) − ∆(L)/K > x(L). Thus a combination of ∆(0) and x̄ can always be found
such that x(L+2) ≥ x̄, while the previous equations continue to hold. Then ∆(L+2) = ∆(L)
and x(L + 3) = x(L) + ∆(L) − ∆(L)/K − ∆(L) < x(L) < x̄. Thus, ∆(L + 3) = ∆(L)/K and

x(L + 4) = x(L) + ∆(L) − ∆(L)/K − ∆(L) + ∆(L)/K

= x(L) < x̄.

Further, one also has ∆(L+4) = ∆(L) connoting the onset of 4-cycles. The swing between the
maximum and minimum values of x(i) in this cycle is ∆(L)(K + 1)/K = ∆(0)(KL + KL−1),
which in view of (3.8) and (3.7) has a comparable magnitude to the initial error between x and
x(0), being O(KL). Thus the fidelity of reconstruction is almost as poor as the initial error,
approaching it arbitrarily closely for large K.

4. ADM with forgetting factor: Overview of results

As the accumulator based algorithm (α = 1), provides poor performance with constant inputs
for generic parameter combinations, and initial conditions, we now study the algorithm with

0 < α < 1. (4.10)

As shown in the sequel good design requires that α be close to 1. In fact, as we will see the
following additional assumption will be needed:

αK > 1. (4.11)
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6 S. H. DANDACH ET. AL.

It is highly doubtful whether arguments of the type advanced below would be effective without
this assumption. Note (4.10,4.11) imply that K > 1. As noted earlier our goal is to study this
algorithm for constant X(i), i.e. for all i,

X(i) = x. (4.12)

In the remainder of this section, we outline the major results when 0 < α < 1, and contrast
them to the case of α = 1. First note that a major difficulty with the α = 1 case is the necessity
of identical initialization of the sequences x(k) and X̂(k). As opposed to this, (4.10) ensures
that the effect of the difference x(0) − X̂(0), diminishes over time.

The second important difference relates to the convergence properties even when exact
intialization occurs. In particular when α = 1, for generic combinations of ∆(0), K, x(0) and
x, for some N and all k > N one has four cycles of the form

x(k + 4) = x(k), and ∆(k + 4) = ∆(k).

Further, the largest |x(k) − x|, in the course of these 4-cycles, can be arbitarily close to the
initial error |x(0) − x|.

When (4.10) holds on the other hand, the following positive parameter plays a pivotal role:

ǫ =
1 − α3

1 − α2 + α

K

(4.13)

Indeed we show that under the right conditions, whose enforcement will be discussed in Section
7,

lim
i→∞

sup ∆(i) ≤ Kǫ|x|. (4.14)

This in turn will be shown to imply that

lim
i→∞

sup |x(i) − x| ≤ max{(1 − α + Kǫ)|x|, (α + Kǫ − 1)|x|} (4.15)

Observe that α+Kǫ−1, can be readily verified to be positive. As will be explained in Section
7 one can make ǫ arbitrarily small by choosing α arbitrarily close to 1. Consequently, one can
achieve an error that is an arbitrarily small fraction of x, the value being encoded. We will
explain later why (4.14) and (4.15) cannot generically be achieved when α = 1. Finally we
note that apart from selecting α ≈ 1, for reasons to be clarified later, it is also desirable to
select αK ≈ 1. This precludes very large values of K.

5. ADM with forgetting factor: Some properties

In this section we present a series of properties of (2.2-2.5) and (4.10-4.12), that will allow us
to conduct our stability analysis. For simplicity we will assume

x > 0. (5.16)

For the moment, we note that the results of this section translate in a rather obvious way to
the case where x < 0. For example under (5.16), the following set of indices that mark the
points at which x(i) transitions from below to above x, will play an important role.

I+ = {i|x(i) < x and x(i + 1) ≥ x}. (5.17)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2010; 00:0–0
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ADAPTIVE DELTA MODULATION 7

Henceforth ∆(i) for i ∈ I+, i.e. at a point of transition of x(i) from below to above x, will be
referred to as a transitioning ∆. For x < 0, on the other hand, the corresponding indices are
those marking transitions in x(i) from above x to below. In general the results of this section
can be applied to the case of x < 0, by reversing the relative positions of signal values, i.e.
inequalities of the form of x(k) ≥ x must be exchanged with x(k) ≤ x.

The first Lemma shows that e(i) must at some point change sign and that the sign changing

persists.

Lemma 5.1. Consider the system described in (2.2-2.5) and (4.10-4.12), (5.16), and I+ as

in (5.17). Then I+ is an infinite set.

Proof: Proof is by contradiction. If I+ is finite, then for all n exceeding some i, either x(n) < x
or x(n) ≥ x. Suppose the former; then e(k) > 0 for all k ≥ i, and ∆(k) = Kk−i∆(l). Thus for
all n > i

x(n) = αn−ix(i) + ∆(i)

n−1
∑

k=i

αn−k−i−1Kk−i

≥ αn−ix(i) + ∆(i)Kn−i−1.

As, K > 1, and α < 1, at some n, x(n) > x establishing a contradiction. Similarly x(k) ≥ x
for all k greater than or equal to some i indicates that e(k) < 0 for all k ≥ i. Thus, at some n,
x(n) < x, and the above argument can be repeated to conclude that I+ is an infinite set.

Recall that the claim of Lemma 5.1 is also valid in the case when α = 1. The next Lemma
gives a lower bound on the values assumed by ∆ when transitions occur. It also provides
conditions for x(i) to increase in value, but as we will see there is no corresponding nontrivial
result for α = 1.

Lemma 5.2. Consider the system described in (2.2-2.5) and (4.10-4.12), (5.16), and I+ as

in (5.17). If i ∈ I+, then

∆(i) > (1 − α)x. (5.18)

Further if for some j, x(j) < x and

∆(j) > (1 − α)x(j), (5.19)

then x(j + 1) > x(j).

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Adapt. Control Signal Process. 2010; 00:0–0
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8 S. H. DANDACH ET. AL.

Proof: If i ∈ I+, then x(i) < x and x(i + 1) ≥ x. Thus,

x ≤ x(i + 1) = αx(i) + ∆(i) < αx + ∆(i)

from which (5.18) follows. Further, under (5.19),

x(j + 1) = αx(j) + ∆(j) > αx(j) + (1 − α)x(j) = x(j).

Here emerges a key difference with the α = 1 case: Namely, the lower bounds in (5.18) and

(5.19) are both zero, and thus trivially hold. We now provide a crucial property of this system.

Specifically, after the first sign change in e(i), no more than two successive values of x(i) may

exceed x.

Lemma 5.3. If i ∈ I+ and x(i + 2) ≥ x then under (2.2-2.5) and (4.10-4.12), (5.16), and

I+ as in (5.17), x(i + 3) < x and

x(i + 4) = α4x(i) + ∆(i)(1 − α2)(1/K − α) < x. (5.20)

Further in this case

∆(i + 4) = ∆(i). (5.21)

Proof: By definition of I+ x(i) < x and x(i + 1) ≥ x. Thus, from (2.2-2.5), as x(i + 2) ≥ x,
one has that e(i)∆(i) = ∆(i), e(i + 1)∆(i + 1) = −∆(i)/K and e(i + 2)∆(i + 2) = −∆(i) .
Thus,

x(i+3) = α3x(i)+α2∆(i)e(i)+α∆(i+1)e(i+1)+∆(i+1)e(i+2) = α3x(i)+∆(i)(α2−
α

K
−1),

(5.22)
Observe that α2 − α/K − 1 < 0, from (4.10). Thus if x(i) ≥ 0, x(i + 3) < x(i) ≤ x. On the
other hand x(i + 3) is negative and hence less than x, if x(i) < 0.

Moreover, in this case e(i + 3)∆(i + 3) = ∆(i)/K. Thus if x(i) ≥ 0 then because of (4.11),

x(i + 4) = α4x(i) + α3∆(i) − α2 ∆(i)

K
− α∆(i) +

∆(i)

K

= α4x(i) + ∆(i)(1 − α2)(1/K − α) < x(i) < x.

If on the other hand, x(i) < 0 then

x(i + 4) = α4x(i) + ∆(i)(1 − α2)(1/K − α) < 0 < x. (5.23)

Finally (5.21) occurs because ∆(i + 3) = ∆(i)/K, and x(i + 3) and x(i + 4) are both less than
x.
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ADAPTIVE DELTA MODULATION 9

Thus if i ∈ I+ then either

e(i) = 1, e(i + 1) = e(i + 2) = −1 and e(i + 3) = 1, (5.24)

or

e(i) = 1, e(i + 1) = −1 and e(i + 2) = 1, (5.25)

The fact that no more than two successive e(i) can be negative, after the first transition is
also true for the α = 1 case. However, when α = 1, from (5.20) one sees that x(i + 4) = x(i),
and ∆(i+4) = ∆(i), signaling the onset of 4-cycles. Thus, in the α = 1 case any occurrence of
(5.24) will lead to 4-cycles that cannot be arrested. This will not be the calse when 0 < α < 1.
The next Lemma characterizes conditions under which (5.24) holds.

Lemma 5.4. Consider the system described in (2.2-2.5) and (4.10-4.12), (5.16), and I+ as

in (5.17). Then x(i + 2) ≥ x iff

α2x(i) ≥ (
1

K
− α)∆(i) + x. (5.26)

Proof: Follows from noting that x(i + 2) ≥ x is equivalent to

x(i + 2) = α2x(i) + α∆(i) −
∆(i)

K
> x.

Because of the forgetting factor being smaller than 1, even if x(i) < x and thus e(i)∆(i) > 0,
x(i + 1) need not exceed x(i). The following Lemma shows, however that if at any point
x(i) does become less than x, then after at most two samples, its value will increase and will
continue do so, as long as it remains below x.

Lemma 5.5. Under (2.2-2.5), (4.10-4.12) and (5.16), suppose i ∈ I+. Then the following

apply.

(A) Suppose (5.24) holds and for some k ≥ 4 and all n ∈ {3, · · · , k}, e(i + n) = 1. Then for all

n ∈ {4, · · · , k},

x(i + n + 1) > x(i + n). (5.27)

(B) Suppose (5.25) holds and for some k ≥ 4 and all n ∈ {2, · · · , k}, e(i+n) = 1. Then also (5.27)

holds for all n ∈ {4, · · · , k}.
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10 S. H. DANDACH ET. AL.

Proof: In case A, from Lemma 5.3, e(i + 3) = e(i + 4) = 1, and ∆(i + 4) = ∆(i). Thus, as
e(i + n) = 1, for all n ∈ {3, · · · , k}, ∆(i + n) ≥ ∆(i) for all n ∈ {4, · · · , k}. Similarly, in case
B e(i + 2) = −e(i + 1) = 1 = e(i). Thus, as e(i + n) = 1, for all n ∈ {2, · · · , k}, from (2.4),
∆(i + 2) = ∆(i)/K2, ∆(i + 3) = ∆(i)/K, and ∆(i + n) ≥ ∆(i) for all n ∈ {4, · · · , k}. Further
as x > x(i + n), for all n ∈ {4, · · · , k}, and i ∈ I+, from the first part of Lemma 5.2

∆(i + n) ≥ ∆(i) > (1 − α)x > (1 − α)x(i + n).

Thus the result follows the from second part of Lemma 5.2.

We will use these properties to study the asymptotic behavior of (2.2 - 2.5) in the next
section.

6. ADM with forgetting factor: Stability

In this section we provide conditions under which (4.14) and (4.15) hold. These equations
embody the stability property. To this end, we will continue to assume that x > 0. The
translation to the x < 0 case will be according to that given at the start of Section 5. The
first few lemmas focus on the values of transitioning ∆’s. Specifically, the first states that if a
given transitioning ∆ exceeds ǫx, then the next transitioning ∆ can be no greater.

Lemma 6.1. Suppose (2.2-2.5), (4.10-4.12) and (5.16) hold. Consider i, j two consecutive

members of I+, with j > i. Suppose ∆(i) > ǫx. Then ∆(j) ≤ ∆(i) and j ≤ i + 4.

Proof: From Lemma 5.3 one of the following two cases apply.
Case I: x(i + 2) < x. We will argue now that if ∆(j) > ∆(i), then ∆(i) < ǫx; this is

equivalent to proving the desired result. Now under the case I condition, ∆(i + 1)e(i + 1) =
−∆(i)/K, ∆(i+2)e(i+2) = ∆(i)/K2, and for all k ∈ {i+2, · · · , j}, ∆(k)e(k) = ∆(i)Kk−i−4.
Thus, ∆(j) > ∆(i) implies and is implied by j > i + 4, and so x(i + 4) < x and x(i + 5) < x.
Observe that,

x(i + 5) = α4x(i + 1) + α3∆(i + 1)e(i + 1) + α2∆(i + 2)e(i + 2) + α∆(i + 3)e(i + 3) + ∆(i + 4)e(i + 4)

= α4x(i + 1) − α3 ∆(i)

K
+ α2 ∆(i)

K2
+ α

∆(i)

K
+ ∆(i).

Thus x(i + 5) < x implies

α4x(i + 1) − α3 ∆(i)

K
+ α2 ∆(i)

K2
+ α

∆(i)

K
+ ∆(i) < x

Consequently, as x(i + 1) ≥ x,

∆(i) <
x(1 − α4)

1 + α

K
+ α2

K2 − α3

K

. (6.28)

Thus, to prove that ∆(i) ≤ ǫx, it is enough to show that the upper bound in (6.28) is smaller
than ǫx, or equivalently by (4.13) that (1 + α + α2)(1 + α

K
(1 − α2 + α

K
)) is greater than
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(1 + α + α2 + α3)(1 − α2 + α

K
). Indeed, using the fact that K > 1, and (4.10) and (4.11), the

difference between these two quantities equals and obeys:

(1 + α + α2)(
α2

K2
+ α2(1 −

α

K
)) − α3(1 − α2 +

α

K
)

= α2(1 + α + α2) + (
α2

K2
−

α3

K
)(1 + α + α2)

− α3(1 − α2 +
α

K
)

= α2(1 + α + α2) − α3 − α2(α −
1

K
)

(

1 + α + α2

K
− α2

)

> α2(1 + α2) − α2(α −
1

K
)
(

1 + α + α2 − α2
)

> α2(1 + α2) − α3(1 + α) = α2(1 − α) > 0,

where we have used the fact that αK > 1 and K > 1. Hence ∆(i) > ǫx implies ∆(j) ≤ ∆(i).
Also, as noted in the above argument, ∆(j) ≤ ∆(i) if and only if j ≤ (i + 4), and this yields
the second desired conclusion.

Case II: x(i+2) ≥ x. In this case ∆(i+2)e(i+2) = −∆(i), and as from Lemma 5.3, x(i+3)
and x(i + 4) are less than x, ∆(i + 3)e(i + 3) = ∆(i)/K and ∆(i + 4)e(i + 4) = ∆(i). As
x(i + 2) ≥ x, and ∆(i) > ǫx, we have that

x(i + 5) = α4x(i + 1) + α3∆(i + 1)e(i + 1) + α2∆(i + 2)e(i + 2)

+ α∆(i + 3)e(i + 3) + ∆(i + 4)e(i + 4)

= α3x(i + 2) + ∆(i)(1 − α2 +
α

K
)

> x(α3 + 1 − α3) = x.

Hence j = i + 4 and from Lemma 5.3 ∆(j) = ∆(i).

When α = 1, the four-cycles referred to earlier occur, when j = i + 4 and x(i + 2) ≥ x.

Now, the second step en route to the desired stability result is to provide conditions under
which the next transitioning ∆ is in fact smaller, i.e. if i, j are consecutive members of I+,
then ∆(j) < ∆(i). Specifically, recall from Lemma 5.3 that, if i ∈ I+, the there are at most
two succeeding time instants, i + 1 and i + 2 at which x(.) can remain greater than x. The
Lemma below shows that if in fact a transitioning ∆ exceeds Kǫx, and x(.) stays above x only
once, then the next transitioning ∆ will be smaller.

Lemma 6.2. Suppose (2.2-2.5), (4.10-4.12) and (5.16) hold. Consider i, j, two consecutive

members of I+, with j > i. Suppose ∆(i) > Kǫx and x(i + 2) < x. Then ∆(j) < ∆(i).

Proof: Because, x(i + 2) < x, from the definition of I+, ∆(i + 1)e(i + 1) = −∆(i)/K,
∆(i + 2)e(i + 2) = ∆(i)/K2, and for all k ∈ {i + 2, · · · , j}, ∆(k)e(k) = ∆(i)Kk−i−4. Thus, if
j = i + 2, then ∆(j) < ∆(i). Hence, to prove the Lemma we need only show that if j > i + 2,
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12 S. H. DANDACH ET. AL.

then x(i + 4) ≥ x. Indeed as j > i + 2, and x(i + 1) ≥ x,

x(i + 4) = α3x(i + 1) + α2∆(i + 1)e(i + 1)

+ α∆(i + 2)e(i + 2) + ∆(i + 3)e(i + 3)

= α3x(i + 1) +
∆(i)

K
(1 − α2 +

α

K
)

> x(α3 + 1 − α3) = x.

The final equality comes from the lemma hypothesis that ∆(i) > Kǫx and the definition of ǫ
in (4.13).

The third step is to show in Lemma 6.3 that if a transitioning ∆ is less than or equal to
ǫx, then the next transitioning ∆ cannot exceed Kǫx. Taken together Lemmas 6.1 and 6.3
show that if at any stage a transitioning ∆ becomes less than or equal to Kǫx, then no future
transitioning ∆ can exceed Kǫx.

Lemma 6.3. Suppose (2.2-2.5), (4.10-4.12) and (5.16) hold. Consider i, j, two consecutive

members of I+, with j > i. Suppose ∆(i) ≤ ǫx. Then ∆(j) ≤ Kǫx.

Proof: We need to consider the two cases x(i + 2) < x and x(i + 2) ≥ x.
Case I: x(i + 2) < x. In this case ∆(i + 1)e(i + 1) = −∆(i)/K, ∆(i + 2)e(i + 2) = ∆(i)/K2,
and for all k ∈ {i + 2, · · · , j}, ∆(k)e(k) = ∆(i)Kk−i−4. Suppose j = i + n. If n ≤ 5, then

∆(j) ≤ K∆(i) ≤ Kǫx,

proving the result. Now suppose n ≥ 6, and thus ∆(j) > Kǫx. Observe by definition
x(j) = x(i + n) < x. Then

x(i + n) = α2x(i + n − 2) + α
∆(j)

K2
+

∆(j)

K
< x.

Thus,

x(i + n − 2) =
x(i + n) − ∆(j)( α

K2 + 1
K

)

α2

<
x − Kǫx( α

K2 + 1
K

)

α2

=
x

α2
(1 − (

α

K
+ 1)ǫ) (6.29)

On the other hand because of Lemma 5.2, ∆(i) > (1 − α)x. Thus,

x(i + 4) = α3x(i + 1) + α2∆(i + 1)e(i + 1)

+ α∆(i + 2)e(i + 2) + ∆(i + 3)e(i + 3)

= α3x(i + 1) +
∆(i)

K
(1 − α2 +

α

K
)

> α3x + x
1 − α

K
(1 − α2 +

α

K
) (6.30)
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Further, as n ≥ 6, from Lemma 5.5, x(i+n−2) ≥ x(i+4). Thus to establish a contradiction we
need only show that the upper bound in (6.29) is less than the lower bound in (6.30). Indeed,
the difference between the upper bound in (6.29) and the lower bound in (6.30), given by (see
(4.13))

1

α2
[1 −

(1 − α3)(1 + α

K
)

1 − α2 + α

K

] − [α3 +
1

K
(1 − α)(1 − α2 +

α

K
]

has the same sign as

(1 − α2 +
α

K
) − (1 − α3)(1 +

α

K
) − α5(1 − α2 +

α

K
)

−
α2

K
(1 − α)(1 − α2 +

α

K
)2

= (1 − α5)(1 − α2 +
α

K
) − (1 − α3)(1 +

α

K
)

−
α2

K
(1 − α)(1 − α2 +

α

K
)2

<

[

1 − α2 +
α

K
− α5 + α7 −

α6

K

]

−

[

1 +
α

K
− α3 −

α4

K

]

= α2(α − 1) + α4(
1

K
− α) + α6(α −

1

K
)

< α4(α −
1

K
)(α2 − 1) < 0,

where the last inequality use (4.10) and (4.11).

Case II: x(i + 2) ≥ x. In this case ∆(i + 2)e(i + 2) = −∆(i), and from Lemma 5.3, x(i + 3)
and x(i + 4) are less than x, and ∆(i + 4) = ∆(i).

With n defined as in the proof of Case I, suppose, (again to obtain a contradiction) that
∆(i + n) > Kǫx. Then in this case n ≥ 6, as ∆(i + 5) = K∆(i) ≤ Kǫx. Now, as

x(i + n) = αx(i + n − 1) +
∆(i + n)

K

one has

x(i + n − 1) =
x(i + n) − ∆(i+n)

K

α
< x

(

1 − ǫ

α

)

, (6.31)

where ǫ is defined in (4.13). Further, because of Lemma 5.5 and the fact that x(i + 2) ≥ x,
x(i + 5) > x(i + 4) and ∆(i) > (1 − α)x,

x(i + 5) = α3x(i + 2) + α2∆(i + 2)e(i + 2) + α∆(i + 3)e(i + 3)

+ ∆(i + 4)e(i + 4)

> x[α3 + (1 − α)(1 − α2 +
α

K
)] (6.32)

As from Lemma 5.4, ∆(i + n − 1) > ∆(i + 5), for all n ≥ 6, proving that the upper bound
in (6.31) is smaller than the lower bound in (6.32), will establish a contradiction. In fact the
difference between the upper bound in (6.31) and the lower bound in (6.32), has the same sign
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14 S. H. DANDACH ET. AL.

as

(1 − α2 +
α

K
) − (1 − α3) − α4(1 − α2 +

α

K
)

− α(1 − α)(1 − α2 +
α

K
)2

= (1 − α4)(1 − α2 +
α

K
) − α(1 − α)(1 − α2 +

α

K
)2

− (1 − α3)

= (1 − α)
[

(1 + α + α2 + α3)(1 − α2 +
α

K
)

− α(1 − α2 +
α

K
)2 − (1 + α + α2)

]

= (1 − α)
[

(1 + α + α2)(1 − α2 +
α

K
− 1)

+ α(1 − α2 +
α

K
)
(

α2 −
(

1 − α2 +
α

K

))]

= (1 − α)

[

α(
1

K
− α)(1 + α + α2 + α − α3 +

α2

K
)

+ α(1 − α2 +
α

K
)(α2 − 1)

]

< 0

where we have used K > 1, (4.10) and (4.11) repeatedly.

We now establish conditions that ensure (4.14), including naturally i /∈ I+. Our strategy
will be to show that under these conditions there exists an N such that for all i ≥ N and
i ∈ I+, there holds:

∆(i) ≤ Kǫx. (6.33)

We argue that this ensures (4.14). Assume such an N exists and consider any consecutive
elements i, j of I+, obeying j > i ≥ N . Define k with i < k ≤ j to be the unique time instant
where x(k) < x and x(k − 1) ≥ x. Then we know that for all i ≤ l ≤ k − 1, ∆(i) ≥ ∆(l).
Likewise for all k ≤ l ≤ j, ∆(l) ≤ ∆(j). This proves that if (6.33) holds for all i ∈ I+, and
i ≥ N , then it also holds for all i ≥ N .

Now we examine how to ensure (6.33) holds for all i ≥ N and i ∈ I+. Because of Lemmas
6.1 and 6.3, if any transitioning ∆ becomes less than or equal to Kǫx, all future transitioning
∆’s must be bounded by Kǫx. Thus to prove (4.14), it suffices to have the following condition:
That for every i ∈ I+, at which ∆(i) > Kǫx, there exists a j > i and j ∈ I+, such that
∆(j) < ∆(i). Then as all multiplicative changes in ∆ are by factors that are powers of K,
(6.33) must hold for all suitably large i ∈ I+. Now suppose a given i ∈ I+, with ∆(i) > Kǫx,
has the property that for all j > i and j ∈ I+, ∆(j) ≥ ∆(i). By Lemma 6.1, at all such j,
in fact ∆(j) = ∆(i). By Lemma 6.2 this implies that for all j ≥ i and j ∈ I+, x(j + 2) ≥ x.
Since, in this case Lemma 5.3 asserts that x(j + 3) < x, x(j + 4) < x, and ∆(j + 4) = ∆(j),
this also means that j + 4 ∈ I+, as failure to transition at this point will result in a large
transitioning ∆, thereby violating Lemma 6.1. This argument thus shows the following: if for
all N there exists i ≥ N , such that (6.33) fails, then there must exist an i ∈ I+, such that for
all nonnegative integer n,

i + 4n ∈ I+, x(i + 4n + 2) ≥ x and ∆(i + 4n) = ∆(i) > Kǫx. (6.34)
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The result is in fact a 2-cycle in ∆ (in this case for all ∆(i + 4n + 2) = ∆(i) and
∆(i + 4n + 1) = ∆(i)/K ) with potentially large amplitudes.

It is possible for such cycles to occur. Consider for example the situation where for some i

∆(i) ≥ ∆∗ :=
(1 + α2)|x|

α − 1
K

. (6.35)

Now select, x(i) = x∗, defined as:

x∗ = −sgn(x)

(

α − 1
K

)

∆(i)

1 + α2
. (6.36)

Suppose x > 0. In this case since x(i) = x∗ < 0 < x,

x(i + 1) = αx(i) + ∆(i) =
1 + α

K

1 + α2
∆(i) ≥

1 + α

K

1 + α2
∆∗ =

α + K

αK − 1
x > x, (6.37)

where the last inequality is obtained by using the fact that K > 1 and α < 1. Thus, i ∈ I+,
and ∆(i + 1)e(i + 1) = −∆(i)/K. Consequently,

x(i + 2) = α2x(i) + (α −
1

K
)∆(i) =

α − 1
K

1 + α2
∆(i) > x, (6.38)

where the last inequality is obtained by using (6.35). Thus, from Lemma 5.3,

x(i + 4) = α4x(i) − (α −
1

K
)(1 − α2)∆(i)

= α4x(i) + (1 + α2)(1 − α2)x(i) = x(i).

Evidently, in this case 2-cycles result in ∆ and 4-cycles in x(i). Further the resulting ∆(i)
sequence oscillates with bounds of ∆∗ and ∆∗/K. Notice two features of this example. First
as α − 1/K is to be kept small, ∆∗ is a large multiple of x. Second, the x(i) sequence in the
course of these cycles changes sign. Below, we show that these features are necessary for such
large oscillations in ∆ to occur, and in Section 7 provides design guidelines for avoiding them.

Theorem 6.1. Consider the system described in (2.2-2.5) and (4.10-4.12) and I+ as in

(5.17). Suppose x > 0, (respectively, x < 0) and at least one of the following two conditions

holds: (i) For some i ∈ I+, (respectively, i ∈ I−), (6.35) is violated. (ii) For all i ∈ I+,

(respectively, i ∈ I−), x(i) ≥ 0, (respectively, x(i) ≤ 0). Then under (2.2-2.5) and (4.10-4.12)

there exists a finite N , such that for all i ≥ N , (6.33) holds.

Proof: We will prove the result when x > 0. Suppose for every N , there exists i ≥ N , such
that (6.33) is violated. In view of the argument given after Lemma 6.3, this implies that there
exists i such that for all n ≥ 0, (6.34) holds. Thus, for all n ≥ 0, one has (see Lemma 5.3),

x(i + 4(n + 1)) = α4x(i + 4n) −

(

α −
1

K

)

(1 − α2)∆(i + 4n).
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16 S. H. DANDACH ET. AL.

With x∗ defined in (6.36) we thus have

x(i + 4(n + 1)) − x∗ = α4x(i + 4n) −

(

α −
1

K

)

(1 − α2)∆(i)

+

(

α − 1
K

)

∆(i)

1 + α2

= α4x(i + 4n) + α4 α − 1
K

1 + α2
∆(i)

= α4(x(i + 4n) − x∗).

Thus
lim

n→∞

x(i + 4n) = x∗, (6.39)

and as x∗ < 0, (ii) must be violated. Further, observe that as i ∈ I+, the second equation in
(6.34) ensures that for all n ≥ 0

x(i + 4n + 2) = α2x(i + 4n) + (α −
1

K
)∆(i) ≥ x.

Because of (6.39) this requires that

x ≤ α2x∗ + (α −
1

K
)∆(i) =

α − 1
K

1 + α2
∆(i)

where the last equality follows from (6.36). Thus (6.35) holds for this i ∈ I+, and in fact all
subsequent transitioning ∆ must be no smaller than this ∆(i). As this ∆(i) also obeys the last
inequality in (6.34), because of Lemma 6.1 no previous transitioning ∆ can be less than this
∆(i) either, i.e. (i) must be violated.

The example given before Theorem 6.1 also shows that (i) and (ii) in Theorem 6.1 together
constitute sufficient conditions for these potentially large amplitude 4-cycles to be possible, e.g.
when x(0) = x∗. In the α = 1 case, (ii) in Theorem 6.1 is not necessary for such undesirable
cycles to occur. In particular, (ii) stems from the requirement of (6.39). Because of the equation
before (6.39), (6.39) need not hold if α = 1. Further, as noted after Lemma 5.3, when α = 1,
such cycles in ∆(k), and indeed 4-cycles in x(k) are guaranteed for α = 1, if even once
x(i + 2) ≥ x for i ∈ I+. This in general is not true when α < 1.

We now examine the error bvehavior in |x(i) − x| when (6.33) is assured.

Theorem 6.2. Suppose under (2.2-2.5) and (4.10-4.12) there exists a finite N , such that for

all i ≥ N , (6.33) holds. Then (4.15) also holds.

Proof: Again we will prove the result when x > 0. Choose successive members l and j of I+,
l < j and both greater than N . Clearly, from Lemma 5.3 at most x(l + 1) and x(l + 2) can be
greater than or equal to x. Further as x > 0, and (4.10) holds, x(l + 2) < x(l + 1). Thus the
maximum value of x(k) for all k ∈ {l, l + 1, · · · , j} is x(l + 1). Because of (6.33),

x(l + 1) = αx(l) + ∆(l) < (α + Kǫ)x. (6.40)
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Consider now the unique i for which l < i < j, x(i − 1) ≥ x and x(i) < x. Then from Lemma
5.3 either i = l +2 or i = l +3, and so from Lemma 5.5 the only candidates for minimum x(k)
with k ∈ {l, l + 1, · · · , j} are x(i), x(i + 1) and x(i + 2). Call ∆(i − 1) = ∆ ≤ Kǫx. Clearly,

x(i) = αx(i − 1) − ∆ ≥ (α − Kǫ)x. (6.41)

We will now show that neither x(i+1), nor x(i+2) can be less than (α−Kǫ)x. If x(i+1) ≥ x(i),
then of course x(i + 1) ≥ (α − Kǫ)x. Suppose, x(i + 1) < x(i). As ∆(i) = ∆/K, the second
part of Lemma 5.2, leads to the conclusion that ∆/K < x(1 − α). Then,

x(i + 1) = α2x(i − 1) + ∆(
1

K
− α) > x[(α2 + (1 − αK)(1 − α)]. (6.42)

We show that x(i + 1) > (α−Kǫ)x by showing that the coefficient of x in (6.42) is no smaller
than (α − Kǫ). Indeed as K > 1 and (4.10) holds,

α2 + (1 − αK)(1 − α) − α + Kǫ

= (1 − α)(1 − α − αK) + Kǫ

> −(1 − α)αK + K
1 − α3

1 − α2 + α

K

> −(1 − α)αK + K
1 − α3

1 + α2 + α

= K
(1 − α)(1 − α3)

1 + α + α2
> 0.

Now consider x(i + 2). We have

x(i + 2) = α3x(i − 1) + ∆
[

1 − α2 +
α

K

]

> α3x.

We show that α3 > (α − Kǫ). Again as K > 1 and (4.10) holds,

α3 − α + Kǫ > α(α2 − 1) +
1 − α3

1 − α2 + α

which has the same sign as

1 − α3 − α(1 − α2)(1 − α2 + α)

= (1 − α)(1 − α2 + α4) > 0.

We stress again that this Theorem requires in its hypothesis only that ∆(i) eventually
become no greater than Kǫx and nothing else.

7. ADM with forgetting factor: Design guidelines

The parameter ǫ in (4.13) obeys

Kǫ < K3 1 − α3

α
.
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18 S. H. DANDACH ET. AL.

Evidently, for a given K one can make Kǫ as small as one pleases by making α ≈ 1. Thus (4.15)
indicates that the error in x(i) − x can be made arbitrarily small by choosing a sufficiently
small Kǫ. Of course, a practical limit on how close α can be made to 1 is imposed by the
competing role of α as an instrument to diminish the effect of x(0) − X̂(0). Observe that by
choosing K to be modest in magnitude, one can achieve the objective of keeping αK ≈ 1 while
still satisfying (4.10), K > 1 and ǫ ≈ 0.

We now turn to satisfying the requirement to ensure (4.14). The first such design strategy
assumes that lower and upper bounds on |x| and its sign are available. Frequently, it is desirable
to keep this lower bound greater than zero to permit x to rise above a noise floor. A strategy
assuming such a bound, justified in Lemma 7.1 below, requires that

∆(0) <
1 + α2

K(αK − 1)
|x| =

∆∗

K2
. (7.43)

The Lemma assumes that |x(0)| < |x| and x(0)x ≥ 0.

Lemma 7.1. Consider (2.2-2.5), (4.10-4.12) with (7.43) in force. Suppose |x(0)| < |x| and

x(0)x ≥ 0. Then (4.14) and hence (4.15) holds if (7.43) holds.

Proof: Again we treat the case x > 0. In view of Theorem 6.2 it suffices to show that (6.33)
holds. According to Theorem 6.1 this in turn is satisfied if for some i ∈ I+, ∆(i) < ∆∗. Choose
such an i to be the first element in I+.

If i ≤ 2 then ∆(i) ≤ K2∆(0) < ∆∗. Thus suppose i ≥ 3. As by definition x(k) < x for all
k ≤ i and i ≥ 3,

x > x(i) ≥ αix(0) + ∆(0)(Ki−1 + αKi−2 + α2Ki−3)

= αix(0) +
∆(i)

K2
(K2 + αK + α2)

≥
∆(i)

K2
(K2 + αK + α2).

Thus,

∆(i) <
K2

K2 + αK + α2
x < x.

As

∆∗ =
1 + α2

α − 1/K
x > x

one thus has ∆(i) < ∆∗, proving the result.

If |x(0)| ≥ |x| and x(0)x > 0 then replace |x| in (7.43) by |x − x(0)|.

Observe, (7.43) is easy to satisfy as long as x 6= 0. Simply choose ∆(0) sufficiently small.
Beyond this, all that is required is that x(0) = 0. The analysis above indicates that the
algorithm will tolerate modest violations of this last requirement.
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8. Simulations

In this section we show simulations results that compare the behavior of a remotely controlled
network where the ADM algorithm is used to encode and decode a signal. The objective is to
remotely control a plant. We compare the behavior of the classical ADM (α = 1) to that of the
modified algorithm that we propose in this paper. Specifically we have the setting of Fig. 4.
Specifically, we have a stable plant with transfer function 1/(z+1). The compensator 1/(z−1)
is used to achieve robust tracking of all constant signals, using the celebrated internal model
principle. The controller and the control loop are at the receiver. A command signal, encoded
and decoded by the ADM algorithm is transmitted from a remote location. Observe the loop
gain here is unstable. The command signal encoded has a constant value of one.

x

Δ(k)

H(z)
e(k)=±1

_

+ 1/(z-1) 1/(z+1)

Compensator Plant

Figure 4. Block diagram showing the receiver and a plant with transfer function P (z) = 1/(z +1) and

a compensator with transfer function C(z) = 1/(z − 1).

Fig. 5 demonstrates performance of Jayant’s ADM with no forgetting factor and K = 1.01.
Observe the large oscillations that ensue. The error amplitude is in fact as large as the value
the plant is supposed to track.

Fig. 6 demonstrates performance of ADM with a forgetting factor of .999 and K = 1.01.
Observe at steady state the oscillations are negligible, despite the fact that α is so close to
one.

These simulations confirm the proved results in this manuscript.

9. Conclusion

Motivated by networked control applications we have studied the behavior of an ADM
algorithm with a forgetting factor, when the coded signal is a constant. It is known that,
in the absence of a forgetting factor, for generic initializations, convergence is not possible,
and 4-cycles must arise. We have shown by example that these 4-cycles could result in large
coding errors.

We have analyzed our proposed modification involving the inclusion of a forgetting factor.
We have shown that in such a case arbitrarily small coding errors can be achieved under mild
assumptions through suitable design selections of the forgetting factor. Areas of further work
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Figure 5. This plot shows the output of a plant with transfer function P (z) = 1

z
2
−1

when the signals

are encoded using the modified ADM. Here we choose α = 1 and K = 1.01. The output of the plant

has large oscillations.
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Figure 6. This plot shows the output of a plant with transfer function P (z) = 1

z−1
when the signals

are encoded using the modified ADM. Here we choose α = 0.999 and K = 1.01, giving Kǫ << 1. The

output of the plant approaches the desired output with negligible oscillations.

include studying this ADM with non-constant signals with essential bandwidth well below the
sampling rate, by using a singular perturbation method. It is also useful to look directly at
stabilizability issues in a remote control setting.
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